

TWO NEW FINITE DIFFERENCE METHODS FOR COMPUTING EIGENVALUES OF A FOURTH ORDER LINEAR BOUNDARY VALUE PROBLEM

RIAZ A. USMANI

Department of Applied Mathematics
University of Manitoba
Winnipeg, Manitoba, Canada
R3T 2N2

MANABU SAKAI

Department of Mathematics
University of Kagoshima
Kagoshima, Japan 890

(Received April 5, 1985)

ABSTRACT. This paper describes some new finite difference methods of order 2 and 4 for computing eigenvalues of a two-point boundary value problem associated with a fourth order differential equation of the form $(py'')'' + (q - \lambda r)y = 0$. Numerical results for two typical eigenvalue problems are tabulated to demonstrate practical usefulness of our methods.

KEY WORDS AND PHRASES. Band-matrices, finite-difference methods, generalized eigenvalue problem, positive definite matrices, two-point boundary value problems.

1980 AMS SUBJECT CLASSIFICATION CODE. 65L15.

1. INTRODUCTION.

We shall consider the fourth order linear differential equation

$$\frac{d^2}{dx^2} \left[p(x) \frac{d^2y}{dx^2} \right] + [q(x) - \lambda r(x)]y = 0, \quad -\infty \leq a \leq x < b < \infty, \quad (1.1)$$

associated with the following pairs of homogeneous boundary conditions

$$y(a) = y(b) = y'(a) = y''(b) = 0. \quad (1.2)$$

Such boundary value problems occur in applied mathematics, engineering and modern physics, (see ref. [1-4]). In the differential equation (1.1) the functions $p(x)$, $q(x)$, $r(x) \in C[a,b]$ and satisfy the conditions

$$p(x) > 0, \quad q(x) \geq 0 \quad \text{and} \quad r(x) > 0, \quad x \in [a,b]. \quad (1.3)$$

We cannot compute the exact values of the eigenvalues λ for which the boundary value problem (1.1) - (1.2) has a nontrivial eigensolution $y(x)$ for arbitrary choices of the functions $p(x)$, $q(x)$ and $r(x)$. We resort to numerical methods for computing approximate values of λ . The most commonly used technique for approximating λ for which the system (1.1) - (1.2) has a nontrivial eigenfunction $y(x)$ is by finite difference methods.

Recently, the author [2] has analysed some new finite difference methods of order 2 and 4 for computing eigenvalues of a two point boundary value problem involving the differential equation (1.1) with $p(x) \equiv 1$ associated with one of the following pairs of homogeneous boundary conditions:

- (a) $y(a) = y(b) = y'(a) = y'(b) = 0$
- (b) the same boundary conditions as (1.2) (1.4)
- (c) $y(a) = y'(a) = y''(b) = y'''(b) = 0$.

Chawla and Katti [3] have developed a numerical finite difference method of order 2 for approximating the lowest eigenvalue λ of the system (1.1) - (1.4(a)) with $p(x) \equiv 1$. A fourth order method was later developed by Chawla [4] for the numerical treatment of the same problem. This latter method leads to a generalized seven-band symmetric matrix eigenvalue problem.

Let λ be any eigenvalue of the system (1.1) - (1.2) and let $y(x) \neq 0$ be the corresponding eigenfunction. Then on multiplying (1.1) by $y(x)$ and integrating the resulting equation from a to b , we find after integration by parts and on using (1.2), that

$$\lambda = \frac{\int_a^b p(y'')^2 dx + \int_a^b qy^2 dx}{\int_a^b ry^2 dx} > 0 \quad (1.5)$$

in view of (1.3).

The purpose of this brief report is to present two new finite difference methods for computing approximate values of λ for the system (1.1) - (1.2). These methods lead to generalized five-band and nine-band symmetric matrix eigenvalue problems and provide $O(h^2)$ and $O(h^4)$ -convergent approximations for the eigenvalues.

2. A SECOND ORDER METHOD

For a positive integer $N \geq 5$, let $h = (b - a)/(N + 1)$ and $x_i = a + ih$, $i = 0(1)N + 1$. We shall designate $y_i = y(x_i)$, $p_i = p(x_i)$, $q_i = q(x_i)$ and $r_i = r(x_i)$. Note that the differential system (1.1) - (1.2) is equivalent to

- (a) $y''(x) = v(x)/p(x)$, $y(a) = y(b) = 0$,
- (b) $v''(x) + [q(x) - \lambda r(x)] v(x) = 0$,
- $v(a) = v(b) = 0$.

