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ABSTRACT. In the present paper we have extended generalized Laplace transforms of Joshl

to the space of m m symmetric matrices using the confluent hypergeometrlc function

of matrix argument defined by Herz as kernel. Our extension is given by

rm<)
g(Z) r (8 flFl( :8:- ^Z) f(^)d^

m A>0

The convergence of this integral under various conditions has also been discussed.

The real and complex inversion theorems for the transform have been proved and it has

also been established that Hankel transform of functions of matrix argument are limiting

cases of the generalized Laplace transforms.

EY WORDS AND PHRASES. Integral transforms, Laplace transform, Hankel transform of Herz,

functions of matrix argument.

29B0 AMS SUBJECT CASSIFICATION CODES. 44F2.

I. INTRODUCTION.

A function of matrix argument is a real or complex valued function of the elements

of a matrix. Let A be a symmetric matrix of dimension m m The function f(^) is

called symmetric function if f(^) f(oAo’), where 0 E 0 the group of m m
m

orthogonal matrices. If f(^) is a symmetric function, then it is a function of the

elementary functions llke trace, determinant, etc., of A. Herz [I] has defined the

Laplace transform with matrix variables by

g(Z) etr(-^Z) f(^)d^, (I.I)
^>0

where ^ E Sm; the space of m m real symmetric matrices parameterlzed by (j),
Z X + iY, X,Y S*

m
the space of m m real symmetric matrices parameterlzed by

X (nljxlj); nlj being if i j, 1/2 otherwise. Also dA=i<_jH dlj is the

trace ^Lebesgue measure in Sm, err(A) stands for e The integration in (I. I) is over

the set of all positive definite ^ The inverse transform (I.I) is given by

(A),A 0;

f err (AZ)g(Z)dZ -- n m(m + I)

(2i ./
2

Re(Z) X > 0 0, otherwise
o

(I .2)
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Herz [13 has used (I.I) and (1.2) in defining hypergeometric functions of matrix

argument. The confluent hypergeometric function, IF1 is defined by

rm(b)
IFl(a; b; M) fetr(z) det(E- MZ) -a (det Z) -b dZ, (1.3)

(2i)n Re(Z) X > 0
o

which holds for arbitrary complex M and a Re(b) > m, provided we take X > Re(M)

Here rm(b) is the generalized gamma function of Siegel, and p (m + I)/2.

Herz [I] has shown that
r (b)
m IEetr(ZR) (det R) a-p det(E-R)b-a-PdR, (1.4)iFl(a; b; Z)=

rm(a)rm(b_a) 0

which holds for Re(a), Re(b) Re(b-a) > p-l.

In the present paper, we shall extend the generalized Laplace transform of Joshi

[2], to the space of m m real symmetric matrices. The kernel will be IF1 function

of matrix argument. We shall also prove some theorems on the properties of the transform

thus defined. In section 3, we shall establish a relation between Laplace transform and

generalized Laplace transform through the operator of fractional integration defined by

arding 3

I
a f(^) r-l,a)m I^f(R) det(^-R) a-p dR, (1.5)

0

holding under suitable conditions on the function f(R). Integral (1.5) is a generaliza-

tion of Riemann Liouville integral to matrix variables.

2. DEFINITION.

Joshi [2] has defined the generalized Laplace transform in the scalar case by

g(x) rr (a+b+c+l)(b+c+l) 0 (xy) b IF (b+c+l a+b+c+l -xy) f (y) dy (2 I)

In analogy with (I.I), we consider the relation

rm(a) f^g(Z) r-- >0 IF1 (a; b;-^Z) f(^) d^; z x + iy, (2.2)

where ^ Sm, X, y S*m and F1 is the function defined by (1.3). If integral (2.2)

converges in some Z region, then it represents a function, g(Z), of the elements of

the complex symmetric matrix Z there. In this case, g(Z) will be called generalized

Laplace transform of f (^).

Now we have to establish the convergence of (2.2) to find the region where it defines

a function. But, before proving the convergence theorems, we have to say something on

the limit concept in matrix space.

We know that the space $ is a partially ordered set for the order relatio ">"
m

defined in it by A > B <--> A-B is positive definite, where A, B S S is also
m m

a directed set since for any pair of matrices A,B S there exists a number k such
m

that A < kE and B < kE, E being m m unit matrix.

For any two functions f(^) and g(^) defined in S we will say that f (A) is
m

of the order of g(^) for infinitely large ^ (in the sense of the order relation; >),

and will write

f(^) g(A); A (),
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if Moore-Smlth limit (Yoshida [5], p. 103) of f(^)/g(^) through the directed set S
m

is equal to I.

3. CONVERGENCE THEOREMS.

Before proving the theorems on convergence of the integral (2.2), we will prove a

few lemmas which will be useful in proving convergence theorems.

LEMMA I(A) If Re(b) > m, and Re(b-a) > p-l,

Fro(b) -a
IFI (a; b; -M) r (b-a) (det M) M (=).

m

(B) If Re(b) > m, and Re(a) > p-l,

rm(b) -(b-a) M (=).IF1 (a; b; M)~ rm(a etr(M) (det M

We have, from (1.3),

(3.2)

1" (b)
m -l)-a (det Z) dZ Re(b) > miFl(a; b; -M) f etr(Z) det(E- Mz

-b

(2i)
n Re(Z) =X

r (b)
m -a -(b-a)

(2i)
n

(det M) /etr(Z) (det Z) det(E-ZM- )-adz
Re (Z) X

Now, if M (), applying formula (I.I) of Herz [I], we obtain

r (b)

1Fl(a; b; -M) (det M)
a m

r (b-a)
Re(b-a) > p-1.

m

This proves part (A) of the lemma.

To prove the part (B), we use Kummer’s formula (Herz [1])

1Fl(a; b; M) err(M) 1Fl(b-a; b; -M).

Using part (A) of the lemma, and applying Kummer’s formula, part (B) of the lemma is

proved.

LEMMA 2.
rre(b) r

m
(6) r

m
(a-)

-AZ)(det ^)-P dA r (det Z) (3.3)iFl(a;,b;>b (a) rm(b-6)m

where Re(a), Re(b), Re(6), Re(b-a), Re(b-6), Re(a-6) > p-l, and Re(Z) > 0.

From (1.4), we have

r
m
(a) r

m
(b-a)

r (b) iFl(a; b; -Z) --fE etr(-RAZ) (det R) a-p det (E-R) b-a-p dR;
m 0

where for Re(a), Re(b), Re(b-a) > p-l.

Substituting the value of iFl(a, b, -AZ) in the left hand side of (3.3), and

changing the order of integration, we have

r (b) rm(m
b; -AZ)(det ^)-P d ^= r (a)rm(b-a) 8m(a-, b-a) (det Z)iF1(a;>0 m

(a- b-a) is the generalized beta function of Siegel andwhere 8
m

rm(a-6) rm(b-a)
8 (a-,b-a)
m rm(b-)

This proves the lemma. Now we prove:

THEOREM I. (a) If the integral (2.2) converges absolutely for Z Z
0

for which

Re(Z0) < 0, then it converges absolutely for every Z for which Re(Z) > 0 provided
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Re(b) > m, Re(b-a) > p-l.

(b) If the integral (2.2) converges absolutely for Z Z
0

where Re(Z0) < O, then it

converges absolutely for every Z for Re(Z0) < Re(Z) < 0, provided Re(a) > p-l,

Re(b) > m.

(c) If a b, and (2.2) converges absolutley for Z Z
0

then it converges for every

Z for which Re(Z) > Re(Z0)
PROOF. We have

f f IFl(a; b; -Z)
llFl(a; b;-Z)f(^)Id^-- F (a; b;-Z) iFl(a; b;-AZo)f(^)d^ (3.4)

^>0 ^0
Now, as ^/() from lemma I, we have

ilFl(a; b; -AZ) l(det Az)-aliFl(a; b; AZ0) (detAZo)-a
l(det ZOZ-l)al

provided we have Re(b) > m, Re(b-a) > p-l, Re(Z), Re(Z0) > 0. But iFl(a; b; -^Z)

is bounded in the set of positive definite ^ and does not vanish anywhere there, pro-

vided Re(b) > m, Re(b-a) > p-l, and Re(Z) > 0. Thus we see that

iFl(a; b; -AZ)

iFl(a; b; -AZ0)
is bounded in the set of p.d. ^, provided Re(b) > m, Re(b-a) > p-l, and Re(Z) > O.

Now (3.4) reduces to

f ll’Fl(a; b; -AZ)E(^)Id^ < k.llFl(a; b; -AZ0)f(A)Id^
^0 A>O

where k is the least upper bound (1.u.b.) of

iFl(a; b; -AZ)

iFl(a; b; -AZ0)
This proves part (a) of the theorem.

Now, if Re(Z) < O, Re(ZO) < 0, Re(b) > m, Re(a) > p-l, we have from lemma l(b),

iFl(a; b; -AZ) b-a

iFl(a; b; -AZ0) letr(-A(Z-Z0) )(det ZoZ-l) I;

So, as in the proof of part (a) of the theorem, we once again note that

iFl(a; b; --AZ)

iFl(a; b; -^Z0)
is a bounded function in the partially ordered set, ^ provided Re(b) > m, Re(a),

Re(b-a) > p-l. So, it follows from inequality (1.4), that the integral (2.2) is abso-

lutely convergent. This proves part (b) of the theorem.

We have yet to discuss the case a b. In this case, iFl(a; b; -^Z) is equal to

etr(-AZ), so that the transform (2.2) is reduced to the Laplace transform (I.I) which is

absolutley convergent for all Z for which Re(Z) > Re(Z0), provided the integral (2.2)

is absolutely convergent for Z ZO. This proves part (c) of the theorem.

THEOREM 2. If f(^) is absolutely integrable in the partially ordered set ^ i.e.,
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sl^l

then the integral (2.2) is absolutely convergent for all Z, for which Re(Z) > 0, Re(a),

Re(b), Re(b-a) > p-l.

PROOF. Since iFl(a; b; -AZ) is bounded in the partially ordered set ^ provided

Re(Z) > 0, Re(a), Re(b), Re(b-a) > p-l, therefore we have

/IIFl(a; b;-z)f(^)Id^_< /IIFl(a; b;-^z)IIf(^)Id^_< k.IIf(^)Id^
A>O A>O A>O

where k is l.u.b, of iFl(a; b; -AZ) in the partially ordered set A for Re(Z) > 0.

This proves the theorem.

THEOREM 3. If, for some number d and a posltve number k,

If(^)l < el (met) d-p ;A > 0,

then the integral (2.2) is absolutely convergent for Re(Z) > 0, provided Re(a), Re(b),

Re(b-a), Re(a-d), Re(b-d) > p-l.

PROOF. We have, from lemma 2,

IIIFI(a; b;-AZ)f6 )Id^_< k /llFl(a; b;-AZ)(det^ )d-Pld^ <

>0 ^ >0

where Re(a), Re(b), Re(b-a), Re(a-d), Re(b-d) > p-l, and Re(Z) > 0. This proves

the theorem.

THEOREM 4. If, for any m m real symmetric matrix R,

[f(^[ < k. etr(-R^) [(det^)b-P[
then the integral (2.2) is absolutely convergent for positive definite R provided

Re(Z+R) > 0, Re(b) > p-l.

PROOF.

/liFt(a; b; z)f(^)[d^ _< I[iF1(a; b;-^z)[[f(^)[d^ <

^>0 ^>0

<kfIiFl(a; b; -^Z) etr (-R^) (det^)b-P [d ^ < ,
A>O

from Herz ([i], formula (2.7)) provided we have Re(Z+R) > O, Re(R) > O, Re(b) > p-l.

This proves the theorem.

