
Internat. J. Math. & Math. Sci.
Vol. i0, No.3 (1987) 531-534

SOME GENERATING FUNCTIONS OF LAGUERRE POLYNOMIALS

531

BIDYUT KUMAR GUHA THAKURTA

Department of Mathematics
R.K.M.V.C. College, Rahara,
24-Parganas, West Bengal

INDIA

(Received November 12, 1985)

ABSTRACT. In this note a class of interesting generating relation, which is stated in

the form of theorem, involving Laguerre polynomials is derived. Some applications of the

theorem are also given here.
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i. INDRODUCTION.

The Laguerre polynomials L (a) (x) are defined by,
n

tl+Jn (-n; I+; x) (I I)Ln
(a) (x) n! IFI

where n is a non-negative integer.

From [I] we have

_-_ (c) n
l (nil_) L (x) w (I 2)nn=o

-xw La) x(l-w)-l-m exp(
l-w m l-w

)’

Obseing the existence of the above generating relation (1.2) the present author Is

interested to investigate the existence of more general generating relation by the

group-theoretic method. In fact, the following theorem is obtained as the in result

of our investigation.

EO i. If there exists a generating relation of the fo

G(x,w) n=oZ an w Ln (x) (1.3)

then -- X WE
(I--w) --I-m

exp l-w G ( l-w l-w )

f (z) e() (x) (1.4)
n=o n n

where
n n k

f (z) Z a
k

z
n k=o k

The portance of the above theorem lies in the fact that one can get a good number

of generating relations from (i 4) by attributing different suitable values to a in the
n

relation (1.3).
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2. DERIVATION OF THE THEOREM.

THEOREM I. Using the differential recurrence relation [23

d (=) (x)) (n+m+l) L,a,r (x)x (Ln+m n+m+l

(n + m + a + x) a() (x)n+m

We find the following partial differential operator,

3 2 3 + (-x+m+l)yR xy + y y
such that

() a+n+l L
()y+n L (x)) (n+m+l) y (x)n+m n+m+l

The extended form of the group generated by R is given by,

w -wxy x l[wye f(x y) (l-wy) -m-I exp(
l-wy

f(
l-wy

Let us consider the generating relation of the form:

(C) nG(x w) Z a (x) w
n=o n Ln+m

Replacing w by wyz and then multiplying both sides by y we get

(=)y G(x,wyz) n=o7" an (wyz) yS -Ln+m (x)n

a (wz)n +n -() (x)
n=o n Y Ln+m

(2.1)

(2.2)

(2.3)

Operating both sides of the above expression by (exp w ), we get

(exp w]R.) (ya G(x,wyz)) (exp wlR (no an(wz)n ya+n L(a)n+m (x))

The left member of (2.4) becomes

-wxy _)rwy x wyz(l-wy) -l-m exp(
l-wy ’1 G(

l-wy l-wy

The right member of (2.4) is equal to
k

an (wz)n w k (yn+a (a) (x))
n=o kZ=o R Ln+m

n+k
w n n+a+k
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where

() (x)Ln+m+k
t n n+k (n+m+k) L a
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Equating (2.5) and (2.6) and then putting y=l, we get

(2.4)

(2.5)

(2.6)

where,

(l-w)
--WX X WZ

exp I-W G I-W l-w
)

wn f (z) L/r (x)
n=o n

(2.7)

n (n+m. n
fn(Z) k .k+m

a
k

z this completes the proof of the theorem.

On the other hand, if we consider the continuous transformations group defined by
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the infinitesimal operator

t i .
i e

2
x z x

then the equations of finite transformations of the group are

x" (exp Wl)X, y" (exp w l)y, z" (exp w l)Z (2.8)

where w is the parameter of the group under consideration.

Also we know that

(exp wI) f(x,y,z) f((exp w l)X, (exp w l)y, (exp Wl)Z)
f (x’, y’, z’)

(2.9)

From [3] we see that the effect of the operator (exp wI) on the variables are as

follows

x" x/ (1-we
t

y" t log (1-wet (2.10)

z" z x wet/ 2(1-wet).
and

where

I Fn+m (x,t,z) (n+m+l) Fn+m+1 (x,t,z) (2.11)

a+l (a+1) 12 (a) (x)Ln+mx
Fn+m (x,t,z) exp [(n+m)t + t + z -] x

Now replacing w by wye
t

in (2.3) and then multiplying both members by

+i x (s+l)/2
exp mt + 2

t + z - x

we get
a+l xG(x, wye t)- exp{mt +
2

t + z -} X

n
l a (wy) F (x,t,z)

n--o n n+m

(a+1)/2

(2.12)

Operating both members of the above expression by (exp w and using (2.8), (2.9)

and (2.11), we get

where

a+l x" (a+l)/2G(x wye
t exp{mt" + 2

t" + z (x’)
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(2.13)

where

obtain

if

then

n
L (e)G(x,w) 7. a w (x)

n--o n n+m

--XW X(l-w) -l--m exp(
l-w

G(
l-w W (2.14)

wn fn (y) L () (x)
n=o n+m

n n+m k
fn (y) kZ--o k+m ak y

which is same as (2.7).

From above we see that if be used the calculation becomes much harder than when

IR is used.

Putting the values of x’, y’, z" from (2.10) and then substituting t z o we finally
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COROLLARY I. If we put m=o in the above theorem, we get the following well-known

theorem derived by W.A. Ai-Salam [4], and the second author [5].

"If there exists a generating relation of the form

n ()G(x,w) E a w L (x)
n=o n n

then

where

--WX X WZ
(I--w)

-e-I exp(
l-w

G(
l-w l-w n=oZ wn fn(Z) L(s)n (x)

n n k
fn (z) kE--o (k) a

k
z

APPLICATION. As a nice application of our theorem, we consider the generating

relation given in (1.2), i.e.,

n
l (n+m. L(a) (x) w

n=o n n+m
-xw

L
(a) x(l-w)-l-=-m exp(

l-w m l-w

If we put an n
in our theorem, we get

where

-wx(l+z) ) L ()
x(l-w-wz)-l-a-m exp l-w-wz m l-w-wz

wn f (z) L Cs) (x)
n--o n n+m

m .n+m) (m-nn) z
k

fn (z) k_E_o k+m
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