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ABSTRACT. In this paper, we introduce the notion of weakly a-continuous functions
in topological spaces. Weak a-continuity and subweak continuity due to Rose [1]
are independent of each other and are implied by weak continuity due to Levine [2].
It is shown that weakly a-continuous surjections preserve connected spaces and

that weakly a-continuous functions into regular spaces are continuous. Corollary 1
of [3] and Corollary 2 of [4] are improved as follows: If fl : X+Y is a semi
continuous function into a Hausdorff space Y, f2 : X+Y is either weakly
a-continuous or subweakly continuous, and f1 = f2 on a dense subset of X, then

fl = f2 on X.
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1. INTRODUCTION.

Weak continuity due to Levine [2] is one of the most important weak forms of
continuity in topological spaces. Recently, Rose [1] has introduced the notion of
subweakly continuous functions and investigated the relationship between subweak
continuity and weak continuity. In [3], Baker has obtained further properties of
subweakly continuous functions. In this paper, we introduce a new class of functions
called weakly oa-continuous. Subweak continuity and weak a-continuity are
independent of each other and are implied by weak continuity. §3 deals with
fundamental properties of weakly a-continuous functions. In §4, we investigate
similarities and dissimilarities between subweak continuity and weak a-continuity.
It is shown that connectedness is preserved under weakly oa-continuous surjections.
Baker's result [3, Corollary 1] and Jankovié's one [4, Corollary 2] will be improved.
In the last section, we investigate the interrelation among weak a-continuity,
almost continuity [5], semi continuity [6], weak quasi continuity [7] and almost
weak continuity [8].

2. PRELIMINARIES.
Throughout the present paper, spaces mean topological spaces on which no

separation axiom is assumed unless explicitly stated. Let S be a subset of a
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space (X, 1). The closure of S and the interior of S in (X, T) are denoted
by ClT(S) and IntT(S), respectively. When there is no possibility of confusion,
we will simply denote them by C1(S) and Int(S), respectively. A subset S of
(X, t) 1is said to be a-open [9] (resp. semi-open (6], pre-open [10]) if

S € Int(C1(Int(S))) (resp. S C Cl(Int(S)), S C Int(C1(S))). The complement of an
a-open set is called a-closed. We denote the family of a-open (resp. semi-open,
pre-open) sets of (X, 1) by ° (resp. SO(X, 1), PO(X, t)). It is shown in [9]
that t C th SO(X, 1) and % isa topology for X. It is shown in [11, Lemma
3.1] that % = S0(X, 1) N PO(X, T).

DEFINITION 2.1. A function f : (X, 1) + (Y, 0) 1is said to be weakly
a-continuous (resp. weakly continuous [2]) if for each x € X and each V e o
containing f(x), there exists U ¢ ° (resp. U € 1) containing x such that
f(U) C C1(V). '"weakly a-continuous" will be denoted by '"w.a.c."

Every weakly continuous function is w.a.c. but the converse is not true by
Example 5.4 (below). Let (X, T) be a space, S a subset of X and x a
point of X. We say that x is in the 6-closure of S [12) if SN Cl(U) # @
for every U € T containing x. The 6-closure of S is denoted by [S]e.

LEMMA 2.2. For a function f : (X, 1) + (Y, 0), the following are equivalent:

(a) £ is w.a.c.

(b) f : (X, Ta) + (Y, U) is weakly continuous.

(c) £ (V)c: Int a(f (Cl (V))) for every V e 0.

(d) c1 u(f (V)) c: £ (Cl (V)) for every V € o.

(e) f(Cl u(A)) C [f(A)]e for every subset A of X.

(£) ClTa(f (B))(: £ ([B] ) for every subset B of Y.

PROOF. It follows from Definition 2.1 that (a) and (b) are equivalent.
Therefore, the others follow immediately from [2, Theorem 1], [13, Theorem 1],

[1, Theorem 7) and [14, Theorem 2].

LEMMA 2.3 (Andrijevié [15]). Let A be a subset of a space (X, t). Then
the following hold:

(1) €1 a(a) = AUCL (Int_(C1_(A))); (2) Int a(a) = Ar\Intt(Cl_‘(Intt(A))).

The following theorem is very useful in the sequel.

THEOREM 2.4. For a function £ : (X, 1) -+ (Y, 0), the following are equivalent:

(a) £ 1is w.a.c.

®) £71(v) € me(c1 It £ (C1(V))))) for every Ve o.

(c) Cl(Int(cl(£7X(M)))) C £71(c1(V)) for every V e .

(d) f(Cl(Int(Cl(A))))(: [f(A)]e for every subset A of X.

(e) C1l(Int(Cl(f (B))))(: £ ([B] ) for every subset B of Y.

PROOF. This follows from Lemmas 2.2 and 2.3.

3. FUNDAMENTAL PROPERTIES OF WEAK a-CONTINUITY.

In this section, we obtain several fundamental properties of w.a.c. functionms.

THEOREM 3.1. If f : (X, 1) + (Y, 0) 1is w.a.c. and g : (Y, o) + (2, 6) 1is
continuous, then the composition go f : (X, t) » (2, 8) is w.a.c.

PROOF. Since f is w.a.c., by Lemma 2.2 f : (X, Ta) + (Y, o) 1is weakly
continuous and hence go f : (X, 1“) + (2, 8) 1is weakly continuous [16, Lemma 1].
Therefore, go f : (X, T) ; (z, 8) 1is w.a.c. by Lemma 2.2,

The composition gof : X + Z of a continuous function f : X+ Y and a w.a.c.

function g : Y > Z 1is not necessarily w.a.c. as the following example shows.
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EXAMPLE 3.2. Let X = {a, b, c}, 1= {8, X, {c}, {a, b}}, o = {8, X, {c}}
and 6 = {@, X, {a}, {b}, {a, b}}. Let f : (X, t) > (X, 0) and g : (X, @) + (X, 8)
be the identity functions. Then f 1is continuous and g 1is w.a.c. by Example 5.4
(below). However, by Theorem 2.4 gof 1is not w.a.c. since there exists {a}l € @
such that {a} = (g0 £ '({a}) ¢ Int_(C1_(Int_((go )7 (C1y({a)))) = {c}.

THEOREM 3.3. Let f : (X, t) = (Y, 0) be an open continuous surjection. Then
a function g : (Y, 0) + (2, 8) is w.a.c. if and only if geo f : (X, T) + (2, 0) is
w.a.c.

PROOF. Necessity. Suppose that g is w.a.c. Let W be any open set of
(Z, 8). By Theorem 2.4, g *(W) C Int(CL(Int(g L(CL(W))))). Since f is open and
continuous, we have f-l(Int(Cl(Int(B)))) C Int(Cl(Int(f—l(B)))) for every subset
B of Y. Therefore, we obtain (ge £) L(W)C Int(Cl(Int((ge £) 1(CL(W))))). It
follows from Theorem 2.4 that gef 1is w.a.c.

Sufficiency. Suppose that ge f 1is w.a.c. Let W be any open set of (Z, 6).
By Theorem 2.4, (go f)—l(w)(: Int(Cl(Int((go f)-l(Cl(W))))). Since f 1is open and
continuous, we have f(Int(Cl(Int(A)))) C Int(Cl(Int(f(A)))) for every subset A of
X. Moreover, since f 1is surjective, we obtain g-l(w)(: Int(Cl(Int(g-l(Cl(W))))).
It follows from Theorem 2.4 that g 1is w.a.c.

By the function f : (X, 1) » (X, 0) in Example 5.4, we observe that the
restriction of a w.a.c. function to a closed set is not necessarily w.a.c. However,
we have

THEOREM 3.4, Let f : (X, t) - (Y, 0) be w.a.c. and A a subset of X. If
either A € PO(X, T) or A e SO(X, 1), then the restriction £|A : (A, 1/A) + (Y, o)
is w.a.c.

PROOF. Since either A ¢ PO(X, t) or A € SO(X, t), it follows from [10,
Lemma 1.1] and [17, Lemma 2] that ru/A c:(r/A)“. Since f 1is w.a.c., for each
X € A and each V € 0 containing f£f(x), there exists U € Ta containing x
such that £(U) C CL(V). Put U, = UM A, then we have x e U, ¢ (t/0)®  and
(£]a) (u,) C CL(V). This indicates that flA is w.a.c.

COROLLARY 3.5. The restriction of a w.a.c. function to an open set is w.a.c.

PROOF. Since every open set is semi-open and pre-open, this is an immediate
consequence of Theorem 3.4.

THEOREM 3.6. A function £ : (X, 1) + (Y, 0) 1is w.a.c. if and only if the
graph function g : (X, 1) + (XxY, tx0) defined by g(x) = (x, f(x)) for every
x e X is w.a.c.

PROOF. Necessity. Suppose that f is w.a.c. Let x € X and g(x) € W € tx0.
There exist U1 et and V e o such that (x, f£(x)) ¢ Ul x VCW. Since f 1is
w.a.c., there exists U2 e 1° containing x such that f(U2)<: Cla(V). Put U =
U;N Uy, then ve have x ¢ U e 1" and g(U)C ClL_, (W). This indicates that g 1is
w.a.C.

Sufficiency. Suppose that g 1is w.a.c. Let x e X and f(x) e Ve g.

Then g(x) ¢ X x Ve t x 0 and there exists U € © containing x such that
g(U) C ClTxc(X x V) = X x Cla(V). Therefore, we obtain £(U) C c1°(v) and hence
f is w.a.c.

Let {(XA’ TA)I A e A} and ((YA’ ax)l A € A} be any two families of spaces

with the same index set A. Let £, : (XA, TA) > (YA’ UA) be a function for each

A
AeA. Let £ : (HXA, HTA) > (HYA’ ch) denote the product function defined by
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f({xx}) = {fx(xx)} for every {xx} € IIX,. Moreover, let P, ¢ nx, - X" and
q'.| : HYA > Yu be the natural projections. Then, we have

THEOREM 3.7. The product function f : (HXA, HTA) > (HYX’ Hox) is w.a.c. if
and only if fx : (xk, TA) > (YA’ UA) is w.a.c. for each X € A.

PROOF. Necessity. Suppose that f 1is w.a.c. Let p be an arbitrarily fixed
index of A. Since qu is continuous, by Theorem 3.1 qu° f = fu° pu is w.a.c. .
Moreover, pu is an open continuous surjection and hence by Theorem 3.3 fu is w.a.c.

Sufficiency. Suppose that fA is w.a.c. for each A € A. Let x = {XA} € HXA

and f(x) e We HOA. There exists a basic open set IV, such that

A

n
f(x) € HVAC: W and HVA = I VA x I Y
i=1 "1 A#Ai

where VA € UA for each A = Al’ Az, cee An. Since fA is w.a.c., for each A =
such that fA(UA) C Cl(VA).

A’

a
€T

Al, AZ’ cee s kn there exists U I\

containing x

A A

Now, let us put

n
U-HU)‘xnx
i=1 "1 A#Ai

then we have x € U ¢ (Htx)a and f(U) C C1(W). This indicates that f 1is w.a.c.
THEOREM 3.8. A function f : (X, 1) = (HYA, HOA) is w.a.c. if and only if
9, £f: (X, 1) > (YX’ OA) is w.a.c. for each A € A.

A°

PROOF. This follows immediately from Lemma 2.2 and the fact that a function
f: X~ HYA is weakly continuous if and only if q, 0 £f: X~ YA is weakly
continuous for each A € A [16, Theorem 2].

4. WEAK a-CONTINUITY AND SUBWEAK CONTINUITY.

Rose [1] introduced and studied the concept of subweakly continuous functions.
In [16], he also obtained further properties of such functions. In [3], Baker
obtained several préperties of sﬁbweak continuity which are analogous to results
in [18]). 1In this section, we investigate similarities and dissimilarities between
weak a-continuity and subweak continuity.

DEFINITION 4.1. A function f : (X, 1) + (Y, o) is said to be subweakly
continuous [1] if there exists an open basis I for o such that for every V e L
ac oy c eaw).

REMARK 4.2. In Example 5.4 (below), f 1is w.a.c. but not subweakly continuous
since {a} belongs to every open basis for o and Cl(f-l({a})) qt f—l(CI({a})).
Moreover, the following example indicates that subweak continuity does not imply
weak a-continuity in general. Consequently, we observe that weak oa-continuity
and subweak continuity are independent of each other.

EXAMPLE 4.3. Let X be the set of all real numbers, T the countable
complement topology for X and o the discrete topology for X. Let
f : (X, 1) » (X, 0) be the identity function. Then £ is subweakly continuous
but not w.a.c.

In [18, Theorem 3], the present author showed that connectedness is preserved
under weakly continuous surjections. By Example 4.3, we observe that subweakly
continuous surjections need not preserve connected spaces. However, w.a.c.
surjections preserve connected spaces.

LEMMA 4.4, Let f : (X, 1) » (Y, 0) be a w.a.c. function. If V is a
clopen set of (Y, o), then f-l(V) is clopen in (X, 1).

PROOF. It follows from (c) and (d) of Lemma 2.2 that f—l(v) is a-closed and
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a-open. Therefore, we have CL(Int(CL(E X(v))))C £ 1(V) C Int(cl(Int(£ 1(v)))).
This fact implies that f-l(V) is clopen in (X, 1).

THEOREM 4.5. If £ : (X, 1) »- (Y, 0) is a w.a.c. surjection and (X, 1) is
a connected space, then (Y, o) is connected.

PROOF. Assume that (Y, o) is not connected. There exist nonempty V
V, € 0 such that %nv =@ and VUV = Y. Therefore, V
clopen in (Y, o) and by Lemma 4.4 f (V ) € r for 1 =1, 2. Moreover, we
have £ (V )(\ £ (Vz) =@ and f (V )L} £ (V ) = X. Since f is surjective,
£ (V ) 1is nonempty for 1 =1, 2. This indicates that (X, T) is not connected.

1’
1 and V2 are

This is a contradiction.

In [18, Theorem 6], the present author showed that if f : X + Y 1is a weakly
continuous injection and Y 1is Urysohn, then X 1is Hausdorff. Baker [3] pointed
out that '"subweakly continuous” can not be substituted for 'weakly continuous" in
the preceding result.

THEOREM 4.6. If f : (X, 1) - (Y, 0) is a w.a.c. injection and (Y, o) 1is
Urysohn, then (X, 1) is Hausdorff.

PROOF. Let Xy and X, be any distinct points of X. Then f(x ) # f(xz)
1> Vp €0 such that f(x)) € v » £(x,) € V, and 01(v )N €1(vy)
=@. It follows from Theorem 2.4 that xi e £ (V ) C Int(Cl(Int(f (Cl(V NN
for i =1, 2. Since f (Cl(V )) and £ (Cl(V )) are disjoint, we obtain

Int(Cl(Int(f (Ll(V ))))) f\Int(Cl(Int(f (Cl(V NN = 0.
This shows that (X, T) is Hausdorff.
DEFINITION 4.7. A function f : (X, 1) + (Y, 0) is said to be

(a) semi-continuous [6] if f-l(V) € SO(X, t) for every V € o;

and there exist V

(b) almost continuous [5] if for each x € X and each V € o containing f(x),
Cl(f-l(V)) is a neighborhood of x.

LEMMA 4.8 (Rose [1]). A function f : (X, 1) + (Y, 0g) 1is almost continuous
(resp. semi-continuous) if and only if f-l(V)(: Int(Cl(f—l(V))) (resp. f-l(V) C
cl(Int(£1(v)))) for every V e o.

In [1, Theorem 10], Rose showed that every almost continuous and subweakly
continuous function is weakly continuous. Similarly, we have

THEOREM 4.9. If : (X, t) + (Y, 0) is almost continuous and w.a.c., then it is
weakly continuous.

PROOF. Let V be any open set of (Y, o). Since f 1is w.a.c., by Theorem 2.4
Cl(Int(Cl(f_l(V))))(: f-l(Cl(V)). Since f 1is almost continuous, by Lemma 4.8
£1(v) C Int(cL(£71(V))) and hence CL(£ 1 (V) C £71(c1(V)). It follows from [13,
Theorem 1] or [1, Theorem 7] that f is weakly continuous.

In [3, Corollary 1], Baker showed that if Y is Hausdorff, f1 : X+Y is
continuous, f2 : X+Y is subcontinuous, and fl = f2 on a dense subset of X,
then fl = f2 on X. On the other hand, in [4, Corollary 2], Jankovié showed that
if Y is Hausdorff, fl : X+Y 1is weakly continuous, f2 : X > Y is semi-continuous
and f1 = f2 on a dense subset of X, then f1 = f2 on X. These two results are
improved as follows:

THEOREM 4.10. Let (Y, o) be Hausdorff and £, : (X, 1) » (Y, o) be semi-

1

continuous. If f2 : (X, 1) > (Y, 0) 1is either w.a.c. or subweakly continuous, and

if fl = f2 on a dense subset D of X, then fl = f2 on X.
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PROOF. First, suppose that fz is w.a.c. Let A = {x e X| fl(x) = fz(x)}
and assume that x € X - A. Then fl(x) $ fz(x) and there exist Vl, V2 € 0 such
that fl(x),e Vs fz(x) €V, and VI{\ v, = P; hence Vlf\ Cl(V2) = f. Since f1
(resp. fz) is semi-continuous (resp. w.a.c.), there exists U1 € SO(X, t) (resp.
U2 € ta) containing x such that fl(Ul)(: V1 (resp. fz(Uz)(: Cl(Vz)).

Therefore, we obtain x € Ulf\ 02 € SO(X, t) [9, Prop. 1] and (Ulf\ Uz)f\ A=20.
Since 9 # Ulﬂ U, € SO(X, 1), we have Int(Ulf\ U,) # 0 and Int(U;N Uz)f\A = 0.
On the other hand, since f1 = f2 on D, we have DC A and hence X = C1(D) C Cl(A).
This is a contradiction. Thus, A = X and f1 = f2 on X. Next, suppose that f2
is subweakly continuous. By Theorem 2 of [3], the graph G(fz) is closed and hence
it follows from [4, Corollary 1] that f1 = f2 on X.

5. COMPARISONS.

DEFINITION 5.1. A function f : (X, t) +> (Y, o) 1is said to be

(a) a-continuous [10] if f-l(V) e ™ for every V € 03

(b) almost weakly continuous [8] if f-l(v)(: Int(Cl(f-l(Cl(V)))) for every
Veo;

(c) weakly gquasi continuous [7] if for each x € X, each G € T containing x
and each V € ¢ containing £(x), there exists U € T such that @ # UC G and
£(U) C C1L(V).

We shall investigate the interrelations between the weak forms of continuity
previously stated. It is shown in [11, Theorem 3.2] that a function is a-continuous
if and only if it is semi-continuous and almost continuous. It will be shown that
weak continuity, semi-continuity and almost continuity are respectively independent.

LEMMA 5.2. If f : (X, t) + (Y, 0) 1is a-continuous, then it is weakly
continuous.

PROOF. Let V be any open set of (Y, o). Then f-l(V) e 1 and f-l(CI(V))
is a-closed in (X, 7). Therefore, we have

£1) € Ine(cr(Ine (£ (V))) € crneccrs v € £ L.
Thus, we obtain f_l(V)(: Int(f_l(Cl(V))). It follows from [2, Theorem 1] that f
is weakly continuous.

LEMMA 5.3. A function f : (X, t) = (Y, 0) is weakly quasi continuous if and
only if f-l(V)(: Cl(Int(f_l(Cl(V)))) for every V € o.

