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ABSTRACT. This paper describes some new finite difference methods of order 2 and 4

for computing eigenvalues of a two-point boundary value problem associated with a fourth
order differential equation of the form (py")" + (q - Ar)y = 0. Numerical results

for two typical eigenvalue problems are tabulated to demonstrate practical usefulness

of our methods.
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1. INTRODUCTION.

We shall consider the fourth order linear differential equation

d2 [p(x) QEX } + [q(x) - Ar(x)]ly =0, - «<a<x<b<w, (1.1)
d 2 2
X dx

associated with the following pairs of homogeneous boundary conditions

y(a) = y(b) = y"(a) = y"(b) = 0. (1.2)
Such boundary value problems occur in applied mathematics, engineering and modern
physics, (see ref. [1-4). 1In the differential equation (1.1) the functions p(x), q(x),
r(x) € Cla,b] and satisfy the conditions

p(x) >0, q(x)2 0 and r(x)> 0, x € [a,b]. (1.3)
We cannot compute the exact values of the eigenvalues A for which the boundary
value problem (1.1) - (1.2) has a nontrivial eigensolution y(x) for arbitrary chocies
of the functions p(x), q(x) and r(x). We resort to numerical methods for computing
approximate wvalues of A. The most commonly used technique for approximating A for
whi¢h the-system (1.1) - (1.2) has a nontrivial eigenfunction y(x) is by finite

difference methods.
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Recently, the author [2] has analysed some new finite different methods of order
2 and 4 for computing eigenvalues of a two point boundary value problem involving the
differential equation (1.1) with p(x) = 1 associated with one of the following pairs
of homogeneous boundary conditions:
(a) y(a) = y(b) = y'(a) =y'(b) =0
(b) the same boundary conditions as (1.2) (1.4)
(c) y(a) =y'(a) = y"(b) = y"' (b) = 0.

Chawla and Katti [3] have developed a numerical finite difference method of order
2 for approximating the lowest eigenvalue A of the system (1.1) - (1.4(a)) with p(x)
= 1. A fourth order method was later developed by Chawla [4] for the numerical
treatment of the same problem. This latter method leads to a generalized seven-band
symmetric matrix eigenvalue problem.

Let A be any eigenvalue of the system (1.1) - (1.2) and let y(x) # O be the
corresponding eigenfunction. Then on multiplying (1.1) by y(x) and integrating the

resulting equation from a to b, we find after integration by parts and on using

(1.2), that b b
/ p(y")2 dx + f qyzdx
a a

A = > 0 (1-5)

b
/ ryzdx
a
in view of (1.3).

The purpose of this brief report is to present two new finite difference

methods for computing approximate values of A for the system (1.1) - (1.2). These methods
lead to generalized five-band and nine-band symmetrix matrix eigenvalue problems
and provide O(hz) and O(hA) -convergent approximations for the eigenvalues.
2. A SECOND ORDER METHOD
For a positive integer N > 5, let h= (b - a)/(N + 1) and X, =a + ih,

i = O(1)N + 1. We shall designate v, = y(xi) » Py = p(xi) > 4y = q(xi) and r, = r(xi).
Note that the differential system (1.1) - (1.2) is equivalent to

(a) y"(x) = v(x)/p(x) , y(a) = y(b) =0,

(b) v"(x) + [q(x) - Ar(x)] y(x) =0, (2.1)

v(a) = v(b) = 0.

Now the central difference approximation to 2.1(a) is

-y, s+ 2y, -y, + h2(v./p.) +n y(a)(e.) =0, (2.2)

i-1 i i+l i'Fi 2 i
0, € (xi-l’xi+1) , i=1(1)N .

The preceding system can be conveniently written in matrix form

JY + th-

&

Wantr =0 (2.3)
2

1
where Y = (yi), V= (vi) R T1 = (pi) are N-dimensional column vectors with

= y(l')(oi) , P

p.

i diag (pi) , and J = (jmn) is a tridiagonal matrix so that
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2, m=n
ign =9-L [m - n| =1 (2.4)
o, [m-n| >1.
In an analogous manner, on discretizing 2.1(b), we get
2 2., h*
JV - h"QY + Ah"RY + 12 T2 =0 (2.5)
. s (4)
where Q = diag (qi) , R = diag (ri) and T2 = (oi) with o, =V (¢i) ,
9, € (xi-l’xi+1)’ Next, we eliminate v between (2.3) and (2.5) to obtain
AY = (JPJ + h'Q)y = anRY + T, (2.6)
where
1.6 _ .4
I'=qzlhT, - hJPT)] . (2.7)

It can be verified that the matrix A = JPJ + haQ is a five-band symmetric matrix.
Now, in (2.6), neglect truncation error I', replace Y by ;, then our method for
computing approximations A for A of the system (1.1) - (1.2) can be expressed as
a generalized seven-band symmetric matrix eigenvalue problem

AY = AR®RY . (2.8)

In fact the matrix JPJ is a positive definite matrix and hence for any step-size
h > 0, the approximations A for A by (2.8) are real and positive for all p(x) > O
and r(x) > 0. That our method provides O(hz) convergent approximations A for A
can be established following Grigorieff [5]. We omit the proof of convergence for
brevity.
3. A FOURTH ORDER METHOD
Following Shoosmith [6] the boundary value problems 2.1(a) and 2.1(b) are
discretized by the finite difference scheme
- - = 20 0 "
(a) 14y, - 29y, + 16y, - y; = h'lyy + 12y)1 ,
) (1 -$96%y, =1yt L i = 20081 (3.1)
17 yi = yi s 1= s .
- - = 2 " "
(c) Yp-2 * 16yN_1 29yN + 14yN+1 h [12yN + yN+1] .
It turns out the boundary value problem 3.1(a) gives rise to the linear equations

MY + 1208 W =0 . (3.2)

Similarly, for the system 2.1(b), we obtain the linear equations

2

MV = 12n%QY - 12A0%RY (3.3)
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where the five-band N x N matrix M is given by

29 -16 1 ]
-16 30 -16 1
1 -16 30 -16 1
M=|- === c oo o - . (3.4)
1 -16 30 -16 1
1 -16 30 -16
i 1 -16 29

The elimination of V from (3.2) and (3.3) gives our method for computing A for A of
(1.1) - (1.2) in the form
(fPM + 1440°Q)Y = 144nn°RY , (3.5)

where the matrix MPM is a nine-band positive definite matrix and hence for any
step-size h > 0, the approximations A for A by (3.5) are real and positive for all
p(x), r(x) > 0. As before, it can be proved from the results of Grigorieff [5] that
our present method provided 0(h4) convergent approximations A for A.
4. NUMERICAL RESULTS

In order to illustrate our methods of order 2 and 4 for the approximation of

A satisfying (1.1) - (1.2), we consider the eigenvalue problems:

1
(1 + x%)

y(0) = y(1) = y"(0) = y"(1) =0 .

[+ x2)y"1" + [ A+ 0%y =0, (4.1)

The smallest eigenvalue A, = 22.754, 058, 480, . . .

1
[exy"]" + [sin x - A cos x]ly =0 , (4.2)
y(0) = y(1) = y"(0) = y"(1) =0 .

The smallest eigenvalue of the system (4.2) is Al = 181.345, 488, f33, e We
list the approximations A1 for Al and the relative errors I 1- -Kl- I for various
values of the step-size h. It is readily verified that the relative errors

(Table I) based on generalized eigenvalue problem (2.8) provide O(hz) - convergent
approximations for the smallest eigenvalue of the system (4.1) and (4.2).

Similarly, the relative errors (Table II) based on the generalized eigenvalue
problem (3.5) do indeed provide 0(h4) -convergent approximations for the smallest

eigenvalue of the systems (4.1) and (4.2).



NEW FINITE DIFFERENCE METHODS FOR COMPUTING EIGENVALUES 529

TABLE I

Results based on (2.8), second order approximations

Problem N A1 . Al I
A
1
(4.1) 7 22.187 2.557-2*%
15 22.610 6.352-3
31 22.718 1.586-3
63 22.745 3.962-4
127 22.752 9.907-5
255 22.753 2.480-5
(4.2) 7 176.641 2.664-2
15 180.159 6.588-3
31 181.048 1.642-3
63 181.271 4,103-4
127 181.327 1.025-4
255 181.341 2.560-5
#We write 2.557-2 for 2.557X 10 °.
TABLE IT
Results based on (3.5), 4th order approximations
1
Problem N A1 1 - A
Ay I
(4.1) 7 22.746, 419 3.358-4
15 22.753, 574 2.129-5
31 22.754, 027 1.358-6
63 22.754, 056 1.078-7
(4.2) 7 181.244, 637 5.564-4
15 181.339, 089 3.529-5
31 181.345, 093 2.175-6
63 181.345, 470 9.728-8
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