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ABSTRACT. In the present paper we have extended generalized Laplace transforms of Joshi
to the space of m X m symmetric matrices using the confluent hypergeometric function

of matrix argument defined by Herz as kernel. Our extension is given by
r (o)
m
8(2) = —=5 [Fj(a :B: - AZ) £(A)dA
Fm(ﬁ) A!;

The convergence of this integral under various conditions has also been discussed.
The real and complex inversion theorems for the transform have been proved and it has

also been established that Hankel transform of functions of matrix argument are limiting

cases of the generalized Laplace transforms.
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1. INTRODUCTION.
A function of matrix argument is a real or complex valued function of the elements

of a matrix. LetA be a symmetric matrix of dimension m X m . The function £(A) is

called symmetric function if f(A) = f(ono'), where O € Om: the group of m X m

orthogonal matrices. If f(A) is a symmetric function, then it is a function of the
elementary functions like trace, determinant, etc., of A. Herz [1] has defined the

Laplace transform with matrix variables by
g(2) =AJ(') etr(-Az) £(A)dA, (1.1)
>

where A € Sm; the space of m X m real symmetric matrices parameterized by (Aij),
Z =X+ 1Y, X,Y € S; ; the space of m X m real symmetric matrices parameterized by

X = being 1 4if 1 = j, 1/2 otherwise. Also daA= I dA is the

1gy 1
. The integration in (l.1) is over

(nijxij); "ij

A
Lebesgue measure in Sm’ etr(A) stands for etrace

the set of all positive definite A . The inverse transform (1.1) is given by

(A),A>0; (
etr (AZ)g(z)dz = n= mﬁ‘m; L (1.2)

1

(Zﬂi)n

Re(Z) = x0 >0 0, otherwise
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Herz [1] has used (1.1) and (1.2) in defining hypergeometric functions of matrix

argument. The confluent hypergeometric function, 1F1 , is defined by

(b)
[Fpas bs 1) = - etr(Z) det(E - Mz)~3 (det 2)~P dz, (1.3)
2ni)" Re(z) = X, >0

which holds for arbitrary complex M and a , Re(b) > m, provided we take X, > Re(M) .
Here Pm(b) is the generalized gamma function of Siegel, and p = (m + 1)/2.
Herz [1] has shown that
Fm(b)

S WO TR

6Eetr(ZR) (det R)® 7P det(E-R)P2PaR, (1.4)

which holds for Re(a), Re(b) Re(b-a) > p-1.
In the present paper, we shall extend the generalized Laplace transform of Joshi

[2], to the space of m X m real symmetric matrices. The kernel will be 1F1 function

of matrix argument. We shall also prove some theorems on the properties of the transform
thus defined. In section 3, we shall establish a relation between Laplace transform and
generalized Laplace transform through the operator of fractional integration defined by
Garding [3];

12 £(n) = 6Af(R) det (A-R)27P gR, (1.5)

1
Fm(a)
holding under suitable conditions on the function £(R). Integral (1.5) is a generaliza-
tion of Riemann Liouville integral to matrix variables.

2. DEFINITION.
Joshi [2] has defined the generalized Laplace transform in the scalar case by

_ T (btetl)

© b
g(x) = T (atbtetD) é (xy) 1F1 (b+c+l; atbtctl; -xy) f£(y) dy (2.1)

In analogy with (l1.1), we consider the relation
Tn(a)

g(2) = f;?gy A>0 lFI (a; b; =AZ) £(A) dA; z = x + 1y, (2.2)

where A € Sm, X, vy € S; , and 1F1 is the function defined by (1.3). If integral (2.2)

converges in some Z region, then it represents a function, g(Z), of the elements of
the complex symmetric matrix Z there. In this case, g(Z) will be called generalized
Laplace transform of f(A).

Now we have to establish the convergence of (2.2) to find the region where it defines
a function. But, before proving the convergence theorems, we have to say something on
the limit concept in matrix space.

We know that the space S~ 1is a partially ordered set for the order relatious '>"

defined in it by A > B <=> A-B is positive definite, where A, B¢ Sm . Sm is also
a directed set since for any pair of matrices A,Be¢ Sm there exists a number k such

that A < kE and B < kE, E being m X m wunit matrix.
For any two functions f(A) and g(A) defined in Sm’ we will say that f (A) 1is

of the order of g(r) for infinitely large A (in the sense of the order relation; >),
and will write
£ERA) ~ g)s A > (=),
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if Moore-Smith limit (Yoshida [5], p. 103) of f£(A)/g(A) through the directed set Sm
is equal to 1.

3. CONVERGENCE THEOREMS.
Before proving the theorems on convergence of the integral (2.2), we will prove a

few lemmas which will be useful in proving convergence theorems.

LEMMA 1(A) I1f Re(b) > m, and Re(b-a) > p-1,
I'm(b) -a, > (o
1F1 (a; b; -M) ~ I.—nFa—) (det M) "3 M > (»). (3.1)
(B) If Re(b) > m, and Re(a) > p-1,

FoGas bs 1) - B ey (dee M) M () (3.2)

RIRCHLHR Y T_(a) etr(M) (det H . .
We have, from (1.3),

Fm(b) 1

f etr(z) det(E - Mz )™ (det )™ dz ; Re(b) > m

(2“1)“ Re(2) =X°

I (b) L
=B (det W™® Jetr(z) (det 2)"®=3) 4oe (g-zn" 1y 24z

(271) Re(Z) = Xo

1Fl(a; b; -M)

Now, if M + (»), applying formula (1.1) of Herz [l1], we obtain
Fm(b)

(a; b; -M) (det M)2 = Ty 5 Re(®-a) > p-L.
m

1F1
This proves part (A) of the lemma.
To prove the part (B), we use Kummer's formula (Herz [1]):

1Fl(a; b; M) = etr(M) 1Fl(b-a; b; -M).

Using part (A) of the lemma, and applying Kummer's formula, part (B) of the lemma is
proved.

LEMMA 2.
T () (8T (a-6)

Pm(a)Fm(b—d)

_//:)b [Fy (85 ,b5 -A2) (det mSP o - (det 2)~8 (3.3)

where Re(a), Re(b), Re(8), Re(b-a), Re(b-8), Re(a-§) > p-1, and Re(Z) > O.
From (l1.4), we have
Fm(a)Pm(b-a)

. he - E _ a-p _ b-a-p .
Fm(b) lFl(a’ by -2) 6 etr(-RraZ) (det R) det (E-R) dR;

where for Re(a), Re(b), Re(b-a) > p-1.
Substituting the value of 1Fl(a, b, *Z) in the left hand side of (3.3), and

changing the order of integration, we have
T (BT (8)

-8
B R R

. §-p -
/};0 1F1 (@5 bs -AZ) (det A) dA

where Bm(a-d, b-a) 1is the generalized beta function of Siegel and

Tp(a-8) Ty(b-a)

Bm(a-G,b-a) = T (5=0) .

This proves the lemma. Now we prove:

THEOREM 1. (a) If the integral (2.2) converges absolutely for 2Z = Z0 , for which

Re(ZO) < 0, then it converges absolutely for every Z for which Re(Z) > 0 provided
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Re(b) > m, Re(b-a) > p-1.

(b) If the integral (2.2) converges absolutely for 2Z = Z0 where Re(ZO) < 0, then it

converges absolutely for every Z for Re(ZO) < Re(Z) < 0, provided Re(a) > p-1,

Re(b) > m .

(¢) If a = b, and (2.2) converges absolutley for 2Z = Z0 , then it converges for every
Z for which Re(Z) > Re(ZO) .

