Internat. J. Math. and Math. Sci. 339
Vol. 10 No. 2 (1987) 339-344

ITERATIVE METHODS FOR NONLINEAR QUASI
COMPLEMENTARITY PROBLEMS

MUHAMMAD ASLAM NOOR

Mathematics Department,College of Science
King Saud University,Riyadh 11451,Saudi Arabia.

(Received April 13, 1985 and in revised form July 1, 1986)

ABSTRACT. In this paper, we consider and study an iterative algorithm
for finding the approximate solution of the nonlinear quasi complementa-

rity problem of finding u€K(u), such that
Tu€eK* (u) and (u-m(u),Tu)=0

where m is a point-to-point mapping, T is a (nonlinear) continuous mapping
from a real Hilbert space H into itself and K*(u) is the polar cone of the
convex cone K(u) in H. We also discuss the convergence criteria and se-

veral special cases, which can be obtained from our main results.

KEY WORDS AND PHRASES. Complementarity problems, Variational inequali-

ties, Iterative methods, Convergence criteria.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 90C33, 49D20, 65K10.

1. INTRODUCTION.

The relationship between variational inequalities and complementarity
is well known. Variational inequalities have been extended and generalized
in various directions to study a wide class of difficulty problems arising
in different branches of mathematical and engineering sciences. Bensous-
san and Lions [1] introduced a general class of variational inequalities
known as quasi variational inequality, which has many applications in
fluid dynamics, imulse control and genral theory of equilibrium. In a
quasi variational inequality formulation, the convex set also depends on
the solution. Related to the variational inequality problem, there is
also a complementarity problem, which has many applications in operations
research, economics equilibrium and management sciences. In fact, it is
known that if the underlying set in both these problems is a convex cone,
then complementarity problem and variational inequality problem are equi-
valent. This equivalent has been used quite effectively in suggesting
unified and general algorithms for solving complementarity problems, see
Ahn [2] and Noor [3,4,5]..

Motivated and inpired by the research activities in these fields, we

introduce a new class of complementarity problems, which is the natural
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generalization of linear and nonlinear complementarity problems studied
extensively in recent years. After introducing the problem, we show

that its solution can be obtained from an iterative scheme. We also
discuss the convergence criteria for the approximate solution. Several
special cases, which can be obtained from our main results, are disucssed.
Our results are an extension and improvements of the previously known
results.

2. PRELIMINARIES AND BASIC RESULTS.

Let H be a real Hilbert space with its dual H', whose inner product
and norm are denoted by (.,.) and ”.|| respectively. We identify the
Hilbert space H with its dual space H'. We define by < partil ordering
on H, which is consistant with the topological vector structure of H that
is the cone of all non-negative elements {ven : vio} is a closed convex
cone. Let K be a closed convex set in H. If T:K-*H is a continuous map-

ping , then we consider the problem of finding u€K such that
(Tu,v-u)>0, for all vek. (1.1)

Inequality of type (1.1) is known as variational inequality. If the
convex set K also depends upon the solution, then variational inequality
(1.1) is called quasi variational inequality. To be more specific, the

quasi variational inequality problem is to find u€K(u) such that
(Tu,v-u)io, for all veEK(u). (1.2)
In many important applications, K(u) has the following form
K(u) = m(u) + K, (1.3)

where m is a point-to-point mapping. In this case K*(u):(m(u)+K)* =
m(u)f\K*. For applications of quasi variational inequalities, see
[6,7,8,9].

Related to quasi variational inequalities, we now introduce a new
class of complementarity problems, which will be called quasi complement-

arity problem of finding u such that
u—m(u)ZO, Tu>0, (u-m(u) ,Tu) =0 (1.4)

If T is a nonlinear transformation, then problem (1.4) is called the non-
linear quasi complementarity problem (NQCP). If T is an affine transfor-
mation of the form u > Mu+g, where M is a nxn matrix, q is a n-vector, then

problem (1.4) is equivalent to finding u such that
u-m(u)>0, Mu+g>0, (u-m(u) ,Mu+q)=0, (1.5)

which is called linear quasi complementarity problem. Problem of type
(1.5) was introduced and studied by Dolcetta [10] , Mosco [7] and Pang
[11,12].

In particular, if the mapping m is zero, then problems (1.4) and

(1.5) are equivalent to the following complementarity problems;
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u>0, Tu>0, (u,Tu) = 0 (1.6)

and
u>0, Mu+g>0, (u,Mu+qgq) = O, (1.7)

which have been extensively studied by Cottle [13,14], Karamardian [15],
Mangasarian [16] and Ahn [17] in recent years.

Let K* = {ueH, (u,v)io for all veK} , be the polar cone of the con-
vex cone K in H. If the convex cone also depends upon the solution it-
self, then we introduce the generalized quasi complementarity problem of

finding uekK(u) such that
*
TueK (u) and (u-m(u),Tu)=0, (1.8)

It is clear that the nonlinear quasi complementarity problem (1.4) is a
special case of the generalized nonlinear quasi complementarity problme
(1.8). Furthermore, if the point-to-point mapping m is zero,then problem

(1.8) is equivalent to finding ueK such that
*
Tuek and (u,Tu) = O,

which is known as the generalized nonlinear complementarity problem con-
sidered and studied by Karamardian [15] , cottle [14] , Noor [3] and
many others.
3. MAIN RESULTS.