(2.1)

Now the central difference approximation to 2.1(a) is

$$-y_{i-1} + 2y_i - y_{i+1} + h^2(v_i/p_i) + \frac{h^4}{12} y^{(4)}(\theta_i) = 0, \quad (2.2)$$

$$\theta_i \in (x_{i-1}, x_{i+1}), \quad i = 1(1)N.$$

The preceding system can be conveniently written in matrix form

$$JY + h^2 p^{-1}V + \frac{h^4}{12} T_1 = 0 \quad (2.3)$$

where $Y = (y_i)$, $V = (v_i)$, $T_1 = (\rho_i)$ are N -dimensional column vectors with $\rho_i = y^{(4)}(\theta_i)$, $P = \text{diag } (p_i)$, and $J = (j_{mn})$ is a tridiagonal matrix so that

$$j_m^n = \begin{cases} 2, & m = n \\ -1, & |m - n| = 1 \\ 0, & |m - n| > 1 \end{cases} \quad (2.4)$$

In an analogous manner, on discretizing 2.1(b), we get

$$JV - h^2 QY + \lambda h^2 RY + \frac{h^4}{12} T_2 = 0 \quad (2.5)$$

where $Q = \text{diag } (q_i)$, $R = \text{diag } (r_i)$ and $T_2 = (\sigma_i)$ with $\sigma_i = v^{(4)}(\phi_i)$, $\phi_i \in (x_{i-1}, x_{i+1})$. Next, we eliminate v between (2.3) and (2.5) to obtain

$$AY \equiv (JPJ + h^4 Q)Y = \lambda h^4 RY + \Gamma, \quad (2.6)$$

where

$$\Gamma = \frac{1}{12} [h^6 T_2 - h^4 JPT_1]. \quad (2.7)$$

It can be verified that the matrix $A = JPJ + h^4 Q$ is a five-band symmetric matrix. Now, in (2.6), neglect truncation error Γ , replace Y by \tilde{Y} , then our method for computing approximations λ for λ of the system (1.1) - (1.2) can be expressed as a generalized seven-band symmetric matrix eigenvalue problem

$$A\tilde{Y} = \lambda h^4 R\tilde{Y}. \quad (2.8)$$

In fact the matrix JPJ is a positive definite matrix and hence for any step-size $h > 0$, the approximations λ for λ by (2.8) are real and positive for all $p(x) > 0$ and $r(x) > 0$. That our method provides $O(h^2)$ convergent approximations λ for λ can be established following Grigorieff [5]. We omit the proof of convergence for brevity.

3. A FOURTH ORDER METHOD

Following Shoosmith [6] the boundary value problems 2.1(a) and 2.1(b) are discretized by the finite difference scheme

$$\begin{aligned} (a) \quad 14y_0 - 29y_1 + 16y_2 - y_3 &= h^2[y_0'' + 12y_1''], \\ (b) \quad (1 - \frac{\delta^2}{12})\delta^2 y_i &= h^2 y_i'', \quad i = 2(1)N-1, \\ (c) \quad -y_{N-2} + 16y_{N-1} - 29y_N + 14y_{N+1} &= h^2[12y_N'' + y_{N+1}'']. \end{aligned} \quad (3.1)$$

It turns out the boundary value problem 3.1(a) gives rise to the linear equations

$$M\tilde{Y} + 12h^2 p^{-1}\tilde{V} = 0. \quad (3.2)$$

Similarly, for the system 2.1(b), we obtain the linear equations

$$M\tilde{V} = 12h^2 Q\tilde{Y} - 12\lambda h^2 R\tilde{Y}, \quad (3.3)$$

where the five-band $N \times N$ matrix M is given by

$$M = \begin{bmatrix} 29 & -16 & & 1 & \\ -16 & 30 & -16 & & 1 \\ & 1 & -16 & 30 & -16 & 1 \\ & & -16 & 30 & -16 & 1 \\ & & & 1 & -16 & 30 & -16 \\ & & & & 1 & -16 & 29 \end{bmatrix} \quad (3.4)$$

The elimination of \tilde{V} from (3.2) and (3.3) gives our method for computing Λ for λ of (1.1) - (1.2) in the form

$$(MPM + 144h^4 Q)\tilde{Y} = 144\Lambda h^4 R\tilde{Y}, \quad (3.5)$$

where the matrix MPM is a nine-band positive definite matrix and hence for any step-size $h > 0$, the approximations Λ for λ by (3.5) are real and positive for all $p(x), r(x) > 0$. As before, it can be proved from the results of Grigorieff [5] that our present method provided $O(h^4)$ convergent approximations Λ for λ .