4. GARDING’S FRACTIONAL INTEGRAL AND GENERALIZED LAPLACE TRANSFORM.

In this section, we have derived certain connections between Laplace transform,

Hankel transform, and generalized Laplace tranform with the help of Garding’s fractional

integral.

From formula (1.4), we can show, by certain change of variables, that

r (a)

1F (a; b; -^z)(det Z) b-p fZ etr(_RA)(detR)a-Pdet(Z_R]--,aRm (4.1)
rm(b) rm(b-a) o

where Re(a), Re(b), Re(b-a) > p-l.

THEOREM 5. If r (a)
m (a; b;-^Z)f(^) dA (4.2)g(a; b; Z)= F (’) f IFI
m ^>0

and

@(Z) f etr(-AZ)(det z)a-Pf(h)dA (4.3)
^>0
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then

I
b-a (Z) (det z)D-P g(a; b; Z) (4.4)

Provided integrals (4.1) and (4.2) converge in the generalized right half plane Re(Z)>

and Re(a), Re(b-a) > p-l.

PROOF. Applying the operator of fractional integration to both the sides of (4.3), we

have by changing the order of integration which is justified by Fubini’s theorem

0( fZI
b-a q(z) F (b-a) ff ^)[ etr(-R^)(det R) a-p det(Z-R) b-a-p dR] d^

m ^>
o

Now, from (4.1) we have in view of (4.2),

I
b-a (Z) (det Z) b-p g(a; b; Z).

This proves the theorem.

From (4.2) and (4.3) we note that (Z) g(a; a; Z)(det Z) a-p, since

iFl(a; a; -AZ) etr(-^Z).

From Garding’s [3] theory, if derivatives of a function, f(^) exist for suffi-

ciently high orders,

D
a

i
a

f(^) f(^).

Since (Z) in equation (4.3) is a Laplace transform, the derivatives of it will exist

for all orders. So from (4.4), we have

(Z) g(a; a; Z)(det Z) a-p Db-a[(det Z) b-p g(a; b; Z)]. (4.5)

where D
b-a

is the differential operator of fractional order (Garding [3]). Moreover,

for ^ S
m

D det(nij ),

S*nij being if i j and 1/2 otherwise And for z
m

D
z det(3--ij).

Formula (4.5) has been established for real Z, it follows for all complex Z for

which Re(Z) > 0 by analytic continuation. But we must note that in any case (b-a) is

a non negative integer greater than p-I and Re(a) > p-l. But the condition;

(b-a) > p-I can be relaxed to the condition (b-a) > 0. To do so, we apply D-operator

to both the sides of (4.2) after multiplying it by (det z)b-P to get (4.5), but then

we must have; Re(a) > m, and b-a should be a non negative integer.

Formula (4.5) allows us to find a complex inversion theorem for the generalized

Laplace transform.

THEOREM 6. If, for Re(a), Re(b) > m,

r (a)
m

F (b) "[iFl(a; b; -AZ)f(A)dA g(a; b; Z)
m jA > 0

is absolutely convergent in the generalized right half plane given be Re(Z) > X
0

and

met (X +iY)
B-p g(a; b; X + iY)[dY <

YS X>m’ X
o
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llm det (X+iY) b-p g(a; b; X+iY) dY 0
X/((R)) YeS*

m

then, for A > 0,

(-l)m(b-a) F (b-a+p)
m

b; ^z) (det ^z)b-P g(a; b; Z)dZ f(^).
(2i) nF

m
(b)

0

provided (b-a) is a non negative integer.

PROOF Under the conditions of the theorem, (det Z) b-p g(a; b; Z) can be represented

as a Laplace transform of a function, say (^), so that we have

(det Z) b-p g(a; b; Z) etr(-^Z) (^) d^ (4.6)

0

Now, applying D-operator to both the sides of (4.6), we have

Db-a[ (det z)b-P >g(a; b; Z)] etr(-^Z)(det -^)b-a (^)d^
0

Now, from Herz([l]), formula (I.I)), (det Z) -a-p is the Laplace transform

(det )a-2pof r (a-p)
m

provided Re(a) > 2p-I m. So, from the convolution

property of Laplace transform, (det Z) -a-p D
b-a

(det Z) b-p

Laplace transform of

g(a; b; Z)] is the

f(^) la-P[det(-^) b-a (^)] (4.7)

Now, inverting (4.6) by complex Inversion formula of Laplace transform, (Herz [1]),

which is permissible under the conditions of the theorem, and then putting the values

of @(^) in (4.7), we obtain

f(^) la-P[ fetr (^Z) det (-^) b-a (det Z) b-p g(a; b; Z) dZ](2wilh Re(Z) X
o

(-I) re(b-a) fla-P[etrZ)(det ^)b-a](det z)b-P
(2i)n Re(Z) --X

g(a; b; Z) dZ

o

Now, from (4.1), we have

f(^)
(_l)m(b-a) rm(b-a+p)
(2i)

n r (b)
m

lFl(b-a+p; b; ^Z)(det ^Z)b-p g(a; b; Z) dZ

Re(Z) X
o

This proves the theorem.

COROLLARY. If the conditions of Theorem 6 hold, b-a 0 and

g(Z) /etr(-^Z)f(^) d^
^>0

then
r (p)

f (^) m
f

b-p
F (b)(2i)n #IF1 (p; b; AZ)(det^ Z) g(Z)dZ
m Re(Z) X

o

This corollary can be deduced by noting the simple fact that

iFl(b; b; Z)= err(Z).

This corollary gives a new inverison fromula for the Laplace transform with matrix

(4.8)
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variables. In the scalar case; m-- I, formula(4.8)reduces to Roony’s [4] formula.

5. HANKEL TRANSFORM AND GENERALIZED LAPLACE TRANSFORM.

Herz [i] has defined Hankel transform of functions of matrix argument by

g(t0 =/AC(^R)(det R)C f(R) dR (5.1)

^>0
where A is the Bessel function of matrix argument and f E L2 L2 being the

C C C

Hilbert space of functions for which the norm defined by

2 --JR> If(R) 12 (dec R) c dRllfllc
0

where c is a real number greater than -I/2.

We can find a connection between Hankel transform and generalized Laplace transfom

The result can be stated in the form of the following theorem.

THEOREM 7. If f(^) L2 and
c-p

F (a)
g(Z) rmm(b) #fl F (a; b; -AZ) (detA)b-Pf (^)d^ (5.2)

^>0
coverges absolutely in the simply connected region Re(a), Re(b) > p-I for Z > 0, and

then

Lim r (a) g( z) 0(z) (5.4)
a+ m

The proof of the theorem is quite simple in view of the limit (see Herz [I]):

eim IFI (a; b; -R) rm(b) _p(R).
a+

We shall now prove a theorem which serves as real inversion theorem or the gener-

alized Laplace transform.

THEOREM 8. If

r (a)
m flg(a; b; Z)=
Fm(b Fl(a; b;-Z)(det^)b-p f(^)d^

-A>0

is absolutely convergent for a > p-l, b > p-l, Z > 0, and f’ g uL2-p

(5.5)

then
bm

f( to llm
a H{g(a; b; ha) (5.6)r (a)

a m

where

(aAZ) (det Z) b-p g(a; b; Z)dZ.H{g(a; b; aZ)}
-P

z>0

(5.7)

it’s Hankel transform will exist. So havePROOF. Since f e L
-P

we

(Z) =f_p(AZ)(det^)b-Pf(A)d^
^>0

(5.8)

Now, from Theorem 7, we have
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!z) (5.9)(Z)--lim "g(a; b;r (a) a
a m

By the Hankel inversion of (5.8) and (5.9), we obtain

(a)f(^) lim F A_p(AZ)(det Z.
B-p g(a; b; Z) (5.10)

a m

Now, changing variables from Z to aZ, and noting that the Jacobian of transformation

for the change is (a) pm we have the desired result.
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