We need the following results, the first is a generalization of a
result of Karamardian [15] and pang [11].
LEMMA 3.1. If K is the positive cone in H, then ueK(u), defined by (1.3),
is a solution of (1.8) if and only if u satisfies the quasi variational
inequality (1.2).
PROOF. The proof is similar to that of lemma 3.1 in [18,11].
THEOREM 3.1 [19,20]. For K(u) given by (1.3), ueK(u) is a solution of
quasi variational inequality (1.2) if and only if u satisfies the follow-

ing relation
u=m(u)+PK[u-p(Tu)-m(u)] (3.1)

for some p>0, where m is an arbitrary point-to-point mapping and PK is
the projection of H into K, the positive cone in H. For the description
of P+ see (8].

From lemma 3.1 and theorem 3.1 , we conclude that the solution to
problem (1.8) may be obtained by computing the fixed point of the function
defined by (3.1). 1In fact, theorem 3.1 enables us to find the approximate

solution u, by the following iterative scheme:

I m(un)+PK[un-pT(un)-m(un)], n=0,1,2,... (3.2)

We also need the following concepts.
DEFINITION 3.1. A mapping T:H»>H is said to be
i. Strongly Monotone, if there exists a constant 0>0 such that

<Tu-Tv, u-v>zal|u-v” 2, for all u,veH.
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ii. Lipschita Continuous, if there exists a constant B>0 such that
| ru-1v|| <B|| u-v]| , for all u,VEH.

In particular, it follows that a<B.

In the next theorem, we study the conditions under which the approximate
solution obtained from (3.2) converges to the exact solution u of quasi
complementarity problem (QCP, 1.8).

THEOREM 3.2. Let the mapping T be strongly monotone and Lipschitz con-
tinuous. If the arbitrary mapping m is Lipschitz continuous,un and u are

solutions satisfying (3.1) and (1.8), then u ~converges to u strongly in

/.2 2 2 —
|p - E;_2|< a—-42_2_(Y—‘Y_l , azzB 'Y_YZ and ‘Y<1/2,

where y is the Lipschitz constant of m.

H, for

PROOF. The method of proof is similar to the one given in [5] . From
lemma 3.1 and theorem 3.1 , we observe that the solution u of (1.8) can
be characterized by the relation (3.1). Hence from (3.1) and (3.2), we
hqve

” u +1-u|li||m(un)-m(u)+PK[un-p(Tun)-m(un)]-PK[u-p(Tu)-m(u)j|

n
i” m(un)-m(u)||+||un-u-D(Tun-Tu)-m(un)+m(u)||,
since PK is non-expansive, see [21,6].
< 2vllu -ull +1l w -u-p(Tu_-Tu) ||
Now by the strongly monotonicity and Lipschitz continuity of T, we obtain
llun—u-p(Tun-Tu)ll2i(l-2pa+8202)l|un—u ”2.
Thus using the above inequality, we have

la,,,-ull <0/01-20048%0%) 2771l u_-ull

ie ” un“u“ ’

where /
/ e . a2-482(Y-Y2)

8 =[/(1-200+8%p%) + 2v]< 1 for|p- 2| >
B B

Y<% and a > 28/y-y?

Since 6<1, so the fixed point problem (3.1) has a unigue solution u
and consequently the Picard iterate un+1 converges to u; see [22] , which
is the required result.

It is clear that the use of algorithms as constructive methods for
proving the existence of solution brings theory and computation closer
together. Theorem 3.2 enables us to find the approximate solution of (1.8)
by the following iterative scheme:

i. Given u0€H.

ii.w ., = m(un)+PK[un-p(Tun)-m(un)], n=0,1,2,3,....



ITERATIVE METHODS FOR NONLINEAR QUASI COMPLEMENTARITY PROBLEMS 343
where PK is the projection of H into K, m is a point-to-point mapping and

0>0 is required to satisfy the following conditions:

/2 2 2 —
-4 - 1 2
lo - %'l< —2“_§“£l—l—l',Y <> and a>26/%-y .
2 2 2 —
B B
REMARK 3.1. If the point-to-point mapping is zero, then it implies that
the Lipschitz constant Y is zero. Thus our algorithm is exactly the same
as considered by Fang [23] and Gana [24] . Furthermore, theorem 3.1 re-

duces to a result of Noor and Noor [21,25] for the corresponding variat-
ional inequalities. When T is of the form Tu=Mu+q, one can easily prove
that T is strongly monotone if and only if M is positive definite, see
[15] for proof. Obviously T is also Lipschitz continuous. For the linear
quasi complementarity problem, see [18] where one can find a general algo-
rithm for finding the approximate solution along with the necessary con-
vergence criteria.
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