4. NUMERICAL RESULTS

In order to illustrate our methods of order 2 and 4 for the approximation of λ satisfying (1.1) - (1.2), we consider the eigenvalue problems:

$$[(1 + x^2)y''']'' + [\frac{1}{(1 + x^2)} - \lambda(1 + x)^4]y = 0, \quad (4.1)$$

$$y(0) = y(1) = y''(0) = y''(1) = 0.$$

The smallest eigenvalue $\lambda_1 = 22.754, 058, 480, \dots$

$$[e^x y''']'' + [\sin x - \lambda \cos x]y = 0, \quad (4.2)$$

$$y(0) = y(1) = y''(0) = y''(1) = 0.$$

The smallest eigenvalue of the system (4.2) is $\lambda_1 = 181.345, 488, 233, \dots$ We list the approximations Λ_1 for λ_1 and the relative errors $|1 - \frac{\lambda_1}{\Lambda_1}|$ for various values of the step-size h . It is readily verified that the relative errors (Table I) based on generalized eigenvalue problem (2.8) provide $O(h^2)$ - convergent approximations for the smallest eigenvalue of the system (4.1) and (4.2). Similarly, the relative errors (Table II) based on the generalized eigenvalue problem (3.5) do indeed provide $O(h^4)$ - convergent approximations for the smallest eigenvalue of the systems (4.1) and (4.2).

TABLE I

Results based on (2.8), second order approximations

Problem	N	Λ_1	$\left 1 - \frac{\lambda_1}{\Lambda_1} \right $
(4.1)	7	22.187	2.557-2*
	15	22.610	6.352-3
	31	22.718	1.586-3
	63	22.745	3.962-4
	127	22.752	9.907-5
	255	22.753	2.480-5
(4.2)	7	176.641	2.664-2
	15	180.159	6.588-3
	31	181.048	1.642-3
	63	181.271	4.103-4
	127	181.327	1.025-4
	255	181.341	2.560-5

*We write 2.557-2 for 2.557×10^{-2} .

TABLE II

Results based on (3.5), 4th order approximations

Problem	N	Λ_1	$\left 1 - \frac{\lambda_1}{\Lambda_1} \right $
(4.1)	7	22.746, 419	3.358-4
	15	22.753, 574	2.129-5
	31	22.754, 027	1.358-6
	63	22.754, 056	1.078-7
(4.2)	7	181.244, 637	5.564-4
	15	181.339, 089	3.529-5
	31	181.345, 093	2.175-6
	63	181.345, 470	9.728-8

ACKNOWLEDGEMENT. This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada. The author also acknowledges the assistance of Mr. Manzoor Hussain for making numerical calculations presented in Tables I and II.

REFERENCES

1. HILDEBRAND, F.B. Advanced Calculus for Applications, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
2. USMANI, R. A. Finite-Difference Methods for Computing Eigenvalues of Fourth Order Boundary Value Problems, International J. of Mathematics and Mathematical Sciences, 9(1986), 137-143.
3. CHAWLA, M.M. and KATTI, C.P. A New Symmetric Five-Diagonal Finite Difference Method for Computing Eigenvalues of Fourth Order Two-Point Boundary Value Problems, J. Computational and Applied Mathematics, 8(1982) 135-136.
4. CHAWLA, M.M. A New Fourth-Order Finite Difference Method for Computing Eigenvalues of Fourth-Order Two-Point Boundary Value Problem, IMA Journal of Numerical Analysis, 3(1983) 291-293.
5. GRIGORIEFF, R.D. Discrete Approximation Von Eigenwertproblemen II, Numerische Mathematik, 24(1975) 415-433.
6. SHOOSMITH, J.N. A Study of Monotone Matrices with Application to the High-Order, Finite-Difference Solution of a Linear, Two-Point Boundary Value Problem, Ph.D. Dissertation, August 1973, University of Virginia.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru