

EVEN PERFECT NUMBERS AND THEIR EULER'S FUNCTION

SYED ASADULLA

Department of Mathematics and Computing Sciences
St. Francis Xavier University
Antigonish, Nova Scotia. B2G 1C0. Canada.

(Received February 21, 1985, and in revised form, June 23, 1986)

ABSTRACT. The purpose of this article is to prove some results on even perfect numbers and on their Euler's function. The results obtained are all straightforward deductions from well-known elementary number theory.

KEY WORDS AND PHRASES. Perfect number; triangular number; Euler's function; number of divisors function.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 10A40

1. INTRODUCTION.

A positive integer is called a perfect number if it is equal to the sum of its positive divisors excluding itself.

The n^{th} triangular number is the sum of the first n -positive integers

$$\sum_{k=1}^n k = \frac{1}{2} n(n+1) = T(n).$$

Euler's function $\phi(n)$ is the number of positive integers less than or equal to n and relatively prime to n .

The number of divisors function $d(n)$ is the number of positive divisors of n .

2. MAIN RESULTS.

The proof of the following Theorem 1 can be found in many elementary number theory books; see, for example, [1:p. 98].

THEOREM 1. If n is an even perfect number, there exists a prime 2^{p-1} such that $n = 2^{p-1}(2^p - 1)$.

THEOREM 2. If $T(p_1)$ is any even perfect number, where p_1 is prime, and if p_k is the first prime in the sequence $\{p_2, p_3, \dots, p_j, \dots\}$ where $p_j = 2p_{j-1} + 1$, then $T(p_k)$ is the next even perfect number.

PROOF. It follows from Theorem 1 that an even perfect number is of the form $2^{n-1}(2^n - 1)$, where $2^n - 1$ is prime. Now, $2^{n-1}(2^n - 1)$ can be written as $T(p_1)$, where $p_1 = 2^n - 1$. Let p_i be any composite term of the sequence $\{p_2, p_3, \dots, p_j, \dots\}$. It can be shown that $p_i = 2^{n+i-1} - 1$, using the facts $p_1 = 2^n - 1$, and $p_j = 2p_{j-1} + 1$. Now, it follows from Theorem 1 that $T(p_i) = 2^{n+i-2}(2^{n+i-1} - 1)$ is

not an even perfect number. Let p_k be the first prime in the sequence $\{p_2, p_3, \dots, p_j, \dots\}$. As before, $p_k = 2^{n+k-1} - 1$. Observe that $T(p_k) = 2^{n+k-2}(2^{n+k-1} - 1)$ is of the form $2^{m-1}(2^m - 1)$, where $2^m - 1$ is prime and thus $T(p_k)$ is an even perfect number by Theorem 1.

EXAMPLE. $T(3) = \frac{1}{2}(3)(4) = 6$, $T(7) = \frac{1}{2}(7)(8) = 28$.

$T(31) = \frac{1}{2}(31)(32) = 496$, $T(127) = \frac{1}{2}(127)(128) = 8128$,

THEOREM 3. If $n = 2^{m-1}(2^m - 1)$, then, $n = 1^3 + 3^3 + \dots + [2^{(m+1)/2} - 1]^3$.

PROOF. Observe that $2^{(m+1)/2} = 2k$, where $k = 2^{(m-1)/2}$. Now, consider $1^3 + 2^3 + 3^3 + \dots + (2k-1)^3 + (2k)^3 = [1+2+3+\dots+(2k-1)+(2k)]^2 = [\frac{1}{2}(2k)(2k+1)]^2$

which implies that $1^3 + 2^3 + 3^3 + \dots + (2k-1)^3$

$$\begin{aligned} &= k^2(2k+1)^2 - [2^3 + 4^3 + \dots + (2k)^3] \\ &= k^2(2k+1)^2 - 2^3(1^3 + 2^3 + \dots + k^3) \\ &= k^2(2k+1)^2 - 8(1 + 2 + \dots + k)^2 \\ &= k^2(2k+1)^2 - 8[\frac{1}{2}k(k+1)]^2 \\ &= k^2(2k+1)^2 - 2k^2(k+1)^2 = k^2(2k^2 - 1). \end{aligned}$$

Since $k = 2^{(m-1)/2}$, it follows that $1^3 + 3^3 + \dots + [2^{(m+1)/2} - 1]^3 = 2^{m-1}(2^m - 1) = n$.

The following Corollary 1, follows from Theorem 3.

COROLLARY 1. If n is an even perfect number $2^{p-1}(2^p - 1)$, then

$$n = 1^3 + 3^3 + \dots + [2^{(p+1)/2} - 1]^3.$$

EXAMPLE. $496 = 1^3 + 3^3 + 5^3 + 7^3$; $p = 5$.

The proof of the following Theorem 4 can also be found in many elementary number theory books; see, for example [1: p. 63].

THEOREM 4. If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$,

$$\text{then } \phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \dots (1 - \frac{1}{p_k}), \text{ where}$$

p_1, p_2, \dots, p_k are distinct primes and $\alpha_1, \alpha_2, \dots, \alpha_k$ are positive integers.

As a consequence of Theorem 4, one can easily obtain Theorem 5, Corollary 2, and Corollary 3

THEOREM 5. $n = 2^{p-1}(2^p - 1)$ is an even perfect number if and only if

$$\phi(n) = 2^{p-1}(2^{p-1} - 1), \text{ where } 2^{p-1} \text{ is prime.}$$

COROLLARY 2. If n is an even perfect number, then $\phi(n) = n - 4^{p-1}$.

EXAMPLE. $\phi(8128) = \phi(2^6) \phi(127) = 4032 = 8128 - 4^6$.

COROLLARY 3. If n is an even perfect number, then $\phi(n) = \frac{n}{2} - 2^{p-2}$.

THEOREM 6. If n_1, n_2, \dots, n_k are k -distinct even perfect numbers,

$$\text{then } \phi(n_1 n_2 \dots n_k) = 2^{k-1} \phi(n_1) \phi(n_2) \dots \phi(n_k).$$

PROOF. $\phi(n_1 n_2 \dots n_k)$

$$= \phi[2^{p_1-1} (2^{p_1} - 1) 2^{p_2-1} (2^{p_2} - 1) \dots 2^{p_k-1} (2^{p_k} - 1)]$$

$$= \phi[2^{p_1+p_2+\dots+p_k-k} (2^{p_1} - 1) (2^{p_2} - 1) \dots (2^{p_k} - 1)]$$

$$= \phi(2^{p_1+p_2+\dots+p_k-k}) \phi(2^{p_1} - 1) \phi(2^{p_2} - 1) \dots \phi(2^{p_k} - 1)$$

$$\begin{aligned}
 &= 2^{p_1+p_2+\dots+p_k-k-1} \cdot (2^{p_1}-2) \cdot (2^{p_2}-2) \cdots (2^{p_k}-2) \\
 &= 2^{k-1} \cdot 2^{p_1-1} \cdot (2^{p_1-1}-1) \cdot 2^{p_2-1} \cdot (2^{p_2-1}-1) \cdots 2^{p_k-1} \cdot (2^{p_k-1}-1) \\
 &= 2^{k-1} \cdot \phi(n_1) \cdot \phi(n_2) \cdots \phi(n_k).
 \end{aligned}$$

The following Theorem 7 is proved in many books on elementary number theory; see, for example, [1: p. 96].

THEOREM 7. If $n = \prod_{i=1}^k p_i^{\alpha_i}$, then $d(n) = \prod_{i=1}^k (1 + \alpha_i)$, where p_i , $i=1, \dots, k$ are distinct primes and α_i , $i=1, \dots, k$ are positive integers, and $d(n)$ is the number of divisors function.

THEOREM 8. If $n = \prod_{i=1}^k p_i^{\alpha_i}$, and $d(n)$ is an even perfect number $2^{p-1}(2^p - 1)$, then

- i) $p \geq k$.
- ii) $\alpha_j = 2^{\mu_j} (2^p - 1) - 1$ for exactly one j such that $1 < j \leq k$ and $\mu_j \geq 0$.
- iii) $\alpha_i = 2^{\mu_i} - 1$, where $\mu_i > 0$, $1 \leq i \leq k$, $i \neq j$.
- iv) $\sum_{i=1}^k \mu_i = p - 1$.

PROOF. From Theorem 5, one obtains $d(n) = \prod_{i=1}^k (1 + \alpha_i) = 2^{p-1} (2^p - 1)$, which implies that $(2^p - 1)$ divides exactly one of the factors $(1 + \alpha_i)$, $1 \leq i \leq k$, say $(1 + \alpha_j)$. Thus $(1 + \alpha_j) = (2^p - 1) \cdot \lambda$ for some λ and exactly one j such that $1 \leq j \leq k$, and $(2^p - 1) \cdot \lambda = \prod_{\substack{i=1 \\ i \neq j}}^k (1 + \alpha_i) = 2^{p-1} (2^p - 1)$, that is,

$$\lambda \cdot \prod_{\substack{i=1 \\ i \neq j}}^k (1 + \alpha_i) = 2^{p-1}, \text{ which implies that } 1 + \alpha_i = 2^{\mu_i}, \quad 1 \leq i \leq k,$$

$$1 \neq j, \mu_i > 0; \quad \lambda = 2^{\mu_j}, \mu_j \geq 0 \quad \text{and} \quad \sum_{i=1}^k \mu_i = p-1, \text{ which is (iv).}$$

Observe that $\sum_{i=1}^k \mu_i \geq k-1$ since $\mu_i > 0$ for $i \neq j$ and $\mu_j \geq 0$. Thus, $p-1 \geq k-1$ or $p \geq k$, which is (i). Now, $(1 + \alpha_j) = (2^p - 1) \cdot \lambda = (2^p - 1) \cdot 2^{\mu_j}$ for exactly one j , such that $1 \leq j \leq k$ and $\mu_j \geq 0$ implies that $\alpha_j = 2^{\mu_j} \cdot (2^p - 1) - 1$ for exactly one j such that $1 \leq j \leq k$ and $\mu_j \geq 0$, which proves (ii).

Finally, $1 + \alpha_i = 2^{\frac{\mu_i}{2}}$, $1 \leq i \leq k$, $i \neq j$, $\mu_i > 0$ implies that $\alpha_i = 2^{\frac{\mu_i}{2}} - 1$, $1 \leq i \leq k$, $i \neq j$, $\mu_i > 0$, which proves (iii).

ACKNOWLEDGEMENT. The author wishes to thank the referee for his many helpful suggestions.

REFERENCES

1. SHOCKLEY, J.E., Introduction to Number Theory, Holt, Rinehart and Winston, New York, N.Y.: 1967.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk