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ABSTRACT. This paper is concerned with recent developments on the Stieltjes transform
of generalized functions. Sections 1 and 2 give a very brief introduction to the
subject and the Stieltjes transform of ordinary functions with an emphasis to the
inversion theorems. The Stieltjes transform of generalized functions is described

in section 3 with a special attention to the inversion theorems of this transform.
Sections 4 and 5 deal with the adjoint and kernel methods used for the development of
the Stieltjes transform of generalized functions. The real and complex inversion
theorems are discussed in sections 6 and 7. The Poisson transform of generalized
functions, the iteration of the Laplace transform and the iterated Stieltjes trans-
from are included in sections 8, 9 and 10. The Stieltjes transforms of different
orders and the fractional order integration and further generalizations of the
Stieltjes transform are discussed in sections 11 and 12. Sections 13, 14 and 15 are
devoted to Abelian theorems, initial-value and final-value results. Some applications
of the Stieltjes transforms are discussed in section 16. The final section deals with
some open questions and unsolved problems. Many important and recent references are

listed at the end.
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1. INTRODUCTION.
The development and extension to generalized functions of the Fourier transform
became a remarkably powerful tool in the theory of partial differential equations.

Following these developments, the theory and applications of the integral transforms



642 R.S. PATHAK and L. DEBNATH

of generalized functions have been an active research area for the last thirty years.
This period has produced major advances in the extension to generalized functions of
many different integral transformations. Since the various types of such transforma-
tions are numerous, it is hardly possible to review all such transformations in one
expository and survey article. So the purpose of this paper is to discuss and present
recent developments of the Stieltjes transform of generalized functions and its
applications. Our primary objective, therefore, is not concerned with proofs of many
results and theorems but rather to provide researchers with the fundamental concepts,
the underlying principles and various results and theorems.
2. STIELTJES TRANSFORM OR ORDINARY FUNCTIONS.

The Stieltjes transform F(x) of an ordinary function f(t) with

(1+t)7! £(t) € L(0,=) is defined by
0 1
F(x) = S[£(t)] = [ (x+t)7" £(t)dt (x > 0). (2.1)
0
This transform (2.1) arises as an iteration of the Laplace transform, i.e., if
o
F) = [ 7 w(ydy (2.2)
0
where
vy = et f(oae, (2.3)
0

then F(x) is given by (2.1). For example

1

(1) s[(t+a) "] = ;%; log |§| provided Iarg al < and |arg x| < m.

} e-at] = ﬂx—! e®* erfc (/5;) where erfc(y) is the usual complementary func-

(i1) s[t”
tion defined in a book by Myint-U and Debnath (1987).
Real and complex inversion formulae and several other results for the Stieltjes trans-
form are given by Widder (1946). Widder distinguished between '"complex'" inversion
formulae, which make use of values of f at points off the real-axis, and 'real" inver-
sion formulae, which use only values of f on the positive real axis.

Let p be any complex number except zero and the negative integers. Then for all
s in the region @ , where Q2 is the s-plane cut from the origin along the negative real

axis, the Stieltjes transform in its general form is defined by

Fe): = s [F)] : = [ EE g, (2.4)
0 (s+t)P

For real and positive values of p Pollard (1942) defined the operator

k-1
_ (L) Tk-1)! T(p) [e2ktP=2 p(k=1) (5 (k)

P . =
L, e [FO: = 570y T T(2irptl) (2.5)
and gave the real inversion formula
m 1) | [F(0)] = £(1), (2.6)
P
If Ln ¢ denotes the differential operator
’
n 2k
. _ (D) Y
Ln,t = ~-th I [1 5 ], D= T (2.7ab)

k=1 4k
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and if

Fo = [ BB (2.8)
0

+t

]

converges for some non-zero x, then if f(t) ¢ L(R_I,R) for every positive R > 1,
Ln x[F] +> f(t) almost everywhere, as n » <, (2.9)
i)

Love and Byrne (1980, p. 301) gave the following real inversion theorem:
If p 1s any complex number except zero or a negative integer, a and b are any

integers, f is a function locally integrable on (0,®), F is defined by

F(s): = | —® f(eyar, (2.10)
>0 (s+t)

x is positive and f(x*) exist in the sense that

n
f(xt) = lim  + [ f(xtt)de, (2.11)
mo+ 70
then
Dn+b x2n+a+b+p—1 (_D)n+a F(x)

T(atatp) T(ntb) > 3 [f(xH) + £(x-)] (2.12)
as n > © through positive integral values.
Result (2.12) reduces to Widder's inversion formula (1946, p. 348) for p = 1,
a=b>b=-1.

The next real inversion formula is due to Love and Byrne (1982, p. 281).

If p is any complex number except zero and the negative integers, a and b are any
integers, f is a complex valued function locally integrable in (0,*), F is defined by
the convergent improper integral (2.10), x is positive and f(x*) exist in the sence of

(2.11), then as n > ® through integral values

2n+a+b+p-1
2 n+b _ 3} (2n+a+b+p) _pynta _
T(2ntatbtp) x (-D) F(x) » HE(x+0) + £(x-0)}. (2.13)

Several other real inversion formulae for the Stieltjes transform involving
Stieltjes integrals can be found in papers by Love and Byrne (1980, 1982).

Summer (1949) defined the complex inversion operator Mnt by

R 0 p-1 ;-
M (F] (D) : 51 Cj (z+t) F (z)dz (2.14)
nt
where Cnt is the contour which starts at the point -t-in, proceeds along the straight
line Im(z) = -n to the points -in, then along the semicirclelz( =n, Re z 2 0, to the
point in, and finally along the line Im(z) = N to the point -t+in.
Summer showed that if £ ¢ L(0<us<R) for all positive R and is such that (2.4)

converges, then

lim M t(F)(t) = F[f(t+) + £(t-)] (2.15)
o+

for any positive t at which both f£(t+) and f(t-) exist.
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Byrne and Love (1974) gave the following complex inversion formulae for (2.4):
If Re p > 1, f is locally integrable in [0,*), improper Lebesgue integral (2.4)
converges, and A > 0; then, for each positive x for which the Lebesgue limits f(x * 0)

exist
-1 A -2
J{£(x+0) + £(x-0)} = lim g—ﬁ [ (x+t)P7° {F(t-in)-F(t+in) }dt. (2.16)
n>0+ -X
If Re p > 1, ELE% € L(0,») and the improper Lebesgue integral (2.4) converges,
1+t
then for each positive x for which the Lebesgue limits f(x * 0) exist,
oo
HEGH) + £G=0)} = 1im  BZL [ (ere)P™? (F(e-n)-F(c+in) Jde. (2.17)
n>0+ -X

Several other complex inversion formulas for the generalized Stieltjes transform
of ordinary functions have been obtained by Byrne and Love (1974).

Zemanian (1968) extended (2.1) as a special case of his theory of general convolu-
tion transform with positive real values of the Stieltjes transform variable x.
Replacing x with z = x+iy, we can extend the definition of (2.1) and the integral (2.1)
can be written as <f,y(t,z)> where Y(t,z) = (z+t)-1.

Finally, we state the following operational properties:

@ slE@v)] = Fax), siee@] =« rd

() SIE'(D)] = =[x £(0) + F'(x)].
3. THE STIELTJES TRANSFORM OF GENERALIZED FUNCTIONS.
To introduce the Stieltjes transform of generalized functions, Zemanian (1968,

§4.2) defined the testing function space Ma which is the space of all smooth complex-

»b
valued function 6(x) on I (0 <x < @), According to him, for each x > 0, ¥(t,x) belongs

to Ma provided a £ 1 and b 2 0. So the Stieltjes transform can be defined for the

elemegzs of M;,b (which are generalized functions but they are not distributions in
the sense of Zemanian (1968, p. 39)). The space M;,b is the dual of Ma,b and it is a
linear space to which we assign the usual (weak) topology.

Pandey (1972) further extended the theory of the Stieltjes transform of
generalized functions which belong to the dual S&(I) of the testing function space
Sa(I)' The Sa(I) is the space of all infinitely differentiable complex-valued function

¢(x) defined over I where

(@ = swp (0% e ] <o, 0= (3.1

O<x<o dx
for any fixed k (k=0,1,2,3,...) and a(Sl) is a given real number. Clearly, Sa(I) is a
vector(linear) space over the field of complex numbers. The topology over Sa(I) is
generated by the semi-norms {Yk(¢)}:=0 . It can be shown that Sa(I) is a locally
convex Hausdorff topological vector space. Obviously, D(I)C Sa(I) where D(I) is the
testing function space of infinitely differentiable functions with compact supports in
I. The dual D'(I) of D(I) represents the space of distributions defined over the
testing function space D(I). The topology of D(I) is such that it makes the dual space
D'(I) of Schwartz distributions. Furthermore, the topology of D(I) is stronger than
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that induced on D(I) by Sa(I), and as such the restriction of any element of Sa(I)
to D(I) is in D'(I). Finally, it can be shown that S (I) is a sequentially complete
space.

Another testing function space Sa(I) is the space of all infinitely differentiable

complex-valued function ¥(x) defined over I provided

o (1) = s [(140% GD* v | < = (3.2)
0<x<o
for all k=0,1,2,3,... where a is a fixed real number. This space has properties
similar to those of Sa(I)'
Pandey (1972) introduced the Stieltjes transform F(z) of generalized function
f(e)E S&(I) by

F(z) = <£(t), (z+t) 1> (3.3)

for z lying in the complex plane with a cut along the negative real axis.
He proved several results including

k
1) F ) = cgry, CKL (3.4)

(z+t)k+1

where k=1,2,3,... and with a cut along the negative real axis of the complex z-plane.

(ii) complex inversion formula: For an arbitrary element ¢(x) in D(I),

< g7 [F(-E-in)-F(-E+in)], 6(E)> > <f,g> as n > O+ , (3.5)

(1ii) For a fixeda £ 1 and x > 0, and for an arbitrary element ¢(x) of D(I),
< Lk x[F(x)], $(x)>*+ <f,¢> as k *+ =, (3.6)
’

where F(x) is the Stieltjes transform of f(t) defined by (3.3) and

k-1 2k-1
_ _(=x) d k
Lex VOO = 1 DT 7T [x" v(x)1, 3.7

and Y(x) € S&(I) and the differentiation in (3.7) is assumed to be in the distribu-
tional sense.

(iv) A transform of generalized functions related to the Poisson integral: For a
fixed @ £ 1 and for ¢(x) in D(I),

< Ln’X F(x), ¢(x)> » <f(t), ¢(t)> as n > =, (3.8)

where F(x) =< £(t), t(x2+t2)-1> and the operator Ln x is given by (2.7ab).

For proofs, the reader is referred to Pandey (1;72).

Pathak (1976) and Erdelyi (1977) extended (2.4) to generalized functions. The
former author used kernel method which states that the kernel of the transform is
embedded in a testing functin space, whereupon a numerical-valued generalized trans-
form is defined by the action on the kernel of an element of the dual space. This
method allows him to determine the real inversion formula (2.6) and the complex inver-

tion formula (2.14).
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On the other hand, Erdelyi's (1977) work was devoted to an extension of the
Stieltjes transform to generalized function both by kernel and adjoint methods.
Tiwari (1976) has extended (2.10) to generalized functions and established complex
inversion formulas (2.16) and (2.17) in the distributional sense. In what follows
we shall discuss extensions of real and complex inversion formulas for (2.10) for real
and complex values of p by both kernel and adjoint methods.
4. THE ADJOINT METHOD.

Following Erdeyi (1977) we introduce the test function spaces Ma,b and M(a,b) for

real numbers a and b. The space Ma is defined by

»b
Ma,b ={¢ €C (0,°): ua,b,k(¢) < ® 3 k=0,1,2,3,... } 4.1)
where
Mab,k (¢) = sup {tl-a+k (1+t:)a-b |¢(k)(t)|} (4.2)

0<t<x™

which are semi-norms and Mab.o and is a norm. The topology over Ma is generated

»b
by {ua b k} , and the space Ma is a complete multinormal space (Zemanian (1968),
’ ’ k=0

§4.2).
2 <
For ¢ 2 a, d £ b we have Ma,b ) Mc,d’ and the topology of Mc,d is stronger than

sb

. However, if ¢ > a or d < b, then M is not dense in
,b C,d

Ma b (Zemanian (1968). The elements of the dual space M’a b are generalized functioms.

that induced on it by M&

Then the space M(a,b) is defined as the countable union space in the sense of

Zemanian (1968, §4.2) of all spaces Ma b where {an}m s {bn}m are real sequences with
n’ n 1 1

an ¥ a, bn +basn+*® and -®» £ 3 < ®», -=®» < p £ ©», Thus

8

M(a,b) = U M

is the space of all smooth functions belonging to Mc,d for ¢ >aand d <b. If c 2 a
and d £ b, then M(c,d) C M(a,b) and convergence in M(c,d) is stronger than that in
M(a,b). Also, D(I), the Schwartz test function space of smooth function of compact
support is dense in M(a,b) for any a and b. M(c,d) is dense in M(a,b). The dual of
M(a,b) is denoted by M'(a,b).

Let a £ 1, b S 1-p where p € R. Then for z € ¢ - (-=,0), (z+t) P € M, , and a

numerical-valued Stieltjes transform of f (:M; b is defined by

F(z): = £(2): =<£(t), (z4+t) 1> . (4.3)

It can be shown that F is an analytic function of z in the topology of Ma b and
’
™ (@) = (D @) _<£®), @O P >, (4. 4)
Using the boundedness property of generalized functions it can be further shown that

F(n)(z) -0 (Iz'min(O,l-a-p-n) (1+|zI)max((a,l—p—n)—min(b,l)) 4.5)

uniformly in any sector 0 < Izl < o, larg zl < 76, § > 0.
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Restricting z to positive real values, we see from (4.4) that

F €:Mm:i.n(l,z-a-p), max (1-p,2-b-p) (4.6)

and also F € M' (4.7)

(max(0,a+p-1), min(p,b+p-1))°

Let @ > 0, B < p then it has been shown by Erdélyi that the Stieltjes transform
(2.4) maps M continuously in M provided that
a,B a,b

asl,asl+to-p and a <1 1if o = p,
(4.8ab)
b21l-p, b2 148-p and b > 1-p if B =0,

If a 2 0, B £ p, then the Stieltjes transform maps also M(a,B) continuously into

M1+min(0,a-p),l—p+max(0,6)'
Now, the Stieltjes transform f of the generalized function f €:M; b with a = 1,
b 2 1-p is defined by

<E,0>=<£,4>, (4.9)

where ¢ Mu 8 with a > 0, a 2 atp-1 and @ > p if a = 1; B < p, B £ b+p-1 and B < O if
’ ~
b = l-p and ¢(:Ma be Since each element of M(max (0,at+p-1), min(p,b+p-1)) lies in
£

some Ma with (4.9) satisfied, we see that the Stieltjes transformation maps M; b
’

5B
with a £ 1, b 2 1-p continuously into M'(max(0,a+p-1), min(p,b+p-1). Furthermore,
the Stieltjes transformation maps also M'(a,b) with a < 1, b > l-p continuously into

M' (max(0, a+p-1), min(p,b+p-1)).

Let
LD TE 4™ mntp-l 40
Lm,n,p,x °  m! T(nt+p-1) (dx) x (dx) (4.10)

and let the generalized Stieltjes transform of f € M; b be defined by (4.3) for
’
z = x 2 0. Then using (4.9) Erdélyi (1977) proved the following inversion formulae

< Lm+r,n+r;p,x £(x), ¢(x)> > <f,0> (4.11)

as r > @ for each ¢ (:Ma b provided o« > l-p, @ 2 a, and a > 1 witha =1, a =1,
’
b21l-p, 8<1l,8<b, and B < 1-p if b = 1-p; and

< Qpgr e, p,x D) ()5 9> > < £,0> (4.12)

as r > @ for each ¢ € Ma,b provided ¢« > 0, a 2 a, a > p if a=p, asp,b20, B <p,
B<b, B<Oif b = 0.

Erdelyi (1977) makes a further investigation for (4.3) in M'(a,b) and combines it
with his fractional calculus (1975) to deal with a hypergeometric integral equation
which has the form

[ £ ,F (b -X) s(0)de = v (4.13)
0

where 2F1 is the standard Gauss hypergeometric function.
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Love (1975) investigated this equation classically and shows how the operator on
the left is expressible in terms of fractional integrals and the Stieltjes transform
of ordinary functions. It is not difficult to estend Love's study to generalized
functions using Erdelyi's theory.

5. THE KERNEL METHOD.

In what follows extension of (2.4) will be given by the kernel method. And
inversion formulas (2.6) and (2.15)-(2.17) will be established in the distributional
sense. The analysis is based upon the works of Pathak (1976) and Tiwari (1976).

It has been shown by Tiwari (1976) that for a complex s except negative integers
or zero, (s+x)-p belongs Su(I) where a < Re(p). Hence, for o < Re(p), the Stieltjes
transform, F(s) of a generalized function f(x) € S&(I) can be defined by

F(s) @ = S_[£(x)] : = <£(x), (s+x) P> (5.1)

where s belongs to the complex plane cut along the negative real axis including the

origin.
It can be shwon that F(s) is an analytic function of s and that
D" (®
4 .m
F™ () = (£ F) = f0, —— 2, (5.2)
s m
(s+x)

where (p)m = p(p+l) (p+2) ... (ptm-1).
The function F(m)(x) for real x, where F(s) is the Stieltjes transform of

f € s'(I), satisfies the following asymptotic properties:
O(X_m) as x > »© if o < Re (p)

F™ 0 ={ o™ as x > ® , if a = Re (p) (5.3)

0(x_k-Re p) as x > 0+ , if a =Re (p).

6. COMPLEX INVERSION THEOREMS.

The following theorems, 6.1 and 6.2 are due to Tiwari (1976) and provide inver-
sion of (5.1) for complex values of p. Their proofs are too technical; the interested
reader may refer to Tiwari (1976, 1979).

THEOREM 6.1. For fixed o < 1 and Rep > 1, let £ € S'(I) and let F(s) be the
Stieltjes transform of f(t) as defined by (5.1). Then

lim < g—;—% / (x+t)p'2[F(t—1n) - F(t+in)]dt, ¢(x) >
n*>0 -X

= <f,¢> for all ¢ & D(I). (6.1)

THEOREM 6.2. Let Rep > 1 > o and f(t) S&(I). If F(s) is the Stieltjes trans-
form of f(t) defined by (5.1), then for A > 0 and each ¢ € D(I),

A
un <BL [ (F(e-1n) - Fertn)] Gere)P7R ae, 0> =<£,0>. (6.2)
n>0+ -X
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The next theorem is due to Pathak (1976) and provides inversion of (5.1) for
real values of p > 0.
THEOREM 6.3. Let f € S&(I) where a < p, p > 0 and let F(s) be defined by (5.1).

Then, for each ¢ € D(I), we have

<-2711 ) (z+:)"‘1 F'(z)dz, ¢(t)>+ < £f,¢6> as n > 0+ (6.3)
nt
where Cnt is the same contour as in (2.14).

Outline of the Proof: The theorem is proved by justifying the following steps:

L p_l ]
<= Cj (z+t)P7" F'(2)dz, ¢(t) > (6.4)
nt
1 p-1
=<o(t), 5= | ()P <f(x), > dz > (6.5)
2ni Cot (z+x)p+1
1 -1
=<p(t), <E@X), 5=~ [ —E— ()P dz> > (6.6)
2mi Cnt (z+x)p+1
p-1
S<E00, <o), py [ ORI g s 6.7)
Cﬂt (Z+X)p
+><f(x), ¢(x)> as n > 0+ . (6.8)

Since the integrand in (6.4) is analytic and are valued on £ [Summer (1949),
p. 178], the integral on Cnc’ is an analytic function of t. Consequently, (6.4) has
a meaning for ¢ £ D(I) and is, in fact, an ordinary integration of t. That (6.4)
equals (6.5) is obvious in view of (5.2). The equality of (6.5) to (6.6) and also
that of (6.6) to (6.7) can be proved by the technique of the Riemann sums.

To show that (6.7) > (6.8) as n > 0+ we need the following lemma:

LEMMA 6.1. For p > 0, let

1 1
{n-1(t-x) 1P {nti(t-x)}P

P
1
G(n;t,x) = ’z%'f = [

Then

o«
1lim f G(njt,x)dx = 1.
n>0+

LEMMA 6.2. For o £ p and m = 0,1,2,...,

m ©
sup |(l+x)a = jLE [ f G(n3t,x) O(t)dt—¢(x)]| +0as n~*> 0+,

0<x<® dx
where ¢ € D(I).
7. REAL INVERSION THEOREMS.
The following theorem provides an extension of the real inversion formula (1.6)
to generlaized functions belonging to S& . Details of its proof can be found in the
papers by Pathak (1976) and Erdelyi (1977).
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THEOREM 7.1. For a fixed o« £ p, p > 0 and x > 0 let F(x), the generalized
Stieltjes transform of f QS&(I) be defined by (5.1). Then, for each ¢ € D(I),

<P

K, x F(x), ¢(x)>> < £, > as k + =, (7.1)

where the differentiation is supposed to be in the distributional sense.
Outline of the Proof: By a direct computation it follows taht

L Fe = P! p(x ﬁ) F(x)

where P(x) is a polynomial in x of finite degree depending upon k. For ¢(x) D(I),

we have

<L) FeL 40 =<xPTh R SR, 000 >

=< P(xd—i-)F(x), P> (7.2)

=<FGO, POx 42 - DxPTH 400> (7.3

=< <f(t), >, o(x) > (7.4)
(x+t)P

=<E(E), < — . TGOS, (7.5)
(x+t)P

where Z(x) = P(-x % - l)xp_1 $(x).

The step (7.3) follows from (7.2) on integration by parts. The equality (7.4)
and (7.5) can be proved by the technique of the Riemann sums. The proof is completed
by showing that

1
(x+t)

<o(x),

P > » ¢(t) in E(I), as k + » , (7.6)

8. THE POISSON TRANSFORM OF GENERALIZED FUNCTIONS.
For fixed o £ 1, let f CS('!(I). Then the Poisson transform of f CS&(I) is
defined by - -

F(x) : = < £(t), 2‘ 5 > . (8.1)

X +t

The following theorem provides inversion of the Poisson transform by means of the
differential operator
n 2k
L =-06 1 (1-2"),6=x2 . (8.2)

nx k=1 4k dx

THEOREM 8.1. If the Poisson transform of f CS(’!(I) be defined by (8.1), then,
for each ¢ € D(I) o

<Ln x F(x), ¢(x)> > < f,6> as n > =, (8.3)

For a proof see Pandey (1972).
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9. ITERATION OF THE LAPLACE TRANSFORM.

