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n
iABSTRACT. For < p, r < =, X I ), {ni} bounded, the space K(X) of all com-

i=l p r

pact operators on X is the only nontrlvlal M-ideal in the space B(X) of all bounded lin-

ear operators on X.
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1. INTRODUCTION.

Since Alfsen and Effros [I introduced the notion of an M-ideal, many authors have

studied M-ideals in operator algebras. It is known that K(X), the space of all compact

operators on X, is an M-ideal in B(X), the space of all bounded linear operators on X,

if X is a Hilbert space or (I < p < ). Smith and Ward [2] proved that M-ideals in a
P,

C -algebra are exactly the closed two sided ideals. Smith and Ward [3], and Fllnn [4]

proved that, for < p < , K( is the only nontrlvlal M-ideal in B(p). The purpose
P

n
i

of this paper is to generalize this result to B(X), where X I @9 ), for < p,
i=l p r

r < and {ni} a bounded sequence of positive integers. In this proof, the ideas and

results of [4], [2], [5] and [3] are heavily used.

2. NOTATIONS AND PRELIMINARIES.

If X is a Banach space, B(X) (resp. K(X)) will denote the space of all bounded lln-

ear operators (resp. compact linear operators) on X.

A closed subspace J of a Banach space X is an L-summand (resp. M-summand) if there

is a closed subspace 5 of X such that X is the algebraic direct sum of J and 3, and

II x + y II llxll + IlYll (resp. llxll max {llxll, IIYlI}) for x e J, y e 3. A projection

P: X X is an L-projectlon (resp. M-projectlon) if llxll llPx II + II( I P)x II (resp.

llxll llPxll, II ( p)xll for very x x.
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A close4 subspace J of a Banach space X is an M-ideal in X If J+/- {x e X x ’Ij --0}

is an L-summand in X

If (Xi)i= is a sequence of Banach spaces for _< P <_ , 7. pXi is the space of
i--I

all sequences x (xi)i=l, xi e Xi’ with the norm llxll llxillp) I/p < if _< p <

and llxll su.p[llxill} < if p .
1

An element h in a complex Banach algebra A with the identity e is hermltlan if

lleiXhll for all real [6].

If Jl and J2 are complementary nontrivial M-summands in A (i.e. A JlJ2), P is the

2
M-projection of A onto Jl and z P(e) Jl’ then z is hermit+/-an with z z [2, 3.1],

zJi - Ji (i 1,2) and zJ
2

A onto J2’ e z (e z)

z 0 [2, 3.2 and 3.4].

2
is hermit+/-an, (e z)J

since I P is the M-projection of

j i 2) and
i- i

(e z )Jl(e z) 0.

If M is an M-ideal in a Banach algebra A, then M is a subalgebra of A [2, 3.6]. If

h A is hermit+/-an and h
2

e, then hM M and M] M [4, Lemma I].

**If A is a Banach algebra with the identify e, then A endowed with Arens mult-

iplication is a Banach algebra and the natural embedding of A into A** is an algebra

** (j+/-lisomorphism into [6]. If J is an M-ideal in A, then A J+/-+/- and the associated

**hermltlan element z e jll commutes with every other hermit+/-an element of A [5 .22].

n
iE where < p, r < and {ni} aFrom now X, will always denote

i=l P r =I

bounded sequence of posit+/-rye integers. An operator T e B(X) has a matrix representa-

tion with respect to the natural basis of X. From the definition, it is obvious that

any diagonal matrix T e B(X) with real entries is hermitlan.

Fllnn [4] proved that if M is an M-ideal in B( and h e B( is a diagonal
P P

matrix, then hM M and Mh M. His proof is valid for X. He also proved that if M is

a nontrivial M-ideal in B( ), then M a K( ). Again his proof with a small modification
P P

is valid for X.

Thus we have observed that if M is a nontrlvial M-ideal in B(X), then M K(X).

If M is an M-ideal in a Banach algebra A and h e M is hermltian, then hAh M.

Indeed, (e z)h (e z)2h (e z)h(e z) 0 h(e z) and so zh hz h.

**Since zA z M+/-I [2: 3.4], zAz & M1+/- and hence hAh hzAzh e M+/-I. Since h e M,

hAh A M+/-+/- M. Thus if e e M, then A M.

3. MAIN THEOREM.
m m n nk) nWe may assume that X ( s) ( d
r p pr p r p pr p r

I Ank)
p p r p
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Set s m. + + m and 8 n. + + n. Let N be the set of all natural numbers,
s

So {I, 2 e} and, for _< j _< k, Sj n (n + 8N), where n runs over

+ n + n < n < s + n + + nj, n 0. Let Pj be the projection on X defined
o j-1 o o

by Pjx S.x for every x e X, where is. is the indicator function of the set Sj. Let

(ei)i__l be the unit vector basis for X. A gij aijejei
e B(X) is the operator with

matrix (aij) with respect to (el)i=
LEMMA I. If M is an M-ideal in B(X) and contains A 7 aijej

e
i

such that

(aii)i,l \ Co, then M B(X).

PROOF. By multiplying by diagonal matrices from both sides, and as in Lemma 2 [4],

we may assume that A =i__Zlef(i) ef(i), where f(i+l) f(i) _> 8, f(i) e Sj for all

i and a fixed j(l < j < k). Fix ( # j, < < k) and s

(a + n + + n_ < s < + n + + n), and let g(i) s + (i-l)B (i 1,2,3...).
O O

CLAIM: B iE__l e ef e M Suppose B M. Choose e Mso that
g(i) (i)

II*II (B). Since llBll and AB B, e B(X) defined by (G) #(GB) has

norm one and attains its norm at A e M. Hence e and II + II 2, where

,
B(X) M )i. Since

II 0 + II <- II I +BII To drawaontradiction, we will show that

d b boe. For x X h ilxll-- , Ilxll p II’xll p
/ I1( xll. .t

t IIPjxll p, then t II(I Pj)x II p. Since Bx has support in Sj and

IIBxll <_ II(x- Pj)x il have

ll(I / B)xll ! / IIBxll <_ / (I t) 1/p (3.1)

II(I Pj)x + Bxll < (211(I-Pj)xlIP) I/p 21/P(I t) I/p. Hence

II (I + B)x II II x + Bx II < II Pjx II + II (I Pj)x + Bx II-< tl/p + 21/P(l-t) I/p (3.2)

Obviously, F(t) t
I/p + 21/P(I t) I/p is continuous on [0,I] and F(O) 2

I/p < 2 so

F(t) < 2 for all 0 _< t <_ 6. For 6 _< t <_ I, + (I t) I/p < 2. By (3.1) and (3.2)

above, II(I + B) ll < 2. Contradiction! Hence B M.

Similarly C Z e M (use llcll CA c, (G) (CG) I + C is the
i=l fCi) g(i)

adjoint of I + B. Hence lll+C[l < 2).

Since M is an algebra, is+BN I CB M. Thus for all i

li+RN’ I e M. Since 1S I is compact, S
I e M. This proves M B(X).

O O
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COROLLARY 2. If M is an M-ideal in B(X) and there exists an isometry

B(X) B(X) so that (M) contains an A Y.aljejei
with (all)i> _.cwo

then M B(X).

PROOF. Since (M) is an M-ideal in B(X) and A g (M), by the lemma (M) B(X).

Hence M B(X)

THEOREM 3. If M is an M-ideal in B(X) and contains a noncompact T E tljej
then M B(X).

PROOF. Suppose T e M and T is not compact. Wlog we may assume

mkk ej fITkll where mke + N n
k

N, andT k=Zl Tk, r
k ij=mk+ tlj ei,

mk + nk + < mk+l

Since each T
k

has norm one, there exists norm one vectors

x
k

(x) X, Yk (yk) X z
k

(z i) X allwlthsupports inok= {l: m
k

< i _< m
k + n

k

so that Yk(TkXk) l=Zk(Xk)"

Let B
k

E k
I Xjem

k +I
k ) Dk r. zej@emk+l.@ej, C

k jZ>l_ yjej emk+l
A= Z e @ B= E Bk, C D

k_>[ mk+l emk+l k_>l kE>ICk and E Then all of these operators
k_> 1Dk"

have norm one and DB CTB A

Let P be the matrix obtained from the identity matrix I by interchanging (mk+J)-th
column and (mk + n

k
+ j)-th column for all k and j(l _< J _< 8). Then P is an isometry

in X since n
k 8N.

CLAI, If’B M, then M B(X).

Choose g c" .c_ E so that II@I[ ((I,I,I,I )). Define norm one functional
o

,
7 B(X) by (G) ((gmk+nk+l, mk+l)k I) wher G-- Egijej@ ei.

Then M.
A In

fact, if M then "(1 e B(X) defined by "(l() O((I))k+l :+l
has norm one and

attains its norm at B M. Hence "(I E and II"( + Y II-- 2. But for any norm one

G B(X), we have

k
I(Y + YI)(G)I --l(gmk+nk+l,mk+l + JkE zjgj,mk+l)kl

<_ Sp [{zk + emk+nk+l{{(Zk+ emk+nk+ E X {{GI[ I)

21/P’ where
1 +
P = I.
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o II/II_< /P’ =onr=on, Thus Mt S= M, hGM
s.t. y(G) # 0. So (gmk+nk+l,mk+l)_>l e co. The sequence of the diagonal entries of

P(G) belongs to ,co. Thus by oorollary 2, M B(X). This proves the claim.

Next e B(X) defined by (G) (((Cmk+l,mk+nk+l)kKI) is not in M. Indeed,

if e MI, then since i e B(X)* defined by I(G) (((CGB)mk+l,mk+l)k_>l) has norm one

and attains its norm at T e M, I and so II + III 2. But for any norm one

G e B(X), we have

I( + i )(G) < SUPlk (CG)I,_ .n__Imkmk k
+ 7. (CG)

mk+l j x[lJeOk

_< Spllxk + ek+nk+lll since CG e B(X), IIcGII

21/P contradiction

eieM such that ((CG)mk+lThus M. So there is G 7. gijej mk+nk+l)k>
There is e > 0 such that llgkl > for infinitely many k, where

G
k JY’eokg’3’ mk+nk+lemk+nk+I e..3 We can choose diagonal matrices D and D

2
in B(X) so

that DIGD2 has the same form as B in the claim above. Since DIGD2
e M, M B(X).
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