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ABSTRACT. In this note a class of interesting generating relation, which is stated in
the form of theorem, involving Laguerre polynomials is derived. Some applications of the

theorem are also given here.
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1. INDRODUCTION.

The Laguerre polynomials Léa)(x) are defined by,
@ o)y
Ln (x) s —T 1F1 (-n; l4a; x) (1.1)

where n is a non-negative integer.

From [1] we have

© n+m (a) n
nzo (n) Loim (x) w (1.2)
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Observing the existence of the above generating relation (1.2) the present author is
interested to investigate the existence of more general generating relation by the
group—-theoretic method. In fact, the following theorem is obtained as the main result
of our investigation.

THEOREM 1. If there exists a generating relation of the form

G(x,w) = nzo a Wt Lﬁz; (x) (1.3)
then
-1 -
-0 exp(To) G )
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= I, v fn(z) Lo (x) (1.4)
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The importance of the above theorem lies in the fact that one can get a good number
of generating relations from (l1.4) by attributing different suitable values to a in the
relation (1.3).
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2. DERIVATION OF THE THEOREM.
THEOREM 1. Using the differential recurrence relation [2]

x4 (LS’; (x)) = (ntmtl) Lr(lizﬂ (x)
-(n+m+a+1—x)Lr(:;(x). (2.1)

We find the following partial differential operator,

3 2 )
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such that
a+n+l (a) (%)

R * L @) = () y Lol . (2.2)

The extended form of the group generated by R is given by,

R of(x,y) = (l—wy)_m_l exp( ) £( l—wy > lzwy) :

Let us consider the generating relation of the form:

G(x,w) = n%—oo a, L:i-c:—:l (x) W (2.3)

Replacing w by wyz and then multiplying both sides by yo', we get
o (a)
Ln+m )
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Operating both sides of the above expression by (exp wR ), we get

(exp wR) (y% G(x,wyz)) = (exp wR) (nzo a wz)" y atn r(:; (x)) (2.4)

The left member of (2.4) becomes

c(—= WYz

Ty 1) (2.5)

B -l-m WXy y
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The right member of (2.4) is equal to
k
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where
_ I n+m k
@ -k Gl a
Equating (2.5) and (2.6) and then putting y=1, we get

-l-a-m -WX X wz
(1-w) exp(—_) C15 » 737
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where,
n
_ n+m. n
fn(z) = k2=:o (k ) a z, this completes the proof of the theorem.

On the other hand, if we consider the continuous transformations group defined by



SOME GENERATING FUNCTIONS OF LAGUERRE POLYNOMIALS 533

the infinitesimal operator

ot 3
Ry = e (7¢

then the equations of finite transformations of the group are

) o 3
dz 9x

1, ,

x” = (exp w]Rl)x, y* = (exp WR l)y, z” = (exp wR 1)z (2.8)
where w is the parameter of the group under consideration.

Also we know that

(exp w]Rl) f(x,y,2) f((exp WR 1)x, (exp wR 1)y, (exp w]Rl)z)
f (x)’ yd’ zl)

From [3] we see that the effect of the operator (exp wlRl) on the variables are as

(2.9)

follows:
x° = x/ (l—wet)
v =t - log (l-we®) (2.10)
z° =2z - x wet/ Z(l—wet).
and
]Rl FM_m (x,ty2z) = (n+mtl) Fn-hn+l (x,t,z) , (2.11)
where ()
Fn+m (x,t,z) = exp [(ntm)t + -—2—31— t+ 2z~ %] x(a+l)/2 Ln+m () -
Now replacing w by wyet in (2.3) and then multiplying both members by
exp [ mt + a-;l t+z - %] x(a+1)/2
we get
G(x, wyet) exp{mt + GZI t+z - %} x(a+l)/2
= % a (" F (x,t,2) . (2.12)
n=o n n+m

Operating both members of the above expression by (exp w R 1) and using (2.8), (2.9)
and (2.11), we get

G(x~, wyet ) exp{mt” + % t°+z° - -’25 } (x,)(a+1)/2
T W 2.13
" n=o w fn(Y) Fn+m (x,t,z) , (2.13)

where

n n+m k
800 = ks Cpm ) 2 Y -

Putting the values of x”, y”, z” from (2.10) and then substituting t = z = o we finally

obtain
if _ 2 n . (a)
G(x,w) = néo a v Ln+m (x)
then
_.y~l-o-m —XW X wy.
(1-w) exp(Tog) S » 150) (2.14)
- 2 n (a)
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where
= n+m k
200 = s G ) Y

which is same as (2.7).
From above we see that if IR . be used the calculation becomes much harder than when

1
IR is used.
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COROLLARY 1. If we put m=o in the above theorem, we get the following well-known
theorem derived by W.A. Al-Salam [4], and the second author [5].

"If there exists a generating relation of the form

- ¢ n (o)
G(x,w) = n§o a w Ln (x)
then
-a~1 =WX X wz . ¢ .n (a)
(1-w) exp(—_ ) 6l » 1) nZo ¥ (@) L (x)
where

n n k
fn(z) = kgo (k) b

APPLICATION. As a nice application of our theorem, we consider the generating
relation given in (1.2), i.e.,

® n+m (a) n
néo ( n ) Ln+m (0w
= (1_uy-l-0-m -XwW (a) x
= (1-w) exp(—_ ) L, (5 -
If we put a = (m:n) in our theorem, we get
e -1-0-m -wx(1+z) (a) X
(1-w-wz) exp( l-w~-wz ) Lm (¢ 1-w-wz )

- e Lr(l_?_zl (%)

n=o
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