In this section, we show that the Stieltjes transform of a generalized function
f in S&(I) for fixed @ < 1 is obtained by iterating its Laplace transform. It can be
easil;_seen that e 5% with Re s > 0 is an element of Sa(I) for a fixed o < 1 and

consequently, its Laplace transform can be defined by__
F(s) : = (£(t), ¢35 9.1)

which exists for s > 0.
Using boundedness property of generalized functions (Zemanian (1968)) it can be

easily seen that

F(s) = 0(sk) as s * ®
(9.2ab)
= 0(s-u) as s * 0+,

where k is a non-negative integer depending upon f.
THEOREM 9.1. Let o be a fixed number less than 1 and suppose that s > 0. Assume
that £ € S&(I). Then for fixed y > 0 we have

CCE®, &5 L&D - CEm), ) (9.3)

PROOF. In view of the asymptotic orders of F(s) bothsides of equations in (9.3)

are meaningful. In order to prove (9.3) we need to show that

d N
[<E@®), e & as = (), [ ) 4oy, (9.4)
0 0
By using the technique of the Riemann sums, we can easily show that
N N
[ e, ey eV as= <o), [ e ey 9.5)
0 0
Since | S 4y 5 0 in §,(I)> as N > =, (9.6)

N

we can easify justify taking limits N+« in (9.5) and obtain (9.4).
10. ITERATED STIELTJES TRANSFORM.
The iterated Stieltjes transform of a generalized function f is defined by

-~ ©
fFx) = Qo f B G4, xs . (10.1)
0 0

x+u

If it is permissable to change the order of integration in the above integral, we find

-~ -]
oo = [ LGB gp)q, (10.2)
0+
where log(x/t)/(x-t) is defined by its limiting value % at t=x. (10.2) is referred
to as the S2 - transform of the function f(t). The inversion formula for (10.2) due
to Boas and Widder (1939, p. 30) is given by

Un H E)] = £(x), (10.3)

nr«o
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for almost all x 0, where, n=1,2,3,...,

(n)
_ 1 2 2n-1; 2n-1 ,(n-1) 2n-1
Hn,x[‘t(X)] S ) o)) } [x {x ¢ (x)} 1 (10.4)

Taking p = 1 in (5.1) we see that the Stieltjes transform of f S;(I) is defined

by
G(s) = < f(r), i) . (10.5)

If G(u) is the Stieltjes transform of f for u > 0, it seems natural to define the
iterated Stieltjes transform of f by

F) = <6, o=> » x>0, (10.6)

In order that the above definition be meaningful, G(u) must belong to the space S;(I)
as a regular generalized function. Since, in view of the estimate (5.3),

G(u)
Xx+u

Therefore, the iterated Stieltjes transform of f € S;(I) may not be defined through
(10.6). But the generalized S -transform of f € S;?f) can be defined by

G(u) = 0(-£), as u > 0+, f du does not exist in a neighborhood of zero.
e 0

2
F(x) = < £(t), K(t,x) D> , x > 0, (10.7)
where
log(x/t) t#x
x-t ’
K(t,x) = (10.8ab)
1/x . t =x).

Note that for each fixed x > 0, K(t,x) Sa(I); hence (10.7) is meaningful . More-
over, it can be proved that F(x) is infinitely differentiable and for n=1,2,3,...
(n) 3"
FUU/(x) = £(b), ;;E K(t,x) > , for each x > 0 (10.9)
Dube (1975) has proved the following inversion theorem:
THEOREM 10.1. Let f S&(I), 0 <& <1, and let F(x) be the generalized

Sz-transform of f defined by-T10.7). Then, for each ¢ €D(I),

(Hn’x F(x), ¢(x)> » < £,6) as n~+ =, (10.10)

where Hn,x is the operator defined by (10.4) and the differentiation is assumed to be
in the distributional sense.
11. STIELTJES TRANSFORMS OF DIFFERENT ORDERS AND INTEGRATION OF FRACTIONAL ORDERS.
The Stieltjes transformations of different orders can be connected by integration
of fractional order.
For ¢ C'Mu,B with a > 0,

X
) = 4 / = sy (11.1)
™

defines the Riemann-Liouville integral of order A if Re A> 0 (Debnath, 1978). It is
easily seen taht IA ¢ CC°° (0,®) and that
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A A2 L
I" ¢ = (1 0)( ) s 2. =0,1,2,... (11.2)
when Re A >0. (11.2) is used to extend the definition of I)‘ to all complex A. It
follows that I)L ¢ is an entire function of A.

Erdélyi (1976) has shown that I)‘ maps Ma. with a > 0 continuously into Ma

>B »b
provided a £ a + Re ) ;
b 2 max (0,8) + Re A if B # 0,
(11.3ab)
b > Re A if B = 0.

A >
Further, I" maps M(a,B) with a 2 0 continuously into Ma+Re X, max(0,B)+Re A.

Let f be an ordinary function on (0,*®) such that t:a_l(1+t:)b_a £(t)€ L(0,») for

some a,b satisfying (l11.3ab) and let ReA > 0. Then

-]
A 1 A-1
K'E(x) = ==~ [ (y=0)"7" £(y)dy (11.4)
T ]
defines the so-called Weyl fractional integral of order of f. By a simple applica-

tion of Fubini's theorem, we have
[ « )¢ dx = [ £(1%¢)dx, (11.5)
0 0
This result motivates the definition
A A
CKf, ¢ > =(f, 1 ¢>,forall¢€M N (11.6)
a,B

where f CM; b 0 and a,b satisfy (l11.3ab). This K* thus defined maps M; b

’ b
continuously into M& g Given a,b with b > Re A , we may take any a,B satisfying
a >0, a + ReA 2a;

B+ ReA <b if b > ReA; B< 0 if b = ReA. (11.7)

Moreover, if in (11.6) ¢ € M(max(0, a-Re A ), b-Re A ), then it can be seen that K)‘ maps
M;,b with b 2 ReX into M'(max(0,a-Re A ), b-Re A). \

If ¢ MOL.B with B + ReA< 1, them (11.4) defines K ¢ for Re A >0, and this
definition can be extended for all complex values of A by

e o= DY MY 4 (11.8)

where £ is a non-negative integer with Re A+ & >0.
Erdélyi (1976) has shown that K)‘ maps Ma. 8 with B + ReA < 1 continuously into
E ]
Ma,b provided that

a S min (l,o+ReA) and a <1 1if otReX =1 : b 2 B+Re A . (11.9)
A
Also, K maps M(a,B) with B+Re A =1 continuously into Mmin(l,a+Re)\), B+Re X . Let
fe M; b where a,b satisfy (11.9). Then
’
A A
<I f, ¢> = < f, K ¢> 3 ¢€MQ,B ’ (11.10)
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represents a continuous linear mapping IA of M; b into M& 8 if B+Re A< 1. Given
’ ’
a,b with a £ 1, we may take o and B satisfying

o+Re A 2 a, o+Re A > 1 if a=1; B+Re A< 1, B+Re A < b. (11.11)

Also, IA maps M; b with a £ 1 into M'(a-Re A , min(1l,b)-Re }A).
’
The following addition formula also holds:

%) = kMY for all ¢ €M

a,p 3 B+Rep < 1, B+Re(A+u) < 1. (11.12)
’

Notice that KA and ' commute, if in addition to (11.12), we have B+Re A < 1.
Furthermore, K-AKA¢ = ¢ for ¢ Ma 8 if B < 1 and B+Re A < 1 but KA and K-A are (two-
’
sided) inverses on Ma 8 if B+|Re AI < 1.
’

Let us write
- -P
= (s+ .
"’p,s(t) (s+t)
Then applying (11.4) and integrating we get
T(e) K ¥ s T(p-M) ¥ (11.13)
P Pss P p-A,s’ :

for A > 0. This result is extended for all A < p by means of (11.8).
1f $p denote the integral

o o

b = [ v emae = [ & 4
P 0 P,s 0 (s+t)P

then the formula (11.13) suggests that
Ie) b,/ T(@) = kP4, (11.14)

for ¢ € M, 8 provided « > 0, B < min(p,q), p > O.
’

A second transformation formula arising from (11.13) is
re) b /(@) = %P e), (11.15)

for ¢ € Ma 8 provided that a > max(0, p-q), B < p, p > O.
~n ’
If fp denote the generalized Stieltjes transform of the generalized function £

then we have

) < £, 0> /M@ = <At e, e (11.16)
for f M;,b’ ¢ Ma’Bunderthe conditions

p>0,as1l, a$l-ptq, b 2 1-p,

o >0, a2atp~-l and a >p of a=1, a>q 1if a = l-ptq

B < min(p,q), B S b+p-1 and B <0 1if b = l-p.

Note that the conditions in regard to o and B are always satisfied if
¢ € M(max(0,a+p-1), min(p,q,b+p-1)).



STIELTJES TRANSFORM OF GENERALIZED FUNCTIONS 655

Furthermore,
T < £, 8 >/T@ = (KYP £ L0 (11.17)
for f €fM;,b, ¢ E:Ma,e under the conditions
p>0,as1, b2 l-min(p,q)
a > max(0,p-q), & 2 a+p-1 and o > p if a=l
B<p, BSbt+tp-l and B <0 1if b = l-p, B < p-q if b = l-q.

Note that the conditions on o and B are always satisfied if M(max(0,p-q, a+p-1),
min(p,b+p-1)).

A proof of (8.14)-(8.17) can be found in (Erdélyi, 1977; pp. 243-244)).
12. FURTHER GENERALIZATIONS OF THE STIELTJES TRANSFORM.

The hypergeometric transform (generalized Stieltjes transform) of ordinary func-

tions defined by

g(x) = ]‘:?C’; Of ™ Fla,bse; - ) £(t)ae, (12.1)

where F(a,b;c;x), the Gauss-hypergeometric function, was investigated by Love (1975).
Note that (12.1) reduces to (2.4) for a = ¢ and b = p.
We write

- X
x = T t F(a,bjc; -E)'

Then ¢x£: Mp o with p £ 1+min(0,a-b) and p < 1 if a = b, ¢ 2 1-b. We define the
’
hypergeometric transform of f EZM; s by
’

g(x) = (£, ¢.> . (12.2)

Then g(x) is infinitely differentiable and
"o
g(n) =) = < £, nx 5

dx

and g Mu 8 for any a,B satisfying o £ min(l,2-p-b), B 2 max(l-a,l-b,2-0-b) if a # b,
’
while in case a = b the last inequality must be replaced by B 2 l-a, B 2 2-0-a.
Now, we discuss connection of the hypergeometric transform with the Stieltjes

transform (Erdélyi, 1977).

a-c -a
We define ¢a,c,x €’M1+a-c,l-c by wa,c,x(t) t (x+t) °. Then, for 0 < b < ¢,
c-b
Kt wz,c,x = ¢x’ so that (12.2) can be written as
_ c-b _ c-b
gx) =(f§f, Kt wa,c,x > =<1 f, wa,c,x >, b>0

= % Pey(e), ()™ >, b o> 0. (12.3)

Having expressed g as a generalized Stieltjes transform, we can apply inversion
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formulae of Sections 7 and 8 to invert (12.3). Applying (4.11) we have

I e Rl BL0G0> * CE(D), 6()) (12.4)

as n > @ under the conditions:
b>0,c¢c>0, p <1, ps l+a-b

p £ l-b+c, 0 2 1-b, f M;,a

¢ M(max(l-b,p), min(l,l+a-b,1-b+c,0)).

Using the properties of hypergeometric functions Erdélyi (1977) gave the follow-

ing alternative inversion formula for (12.2).

< Lr+n,s+n.a,x xl-a I:-c xc-l g(x), ¢(x) ) ~ gg:; <D (12.3)

as n > @ under the conditions
b>0,c>0,p=1l, p=£l+a-b, p £ 1+a-c, p <1 1if a=b, o = 1-b

feM

0,0 ¢ € M(max(l-b,p), min(l,l+a-b,l+a-c,0)).

Notice that (12.4) and (12.5) determine the restriction of f € Mg o to M(p,q).
’
A generalization of the Stieltjes transform analogous to (12.1) introduced by
Joshi (1977) is

F(x) = D(B+TFD) T(B+1) I‘” ¥
T (a+B+ntl) 0 B+1
X
X F) (BHntl,B+ljotBintl; --})f(y)dy (12.6)

where B 2 0, n > 0, and the corresponding complex inversion formula is

o+iw
- I (b+s-8-1) -s
£ = g0q Um a_{w T(ats-B-1) T(8+l-s) T(s) 7 M(s)ds (12.7)

where

«©
M(s) = [ x°7} F(x)dx, a = B+ntl, b = ata, s = o+iw, B 2 0, n > O.
0

(12.6) reduces to (2.4) for o = 0.
Tiwari (1980 extended (12.6) to a class of generalized functions and established
the formula (12.7) in the distributional sense. For this extension Tiwari defined a

test function space Jc d.a 38 follows:
Rt
A complex-valued C®-function ¢ on (0,») belongs to Jc d.a if
i $]
.. k k  ka
SO sup  [u ((8) (£ DG w(eN]| s ¢ ATk (12.8)

0<t<eo
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ko

where the constants A and Ck depend on Y. For k = 0, k is taken as 1. Here
t© lst<w
u, L(t) = (12.9)
¢.d {:d 0 <t <1,
«©
The topology over Jc,d,k is that generalized by the countable multinorm {ic,d,k}k=0‘
With this topology Jc d.k is a countably multinormed space. It is complete under the
sy ©
usual definition of convergence. A countable union space is Jc,d = a;gl Jc,d,ui'

The function %%%% Eﬁgtll (I)

c<}andd> -8 - 4.
The distributional generalized Stieltjes transform of f €:Jé
’
d > - B8 - 1% is defined by

t
ZFI(a’ +1,b,-;) belongs to Jc,d for x > 0,

d for ¢ < % and

F(a) T(B+1) (5)3
r'(b) X x

F(x) = C£(t), JF) (2,B+13b5 = 3) > . (12.10)

Tiwari (1980) proved the following inversion formula for (12.10)

1L O r(b4s-g-1) M(s) -s
bn Cqp  J Tatesn Me-ey T ¥ 45 VO <Ry 121

for each ¥ € D(I).
13. ABELIAN THEOREMS.

An initial (final) value Abelian theorem concerning transforms of functions is a
result in which known behavior of the function as its domain variable approaches zero
(approaches «) is used to infer the behavior of the transform as its domain variable
approaches zero (approaches ). Such theorems for the Stieltjes transform (2.4) with
s and p real were given by Widder (1946) and Misra (1972). Correspé%ding distribu-
tional results were also obtained by Misra (1972). Abelain theorems for the Stieltjes
trnasform of functions were also given by Carmichael (1976) and Carmichael and Hayashi
(1981). Carmicheal and Hayashi considered the case when s and p are both complex and a
generalizing assumption is placed on the function f(t). In what follows we shall
wrote results from Lavoine and Misra (1979).

Let DL be the space of Schwartz distributions having support in [0,®). For
a >0, Dl(a) is the space of all distributions TXEE D; which satisfy the following:
There exist a > 0, k € N and a function f(x) having support in [a,®) such that
Tx = Dk f(x) in the sense of distributions and (f(x) x-k-a) is bounded.

El denotes the space of distributions of compact support in [0,®) and T; is the
space of tempered distributions, with support in [0,~). Note that El(: E' and
TL crT'.

From the above definition it follows that for T ele(a) there exist a > 0 and a
non-negative integer k such that

k
'1't = Vt + Dt f(t) (13.1)

where V €IE; and supp(V) € [0,a] where f(t) is a function having support in [a,®)
such that f(t)t-k-u) is bounded.
Another space with which we shall be concerned with which was introduced by
Misra (1972) for obtaining Abelian theorems for the distributional Stieltjes transform.
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Let Ka be a continuous function on (0,~) defined by

t*, l1st<e , asl

Ka(t) = (13.2)
1, O0<t<1 .

A complex-valued ¢” function ¢ on (0,») is said to belong to the space Ia if

Y = sup [k (©) PEDE p()] < = (13.3)

0<t<w

The concept of convergence and completeness on Iu are introduced in the usual way.
It turns out that Ia is a locally convex, sequentially complete, Hausdorff topological
vector space. The dual of Icl is denoted by I&. For additional properties, the reader
is referred to Misra (1972).

The space of distributions J'(p) (p being any complex number except a negative
integer) consists of distributions T having support in [0,*) and admitting the
decomposition (13.1) where VE E; and suppV € [0,a] and f(t) is a function having

-p-k-1

support in [a,®) for some finite a 2 0 such that f(t)t is summable.

We note that this definition of J(p) is equivalent to
T = D" £, (x) (13.4)
X 1 ? :

where n eNo =N U{0}, if fl(x) =0 for x < 0, and 1if

RN (x+8) PP gy (13.5)
0
exists for B > 0.
Obviously J'(p) C TL for every r > -1 and J'(pl) C J'(pz) for -1 < P, < Py
The Stieltjes transformations of Tx € J'(p) (or I&) is defined by

F(s) = s_IT 1(s) = < Tx,(x+s)'p'l> (13.6)

for s € A: = C\(-»,0]. It can be easily seen that the right-hand side makes sense
for T € J'(p) (or I&). If T = D" fl for some n EENO and locally integrable f1 on R
with support in [0,®) such that (13.5) holds, it follows by the Leibnitz formula that

(13.6) can be written as

fl(x)dx
ST, (s) = (p+1) J’ pas (13.7)

It can be shown that SS[T](s) is a homolomorphic function of s A. Note that for the
sake of convenience in putting restrictions, the Stieltjes transform of index p+l is
taken in (13.6) whereas in our previous analysis index was taken as p. Unless stated
otherwise, we shall take (13.6) as the definition of the distributional Stieltjes
transform in the following sections.

In the next section initial value theorems are obtained for Stieltjes transfroms

of f belonging to I&, S&(I) and J'(p).
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14, INITIAL VALUE RESULTS.
We say that T € D;(u) is asymptotically equivalent to At: as t *> 0+, A being a
complex number, if there exists a > 0 and V €_D;(a) such that

Tt = At_‘;\_ + Vt, t € [0,a],

and
-n-1 -p-1
1im (¢ Vt, s (1+(t/s) )> =0, s=o0+1iw, o > 0.
s*o
The following theorems contain initial-value results:
THEOREM 14.1. Let T E_Dl(a), and let T be asymptotically equivalent to At: as
t > 0+. Let n > -1 and p-1 > sup(a,n). Then

P T(pr1) s (1)
lim = A, s=0+ 1iw, 0o > 0.
s>o I(p-n) T(ntl)

THEOREM 14.2. Let T E;D;(a) such that

lm (V,, s1 (1+(t/s))-p_l >=0, s=0c+1iw, 0 >0,
s?o

where V E El is as in the decomposition (13.1). Let p > sup(a,0). Then

1m sP s (1) = 0, s=o0+1iw, o > 0.
s>o s

The following theorem is a generalization of a result due to Misra (1972) in
which we need the concept of limit of distribution due to Lojasiewicz (1957).

Let T be a distribution defined in the neighborhood of the point Xg+ Then we say
that T has a value ¢ at X, if the distributional limit of T(x°-+ Ax) as A * 0+ exists
in a neighborhood of zero and is a constant function c.

THEOREM 14.3. Let T € I&, a £ 1, and let (Tt/tn) + A as t » 0+ in the above

sense, where A is a complex number. Let p > n+tl > 0. Then

sP™" I (p+l) 84(T)
1lim = A, s=0+ 1iw, o >0,
s*o I'(p-n) T(nt+l)

Recently Misra (1987) pointed out that before applying Lojasiewicz's definition
of limit of a distribution to any generalized function it is necessary to examine its
validity in the space of generalized functions under consideration. He has obtained
Abelian theorems for the Stieltjes transform of generalized functions belonging to
some general space Ii,vandhas examined the validity of Lojasieqicz's definition.

The following theorem uses the idea of semi-regular distribution instead of notion
of limit of a distribution in the sense of Lojasiewicz. By a semi-regular distribution
we mean a distribution which is defined by a function over a subset of its support.

Let T & I&, a £ 1, and let a > 0 be fixed. We decompose T into T = V+U, where
V has support in [0,a] and U has support in [a~6,®), 0 < § < a. Then VE El is a

finite sum of distributional derivatives of continuous functions having support in an
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arbitrary neighborhood of [0,a]. In the following theorem we assume that V is a semi-
regular distribution, so that Vt = g(t) where g(t) is a continuous function having
support in [0,a]. Evidently, the Stieltjes transform, Ss(g(t)), s =0+ iw, 0 > 0,
exist for p > -1. Moreover, SS(U) exists for the same values of s and p since U CI&
and T € I&.

We define
Q = {s: s=o0+iw, o>0, |uw| sko},

where k 2 0 is an arbitrary but fixed real number. Then we have the following result:
THEOREM 14.4. Let T (:I&, as1., Letp>n>-1and a >0 be fixed. Let

T = V+U, where Vt = g(t) is a continuous function defined in the preceding paragraph.

We assume further that g(t)/tn is bounded on 0 £ t < ®» for all y > 0 and (g(t)/tn) > A

as t > 0+, where A is a complex number. Then

P71 I (p+l) s (T)
lim s = A, (14.1)
s*0 T(p-n) T(n+l)
ser

where k 2 0 is an arbitrary but fixed real number.

The following initial value theorem is due to Tiwari (1976) in which p is
considered to be complex.

THEOREM 14.5. Let Re p > @ > n+l and o < 1. Assume that s is a non-zero complex
number not lying on the negative real axis. If for f(t) S& there exists a constant

c such that

lim AR c 1in the sense of Lojasiewicz. (14.2)
>0+ "
Then
p-n-1
lim s I Fe) (14.3)
Isl>o  TI(p-n-1) T'(n+1)

ser

where F(s) is defined by (5.1).

In the following we obtain Abelian theorems when the assumption on the limit of
the distribution is more general. We recall some of the definitions from (Lavoine and
Misra (1974)).

Equivalence of distributions at the Origin

We define
x" logj x for x>0
x° logj x, =
0 for x <0
and
x_n_1 logj x for x>0
x 1 1ogj x, =

0 for x <0
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where j, n €N. When Vv < -1 and n¢€ N, the distributions represented by x’ 1ogJ X,
and xw“-1 1ogjx+ are understood to be in the sense of finite parts of Hadamard. In
the sense of Lojasiewicz (1957), a distribution T, which has support in [0,®) is said

to satisfy

v logJ x, as x *> 0+,

T ~AF_ x

X P
where j € N and v # -1, -2, if there exists a number £ > 0 and a distribution R
having support in [0,£] such that

- J
T -Apr log” x, + R, (x € [0,E]),
and

Dlog A [(Rxy 6x/M)S] >0 as A > o+

for every function ¢ that is infinitely differentiable on a neighborhood of [0,=).
When n €N and j € N, we define

n-1 j

TX”Apr log x, as x > 0+

if there exists a distribution Q having support in [0,£] such that

T =A Fp x 1 log:l x, +Q (x € [0,E]),

and
 log 3T [Cq, #G/MD] > 0 as A o0r

for every function ¢ which is infinitely differentiable on a neighborhood of [0,«).
The proofs of the following initial value theorems can be found in the paper
by Lavoine and Misra (1979).
THEOREM 14.6. Let TE€ J'(p), jE N, v # -1,-2,..., Re(p-v) > 0. If

- v J
Tx Apr log x, as x > 0+
then
Ss[T] ~ AB(v+1,p-\))sv—p logjs as s > O+ (14.4)
in the usual sense of functions.
THEOREM 14.7. Let T €J'(p), j €N, n € N with Re(p+n+l) > 0, 1If

- -n-1 j
'I.‘x AFPx log X, as x > O+
then a
SS[T] ~ A (-1) T(ptn+l) s-n-p_llogﬁ'ls as s > 0+ (14.5)

(j+1) n! I'(p+l)

in the usual sense of functions.

The following result is a consequence of Theorem 14.6.

THEOREM 14.8. Let V be a distribution having compact support with the origin
being the lower bound of this support. We take v, = D™ h(x) where m € N and h(x) is
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a locally summable function. If, in the usual sense,
- v j
h(x) A x log” x as x > 0+,

we have
Ss[V] ~ A (vt T(ptm-v) s P ™ logj s as s * 0+ (l4.6)
I (p+l)
provided that Re(p+m-v) > O.
15. FINAL-VALUE RESULTS.

Carmichael and Milton (1979) have provided a final-value Abelian theorem which
generalizes earlier results of Mishra (1972, Theorem 4.2) and Lavoine and Misra (1974,
Theorem III). We need the following definitions:

DEFINITION 15.1. The value of a distribution T at infinity is defined to be
Ax’ (W1 & N) if there exists a number N > 1, a positive integer k and a function
h(x) satisfying Dk h(x) = f over (N,®) and x-k_v h(x) » A/(v+1)k, as x > o,

We designate this limiting value by T ~ A xv.
THEOREM 15.1. If T € DL and if '1‘t ~ Atn, t + », with n > -1, then for p > n,

sP7" I(p+l) s (T)
1lim s = A, (15.1)
S+ I'(p-n) T(nt+l)
s Qk

where k 2 0 is arbitrary.

We state another definition of 1limit of a distribution due to Lavoine and Misra
(1974).

DEFINITION 15.2. The limit of a distribution Tx as X+« is a constant C if

there exist N > 1, a non-negative integer k and a function g(x) satisfying
k -k
Tx =D g(x) over [N,») and k! x  h(x) *C as x +> =, (15.2)

Using this definition of limit at infinity Carmichael and Milton (1979) proved the
following theorem:
THEOREM 15.2. Let T € DL and lim_ Tt = 0. Let p > -1. Then

lim sP s (T) =0, -1<p <0, (15.3a)
- nad s

and
lim sP $,(T) =0, pzo. (15.3b)
s> x
s Qk

1]
THEOREM 15.3. Let T € E and p+l > p'. Then lim sP S,(T) = 0, s = 0 + 1u,
o > 0. §¥=

The following theorem contains orders of the derivatives of the distributional
Stieltjes transform and generalizes a result of Misra (1972, Corollary, p. 592).
THEOREM 15.4. Let T € 1& , @ =1 and let s =0 + iw, 0 > 0. Then for
k = 1,2,3,...
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D% (s, =0 s|™, sl > =,

(15.4ab)

l-k—l

0 (Is ) |s| + 0,

k
Ing (s ()]

where p > -1 in the definition of Ss(T)'

A final-value Abelian theorem for the Stieltjes transform when p is complex was
given by Tiwari (1976).

THEOREM 15.5. Let Re p > a > n+l > 0, and

f(t)

lim - = C 1in the sense of definition 15.1.
t e t
Then
p-n-1
lim s ' Fs) . o, (15.5)
|s|>= I (p-n-1) T(n+l)
sGQk

where F(s) is defined by (5.1).
The following final-value Abelian theorem is due to Lavoine and Misra (1979).
THEOREM 15.6. Let T be a distribution in J'(p) admitting the decomposition

Tx = Vx + g(x) (15.6)

where V is a distribution having compact support and g(x) is a locally summable func-

tion such that

g(x) ~ A xv logj X (15.7)
in the usual sense as x * », If -1 < Rev <Re p, then

Ss[T] ~ A B(v+l, p—\))sv-p logj s as s > @, (15.8)

Using the notion of quasi-asymptotic behavior of distributions introduced by
Drozzinov and Zavjalov (1977), Takaci [1983] obtained a final-value Abelian theorem
for the distributional Stieltjes transformation.

DEFINITION 15.3. A distribution f € T; has quasi asymptotic behavior (q.a.b.) at
infinity of order n if there exists the limit

lim ¢t " T(tx) = : Y(x) (in the sense of T') (15.9)
t e

provided that vy # 0.
Then we write T(x) ~ y(x) in T' when x > +=,
We can prove that vy is a homogeneous distribution of order n (hence vy € T') and

supp Y C [0,®), so there exists a constant C # 0 such that y(x) = C £ (x). Here

n+1
xn
fTH-l(x) = H(x) m for n>0,

and (15.10ab)

n
fn+l(x) =D fn+n+1(x) for n=£0 and n+n > O,
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where H is the characteristic function of (0,%).
The following structural theorem is due to Drozzinov and Zavjalov (1977):
THEOREM 15.7. The distribution f C,T; has q.a.b. at infinity of order n
(i.e. T(x) ~ Cfn+l(x) in T' when x > +~) if and only if there exist a natural
number n, n+n > 0, and a continuous function F on R such that
n+n

X
F(x) ~ C T(nF ot D)

when X >+ (15.11)

in the ordinary sense with the property T = p" F.

Using the concept of q.a.b. the following final-value theorem for the Stieltjes
trnasformation (13.6) was given by Taka®i (1983).

THEOREM 15.8. If T € T; has quasi asymptotic behavior of order n, then its

Stieltjes transformation of order p > -1, p > n, has the asymptotic behavior

s, [T] ~ ¢ —ﬂ% (15.12)
T'(p+l)s

for some C # 0 when s > @ through values in the domain
Qg = {s€C: s = utiv, u > 0, |v] < klul} , K zoO.

This theorem is a generalization of Theorem 15.1 since here we do not need the
condition n > ~1.
16. SOME APPLICATIONS.

We cite here three main applications of the Stieltjes transform which is used
(a) to obtain new inversion formulas of the Laplace transform, (b) to discuss moment
problems in the semi-infinite interval and (c) to study statistical properties of
many-particle spectra of a wide class of new Gaussian ensembles.
(a) We consider the Laplace transform of f(t) defined by (2.3) and the Stieltjes
transform F(x) of f(t) is obtained by an iteration of the Laplace transform so that

F(x) ;e dy [ e-yt f(t) dt
0 0

©

5o+t £e)de = s[E()] (16.1)
0

THEOREM 16.1. If f(t) L(0,») and if ¢(y) is the Laplace transform of f(t),

then the inverse Laplace transform is given by

f(x) = 1lim Lk x[F(x)] for almost al x > O, (16.2)
k> ’
where
k k-1 ©
= Do x - -xy _2k-1 (k)
Lk’x[F(x)] = TR D)1 J e y v (y)dy (16.3)
k-l - - (k)
- oyt O R e (16.4)

where Lk x[F(x)] is defined by (3.7) for k = 2,3,... .
’
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It is noted that result (16.2) depends on the values of all the derivatives of
P(y) in the interval (0,%).

We derive another result by the application of the operator Lk,x to the
Laplace integral directly. It turns out that

©

b (FOOT = Ly, LS e ¥(y)dy]

X

- L& 01 ¥y (16.5)

After some computation with fixed y, result (16.5) gives
L x[F()] of e P (x¥) v(y)dy

where

k-1 k 2k-n-1
D¥T (K- k. (<t)
Pre-1(8) = T 2y ! Q G

Thus, for almost all x

£(x) = lm L [F()] = lin J e X

Y By ¥y (16.6)
k> k*© 0
This inversion formula is very useful because it depends only on the value of
Y(y) in (0,*) and not on any of its derivatives.
(b) Historically, Stieltjes introduced the theory of moments and formulated the
so-called Stieltjes problem of moments in the general form. The problem is to
determine a bounded non-decreasing function ¥(x) in [0, *) such that its moments Mn

have a set of prescribed values Mn = un, n=20,1,2,..., where

o

Moo= S X" dv(x). (16.7)
L)

The Stieltjes transform occurs naturally in connection with the Stieltjes
moment problem and hence is related to certain continued fractions. Since a good
deal of literature is available on various version of the moment problems, we do
not intend to discuss it here. However, the reader is referred to Shobat and
Tamarkin (1943).

(c) In connection with statistical properties of many-particle spectra of a wide
class of new Gaussian ensembles in which the matrix elements have Gaussian distribu-
tions with arbitrary specified centroids and variances, Pandey (1981) calculated

the average density and two-point correlation function in terms of the Stieltjes
transform. In fact he obtained the Stieltjes transform f(z) of the density p(x,Hcv)
in the form

© p(x3H, ) 1
£(z3H ) = | — o dx = (o (16.8)

i cv

where Hcv represent the centroid- and the variance-modified ensembles of matrices and
the subscripts ¢ and v stand for centroid and variance modifications respectively

of the standard Hamiltonian ensemble H. More explicitly.
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H =K+ Z‘ vig Py B = KA H
i,j

H, = K +oH, H = Z. viy PaHP
i,j
where K is a Hermitian centroid matrix (ﬁcv = K), v2 is defined in terms of its

elements (v2) 2 2 0 and v2 is a real symmetric variance matrix; Pi is the

137 Oy
projection operator for the ith basis state. The centroid-modified ensemble Hc
and the variance—modified ensemble Hv are particular cases of Hcv’ defined by
Vij =a =0 and K = 0 respectively. )

Pandey also calculated the average density p(x) in terms of its Stieltjes

transform f(z) where the inversion formula is given by
p(x) = - = Inf(x+10) = (2niJ [F(x-10) - £(x+10)], (16.9)

and f(z) is defined in (16.8).
For two-point function Sp, we shall consider the two-point Stieltjes transform
Sj. We have
2

sp(xl,xz) = p(xp(x,) - p(x))p(x,) = Bxlg

F
X, §"(xpxy)

1 f f
= -——7[5 (xl+10, x2+10) + S (x1—10, xz—iO)

4m
- Sf(x1+10, x,=10) - st (x,-10, x,+0) (16.10)
- — * p
sz ,2,) = FGE(e,) ~E(z) EGap= / J 5" (x),x,)dx, dx, (16.11)
-® (z-xl) (z-xz)
82 g
T 32,92, §°(z),2,) (16.12a)

In the above, we have also introduced the two-point function SF and its
X
Stieltjes transform s& for the distribution function F(x) = J p(t)dt and
-0
corresponding transform

o

g(z) = f (z-x"! F&) dx (16.12b)

-0
The inversion formula relating SF and S8 follows from that relating sP and Sf.

Pandey's analysis includes more general quantities EL and 6EL 6IL for
arbitrary matrices L, L1 and L2 where 1 2

£(zH ) = (Lm— D> = (L6 g) = I <L , (16.13)
cv v p=0

This reduces to (16.8) when L = I, the d-dimensional unit matrix.

It is observed that the Stieltjes transform is analytic everywhere in the
complex plane except at poles on the real line, whose positions are given by the
eigenvalues of the matrix. Although the series in (16.13) is not convergent for all

z, the sum of the convergent series can be extended, except for a branch cut on the
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on the real axis, to all z by analytic continuation.

Pandey has shown the following result

z 2 ) E (s
E(zH ) > (L6 + .Z vij fep, @3l Fp (z3H_ ) (16.14a)
i,j i J
= (16 T2 L > (16.14b)
1 - v,., £, (z,H_)P.G
P
1,3 ij j cv' i

Except for H itself, the centroid-modified ensemble (vij = a) follows as a special
case of (16b). Thus

1

—_— (16.15)
z-K-a f(z,Hc)

EL(z;HC) = (L
1

—— (16.16)
z-K-a f(z;Hc)

£(z;H) = <

These are the basic results which are valid for all B . Three basic types of

Hermitian matrices are characterized by B = 1,2,4 [see Pandey (1981)]. Equation

(16.16) is well known for B = 1 and B = 2 and is obtained by Pandey (1981) for all B.
We next consider the H-ensembles so that K = 0 and o = 1. Then (16.16) gives

1

— = [zt /224 1 (16.17)
z~-f(z;H)

f(z;H) =

This result combines with the inversion formula (16.9) gives the Wigner semicircle

result

enl ax? ., x| s2

P (x3H)

0, |x] z 2 (16.18)

This is true for all B. The semicircular density is found for a wide class of
random matrices of zero-centered independent elements.

Pandey also discussed the two-point Stieltjes transform with application to
more complicated ensembles. In conclusion, we point out that the Stieltjes transform
method is found to be suitable for the study of the average and fluctuation
properties of transition strengths in complicated physical systems.
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17. SOME OPEN QUESTIONS AND UNSOLVED PROBLEMS.

1. The real inversion formulae (2.9) and (2.10) have not been extended to
generalized functions. Such results seem to be very useful and deserve attention.

2. It would be interesting to extend the Sz—transform by adjoint method. Is it
possible to attach a meaning to (10.5)?

3. As Misra (1987) has pointed out the validity of Lojasiewicz's definition of
limit of a distribution needs verification in theorems 14.3 and 14.5.

4. The Abelian theorems for the Stieltjes transform of functions were obtained
by Carmichael and Hayashi (1981) when the parameters p and n and the variable s are

complex and the assumption on the growth is

1lim £ A, j =1,2,3,... . (17.1)
t>0+ " (1n t)j
(or to=)

However, in the distributional case, Lavoine and Misra (1972) obtained Abelian theorems
under the above general assumptions but restricting s to real and positive. The
problem, when s is also complex, has not yet been investigated.

5. 1In papers by Drozzinov and Zavjalov (1977 and 1979) both Abelian and Tauberian
theorems for the Fourier-Laplace transformation are given. Such Tauberian theorems
for the distributional Stieltjes transformation have not yet been established.

6. Consider the following two boundary value problems:

2
2 vt = PGLD) v(xt), >0
P.: ot
1
v(x,0) = ¢(x), v (x,0) =0
and
a2
- w(x,y) + P(x,D) w(x,y) = 0, y >0
Pz: dy

w(x,0) = ¢(x)

)
where x = (xl, xz,...,xn) and D = (Dl’ D2""’Dn) where Di f(x) = —3 f(x). For

e a; o, oy 9x
D, D, ... D
P(x,D) = I a, 0*
0= aISm
where la[ =a + ay + ... + o -

Dettman (1969) has shown that, under certain conditions if v(x,t) is a solution

of P, then the solution w(x,t) of P, is related through the Stieltjes transform:

1 2

wix,t) = %} [ —!éii%l dn .

0 (t™+n%)
If the boundary conditions in P1 and P2 are distributional then such a relationship
could be given by using distributional Stieltjes transform!
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