PROOF. We have
1Fl(a; b; -2)
. PR A A= — . T
fllFl(a, b; -ARZ)E(N |d fl F G5 D | [F (a5 b3 =AZE(RAA  (3.4)
A>0 A>0

Now, as A*(~®) from lemma 1, we have

.lFl(a; b; =AZ) |~

1Fl(a; b; -AZ

(det Az)™2
(det:/\zo)-a

-l,a
0 | (det zy2) |,

provided we have Re(b) > m, Re(b-a) > p-1, Re(2), Re(ZO) > 0. But 1Fl(a; b; -AZ)

is bounded in the set of positive definite A , and does not vanish anywhere there, pro-
viQed Re(b) > m, Re(b-a) > p-1, and Re(Z) > 0. Thus we see that

lFl(a; b; -AZ)

1Fl(a; b; —AZO)
is bounded in the set of p.d. A, provided Re(b) > m, Re(b-a) > p~1, and Re(Z) > O.
Now (3.4) reduces to

fllFl(a; b3 —R)E(M) [dA < k|| F) (a5 b3 -AZ)E(A)|da

A > A>0

where k 1is the least upper bound (l.u.b.) of

1Fl(a; b; -AZ)

1Fl(a; b; —AZO)
This proves part (a) of the theorem.

Now, if Re(Z) < 0, Re(ZO) < 0, Re(b) >m, Re(a) > p-1, we have from lemma 1(b),

1Fl(a; b; =AZ)
1Fl(a; b; -AZO)
So, as in the proof of part (a) of the theorem, we once again note that
1Fl(a; by ~AZ)
1Fp(as b =A2,)

_1.b-
. letr(-A(Z-Zo))(det z,2 ) a|;

is a bounded function in the partially ordered set, A , provided Re(b) > m, Re(a),
Re(b-a) > p-1. So, it follows from inequality (1.4), that the integral (2.2) is abso-
lutely convergent. This proves part (b) of the theorem.

We have yet to discuss the case a = b. 1In this case, 1Fl(a; b; -AZ) 1is equal to

etr(-AZ), so that the transform (2.2) is reduced to the Laplace transform (1.1) which is
absolutley convergent for all Z for which Re(Z) > Re(ZO), provided the integral (2.2)

is absolutely convergent for Z = ZO' This proves part (c) of the theorem.

THEOREM 2. If f£(A) 1is absolutely integrable in the partially ordered set A 1i.e.,
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SER) < =
A> O

then the integral (2.2) is absolutely convergent for all Z, for which Re(2) > 0, Re(a),
Re(b), Re(b-a) > p-1l.
PROOF. Since 1Fl(a; b; -AZ) 1is bounded in the partially ordered set A provided

Re(Z) > 0, Re(a), Re(b), Re(b-a) > p-1, therefore we have

I [F (a5 b3 =)E(W]dA s S] F (a5 by —m) [[E(M [ < k. J£(M) | da
A>Q 0 >0

where k is l.u.b. of 1Fl(a; s -AZ) 1in the partially ordered set A for Re(Z) > 0.

This proves the theorem.

THEOREM 3. 1f, for some number d and a positve number k,

e < kl@e)d™ | ;a5 0,
then the integral (2.2) is absolutely convergent for Re(Z) > 0, provided Re(a), Re(b),
Re(b-a), Re(a-d), Re(b-d) > p-1l.
PROOF. We have, from lemma 2,

J1,F| a5 bs —@)£6)]ans K S| F (a5 b5 -/) (det 4P ldn < =

~NO A >0
where Re(a), Re(b), Re(b-a), Re(a-d), Re(b-d) > p-1, and Re(Z) > 0. This proves
the theorem.
THEOREM 4. If, for any m X m real symmetric matrix R,

[£(A] < k. etr(-RA) |(detnP7P|
then the integral (2.2) is absolutely convergent for positive definite R provided
Re(Z+R) > 0, Re(b) > p-1.
PROOF.

fllFl(a; b; A Z)E(A) |ar < J’IlFl(a; by -AzZ)||£(n) ]dr <

A>Q A>0Q

<k S| |F (a; b3 -A2) etr (-RA) (det V)P P|dA < =,
~0

from Herz ([1], formula (2.7)) provided we have Re(Z+R) > 0, Re(R) > O, Re(b) > p-l.
This proves the theorem.
4, GARDING'S FRACTIONAL INTEGRAL AND GENERALIZED LAPLACE TRANSFORM.

In this section, we have derived certain connections between Laplace transform,
Hankel transform, and generalized Laplace tranform with the help of Garding's fractional
integral.

From formula (l.4), we can show, by certain change of variables, that

:EE:; Taf

m
where Re(a), Re(b), Re(b-a) > p-1.
THEOREM 5. If

(a3 b3 -az)(det z)P7P = F(Tl-s éz etr(-R A (det )2 Pdet (z-RP 8RR (4.1)
m

r.@
g(a; b; Z) = F—?Ej s lFl(a; by -AZ)E(A) dA , (4.2)
* m )
and
6(z) = J etr(-rz)(det 2)*PE(r ) (4.3)

A>Q
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then

72 4(2) = (det 2)P7P g(a; b; 2) (4.4)

Provided integrals (4.l) and (4.2) converge in the generalized right half plane Re(Z)>0
and Re(a), Re(b-a) > p-l.

PROOF. Applying the operator of fractional integration to both the sides of (4.3), we
have by changing the order of integration which is justified by Fubini's theorem

P72 4(2) = A SE(V[S? etr(-RA) (det R)*P det(z-R)°7P dr] dA
T (b-a) )
m A0

Now, from (4.1) we have in view of (4.2),

1°72 4@2) = (det 2)°7P g(a; b; 2).

This proves the theorem.

From (4.2) and (4.3) we note that ¢(Z) = g(a; a; Z)(det Z)a-P, since
1Fl(a; a; —-AZ) = etr(-AZ).
From Garding's [3] theory, if derivatives of a function, f(A) exist for suffi-
ciently high orders,
p? 1% £(a) = £(n).
Since ¢(Z) 1in equation (4.3) is a Laplace transform, the derivatives of it will exist

for all orders. So from (4.4), we have

0(2) = gla; a; z)(det 2)27P = D73 [(det 2)°P g(a; b; 2)]. (4.5)

Db—a

where is the differential operator of fractional order (Garding ([3]). Moreover,

for A €S_ ,
m
]
D = det(nij SXIE ),

njj being 1 if 1 = j, and 1/2 otherwise. And for =z e S; s

]
3zij).

Dz = det(

Formula (4.5) has been established for real Z, it follows for all complex Z for
which Re(Z) > 0 by analytic continuation. But we must note that in any case (b-a) is
a non negative integer greater than p-1 , and Re(a) > p-1. But the condition;

(b-a) > p-1 , can be relaxed to the condition (b-a) > 0. To do so, we apply D-operator
to both the sides of (4.2) after multiplying it by (det Z)P~P to get (4.5), but then
we must have; Re(a) > m, and b-a should be a non negative integer.

Formula (4.5) allows us to find a complex inversion theorem for the generalized
Laplace transform.

THEOREM 6. If, for Re(a), Re(b) > m,

T (a)
m
T ® 'lel(a; bs AZ)f()d = g(a; b; Z)

A>0

is absolutely convergent in the generalized right half plane given be Re(Z) > XO s and

J‘I det (X +i¥)P7P g(a; b; X + 1) |ay <w,

*
Ye sm’ X > xo
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lim flde: &HY)PP g(a; by x+HY)| dY = 0
X () Yes;

then, for A > 0,

D1 (boatp)

F, (b-atp) b; Az)(det a2)°P g(a; b; 2)dz = £(n).
2v1)T_(b) 11
m A>0
provided (b-a) 1is a non negative integer.
PROOF. Under the conditions of the theorem, (det Z)b—P g(a; b; Z) can be represented

as a Laplace transform of a function, say y¥(A), so that we have

(det 2)°P g(a; b 2) = fe:r(-m V(A) da (4.6)
A>0
Now, applying D-operator to both the sides of (4.6), we have
"2 [(det 2)°7P g(a; b3 2)] = f etr(-Az) (det -0 Y(a)dA
A>0

Now, from Herz([l]), formula (1.1)), (det Z)-a-p is the Laplace transform

1 -2
of T (a-p) (det )37°P provided Re(a) > 2p-1 = m. So, from the convolution
m

-a-p Db—a

property of Laplace transform, (det Z) [(det Z)b_p g(a; b; Z)] 1is the

Laplace transform of

£(n) = 12 Pldet (-0)°72 y(n)] (4.7)
Now, inverting (4.6) by complex inversion formula of Laplace transform, (Herz [1]),
which is permissible under the conditions of the theorem, and then putting the values
of ¥(A) in (4.7), we obtain

£(n) = 187P—1L etr (az)det(-a)P72 (det 2)PP g(a; b; 2) az]
(2ni)h 1;3(2) = xo
m(b-a)
L 7 l!Ia-p[etr(AZ) (det A)P72)(det 2)PP g(a; b; 2) az
(2mi)n e(z) = X,

Now,from (4.1), we have
(b-a) (b- )
-n" a+p b-
f(A) = ——— O catp: b P . b
(2Wi)n ) lel(b a+p; b; AZ)(det AZ) g(a; b; 2) dz
m
Re(Z) = XO
This proves the theorem.
COROLLARY. If the conditions of Theorem 6 hold, b-a = 0 and
g(Z) = fetr(-AZ)£(A) dA ,
A0

then
T_(p)

£ = r_(b) (2ri)n

[iF103 b5 W) deen )" g(@)az (4.8)
Re(Z) = Xo
This corollary can be deduced by noting the simple fact that
1Fl(b; b; Z) = etr(Z).

This corollary gives a new inverison fromula for the Laplace transform with matrix
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variables. In the scalar case; m = 1, formula(4.8) reduces to Roony's [4] formula.
5. HANKEL TRANSFORM AND GENERALIZED LAPLACE TRANSFORM.

Herz [1] has defined Hankel transform of functions of matrix argument by

g(n =/AC(AR)(det R)€ £(R) dR , G.1

A>0
where Ac is the Bessel function of matrix argument, and f ¢ Li N Lz being the

Hilbert space of functions for which the norm defined by
Hell2 =f [£(R) |2 (det B)€ dR ,
R>0

where c¢ 1is a real number greater than -1/2.
We can find a connection between Hankel transform and generalized Laplace transform

The result can be stated in the form of the following theorem.

THEOREM 7. If £(A) € Lg_p , and

Fm(a) b=
8(2) = gy lel(a; b; -AZ)(deta ) PE(A)AA (5.2)
m
A>0O
converges absolutely in the simply connected region Re(a), Re(b) > p-1 for Z > 0, and
0(2) =fAb-p (A2) (det WP PE(A)dA , (5.3)
A>0
then
Lin 1y &G D) = 42 . (5.4)
a*» m

The proof of the theorem is quite simple in view of the limit (see Herz [1]):
1
Lim .F,(a; b; -=R) =T (b) R).
aveo 11 7 a m A'D-p
We shall now prove a theorem which serves as real inversion theorem for the gener-
alized Laplace transform.
THEOREM 8. If

Tn(2) b-p
g(a; b; Z2) = W lel(a; b; -AZ) (detA) f(A)dA (5.5)

~>0

is absolutely convergent for a > p-1, b > p-1, Z > 0, and f, g € L%_p H

then
abm
f(N = lim m H{g(a; b; Aa)} (5.6)
a»® m
where
H{g(a; b; az)} =-/kb_p(aAZ) (det Z)b_p g(a; b; 2z)dz. (5.7)
z>0
PROOF. Since f ¢ Lﬁ_p it's Hankel transform will exist. So we have
0(2) =fAb_p(AZ)(detA)b'Pf(A)dA , (5.8)
ASO

Now, from Theorem 7, we have
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1 1
¢(2) = 1lim —— -g(a; b; =Z) (5.9)
2 Fm(a) a
By the Hankel inversion of (5.8) and (5.9), we obtain
1 b-p 1
f(A) = lim —— __(AZ) (det 2) g(a; by =2) . (5.10)
e Fm(a) Ab P a

Now, changing variables from Z to aZ, and noting that the Jacobian of transformation

for the change is (a)pm , we have the desired result.
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