PROOF. Necessity. Suppose that f is weakly quasi continuous. Let V be
any open set of (Y, 0) and x € f-l(V). For any G € T containing x, there
exists U e T such that § # UCG and £(U)C Cl1(V). Therefore, we have
Uc £1(c1(v)) and hence UC Int(£1(CL(V))). Since @ # UC G Int(£1(CL(V))),
x € CL(Int(£71(C1(V)))) and hence £ 1(V) C Cl(Int(£ 1(CL(V)))).

Sufficiency. let x e X, x € Ge 1, and f(x) € V € 0. Then, by hypothesis
x e £ 1) c caint (71 (CL(V)))) and hence G M Int(£1(CL(V))) # #. Now, put U =
cN In:(f'l(c1(v))), then we have @ # UC G and £(U)C C1(V). This shows that f
is weakly quasi continuous.

By Definition 5.1, Lemmas 4.8, 5.2 and 5.3, and Theorem 2.4, we obtain the
following diagtam.



WEAKLY «-CONTINUOUS FUNCTIONS 489

DIAGRAM

a-continuous

!

semi-continuous weakly continuous almost continuous

1

weakly a-continuous
weakly quasi continuous almost weakly continuous

In the sequel, we shall show that none of the implications in DIAGRAM is
reversible.

EXAMPLE 5.4. Let X = {a, b, ¢}, 1t =1{@, X, {c}} and o = {9, X, {a}, (b},
{a, b}}. Let f : (X, T) > (X, 0) be the identity function. Then f is w.a.c.
but it is not weakly continuous.

EXAMPLE 5.5. Let X = {a, b, c, d} and 1t = {8, X, {b}, {c}, {b, c}, {a, b},
{a, b, c}, {b, c, d}}. Let f : (X, 1) » (X,7). be a function defined as follows:
f(a) = c, £(b) =d, f£(c) =b and f£f(d) = a. Then f is weakly continuous [19,
Example] and hence it is weakly quasi continuous and almost weakly continuous.
However, f 1is neither semi-continuous nor almost continuous.

EXAMPLE 5.6. Let X be the set of all real numbers, T the indiscrete
topology for X and o the discrete topology for X. Let f : (X, 1) + (X, 0) be
the identity function. Then £ is almost continuous but it is not weakly quasi
continuous.

EXAMPLE 5.7. Let X = {a, b, c}, 1t = {@, X, {a}, {b}, {a, b}} and o =
{9, X, {a}, {b, c}}. Let f : (X, 1) > (X, 0) be the identity function. Then f
is semi-continuous but it is not almost weakly continuous.

REMARK 5.8. (1) By Examples 5.4 - 5.7, we observe that none of the implications
in DIAGRAM is reversible.

(2) Examples 5.5 - 5.7 indicate that weak continuity, semi-continuity and
almost continuity are respectively independent.

It follows from Example 5.6 (resp. Example 5.7) that an almost continuous
(resp. semi~continuous) function into a regular space need not be continuous.
However, we have

THEOREM 5.9. If f : (X, 1) + (Y, 0) is w.a.c. and (Y, 0) 1is regular, then
f 1s continuous.

PROOF. Let x be any point of X and V any open set of (Y, o) containing
f(x). Since (Y, o) 1is regular, there exists W € o such that f(x).e WC ClL(W)C V.
Since £ 1is w.a.c., there exists U € ¢ containing x such that f(U)C Cl(W) C V.
Therefore, £ 1is a-continuous [10, Theorem 1] and hence it is continuous [10,
Remark].

In [20], Reilly and Vamanamurthy defined a space (X, 1) to be a-pseudo
compact if every real valued a-continuous function on (X, t) 1is bounded. It is
obvious that every a-pseudo compact space is pseudo compact and that (X, t) 1is
a-pseudo compact if and only if (X, Tu) is pseudo compact. In a letter of
correspondence, Reilly conjectured that (X, 1) 1is pseudo compact if and only if

(X, Tu) is pseudo compact. By Theorem 5.9, every real valued a-continuous
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function is continuous and Reilly's conjecture is true.

COROLLARY 5.10 (Reilly). A space (X, T) is a-pseudo compact if and only if
it is pseudo compact.
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