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ABSTRACT. Explicit recurrences are derived for the matching polynomials of the
basic types of hexagonal cacti, the linear cactus and the star cactus and also for
an associated graph, called the hexagonal crown. Tables of the polynomials are
given for each type of graph. Explicit formulae are then obtained for the number of
defect-d matchings in the graphs, for various values of d. In particular, formulae
are derived for the number of perfect matchings in all three types of graphs.

Finally, results are given for the total number of matchings in the graphs.
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1. INTRODUCTION.

The graphs considered here will be finite and without loops or multiple edges.
Let G be such a graph. A matching in G 1is a spanning subgraph of G, whose
components are nodes and edges only. If the matching contains d isolated nodes,
then we call it a defect-d matching as did Berge ([1] and [2]) and Little [3 ]. Some
general results on defect-d matchings have been given in [1], [2] and [3 ]. 1In the
case where d=0, i.e. when the matchings has edges only, we call it a perfect or
complete matching.

Let us associate with each node and edge of G the weights L and v,
respectively, and with each matching a in G, the weight

W(a) = wlrwzs ,

where r and s are the number of nodes and edges respectively in a . Then the

matching polynomial of a graph G with p nodes is

n(G) = IW(a) = Za w P 2Ky K (1.1)

k'l 2°
where the summation is taken over all the matchings in G, and a, is the number of
matchings with k edges. It is clear that a, will be the number of defect-(p-2k)
matchings in G.
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The general matching polynomial was introduced in Farrell [4]. Since then, it
has been shown (See Gutman [5]) that several other well known polynomials in
Theortical Physics are special matching polynomials. i.e. they can be obtained from
m(G) by giving special values to LA and Wy Gutman ([6] and [7]) has also
established the matching polynomial as a useful device in Mathematical Chemistry.

It should be pointed out however that Gutman's "matching polynomial" (previously
called the acyclic polynomial) is a special form of m(G). This was established in
Farrell [8].

The cactus is a connected graph in which no edge lies in more than one cycle.
These graphs were introduced by Uhlenbeck and Ford [9] and Riddell [10], following
a paper by Husimi [11]. Hence, they were originally called "Husimi trees". Some of
these graphs were enumerated by Harary and Norman [12] and Harary and Uhlenbeck [13}
Some work on the enumeration of triangular cacti (every block is a triangle) can be
found in Harary and Palmer ([14], pp. 70-73).

We define a hexagonal cactus to be a cactus in which every block is a hexagon.
In addition to being interesting mathematical objects, some types of hexagonal cacti
represent common chemical structures. Let H be a hexagon. We will call two nodes
of H opposite, if they are separated by a path of length 3. Therefore H contains
three pairs of opposite nodes. The hexagons which constitute a hexagonal cactus will
be called cells of the cactus.

In this article, we will derive explicit recurrences for the matching polynomials
of two types of hexagonal cacti, which represent the fundamental components of many
types of hexagonal cacti. We will also derive similar results for an interesting
associated graph, which we call a hexagonal crown. We will give tables of polynomials
for all three types of graphs considered here. Following this, we will deduce
explicit formulae for the number of defect-d matchings in these graphs, for various
values of d. In particular, we will give formulae for the number of perfect matchings
in the graphs. Finally, we give explicit formulae for the total number of matchings
in each type of graph considered.

In the material which follows, we will sometimes write G for m(G), for
brevity of notation. Also, we will denote the generating function for m(G) by
G(t), where t 1is the indicator function. Let ajs yseees 3y be nodes of a graph
G. We will denote by G—{al,az,...,ak} the graph obtained from G by removing nodes
a)s8,5...,8,. Finally, "cactus" would mean "hexagonal cactus" unless otherwise
qualified.

2. THE BASIC THEOREMS.

The first two results given in this section have been proved in the introductory
paper [4]. We repeat them here for completeness. The reader can consult [4] for
detailed proofs, if necessary.

Let G be a graph and e an edge of G. By partitioning the matchings in G
according to whether or not they contain the edge e, we obtain the following result.

THEOREM 1 (The Fundamental Theorem). Let G be a graph containing an edge ab.
Let G” be the graph obtained from G by deleting ab and G””, the graph obtained

from G by removing nodes a and b. Then

m(G) = m(G”) + wzm(G”).
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Given a graph G, we could apply Theorem 1 recursively to it, until we obtain
graphs Hi for which m(Hi) are known. This algorithm is called the fundamental
algornithm for matching polynomials. We will refer to it simply as the reduction
process. When applying Theorem 1, we will refer to the graph G~ as the neduced
gnaph and to the graph G”° as the {ncorporated graph.

The following theorem can be easily proved.

THEOREM 2 (The Component Theorem). Let G be a graph consisting of components

H, (i =1,2,...,r). Then

=R

m(G) = m(Hi) .

i=1
3. SOME ASSOCIATED GENERAL RESULTS.
Let G be a graph with p nodes and q edges. Consider the expression for

m(G) given in Equation (l1.1). a, 1is the number of matchings with no edges. There

0
is only one such matching, viz. the empty graph with p nodes. Therefore ag = 1.

a is the number of matchings with 1 edge. Therefore a; =4q, the number of edges

ii G. Consider the spanning subgraphs of G with two edges. These will consist
of the matchings with two edges and the spanning subgraphs with a path of length 2
and p-3 isolated nodes. Let € be the number of paths of length 2 in G. Then
our discussion leads to following theorem.

THEOREM 3. Let G be a graph with q edges. Then in m(G),

(i) ay = 1
(11) a, =g
and (iii) a, = (g) - €,

where € 1is the number of paths of length 2 in G.

We define a chain to be a tree with nodes of valency 1 and 2 only. The chain
with n nodes will be denoted by Pn’ The £ength of Pn is the number of edges in
Pn i.e. n-1.

COROLLARY 1.1. Let Pn be a chain with n nodes. Then

with P, = 1.

L LN R SUNIPE 0

n

PROOF. Apply the reduction process to the graph Pn be deleting a terminal

edge. The result then follows from Theorem 1.

Many of our results will be given in terms of matching polynomials of chains. We

therefore give a table of values of m(Pn), for n=1, up to n = 8.
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TABLE 1

Matching Polynomials of Chains

n m(Pn)
1 LA

2 w%+w2

3 wl+2wlw2

4 w +3w1w2+w2

5 withud,+3w wh

6 6+Sw1w2+6w§w§+w3

7 7+6w1w2+10w1w2+4w1w2

8 wiHTudw, +15w wi+10wT Wil

By attaching a chain Pn to a graph G (both nonempty) we will mean that an end
node of Prl is identified with a node of G, so that Pn becomes a path in the
resulting graph.

LEMMA 1. Let G consist of a graph G1 with the chain Pn attached to node
x. Then

m(6) = p,_m(G)) + wZPn_zm(G-{x}).

PROOF. Apply the reduction process to G by deleting the edge of Pn which
is incident to node x. The reduced graph will consist of two components Pn—l and

G The incorporated grpah will contain two components, Pn_2 and Gl—{x}. The

1
result follows from Theorems 1 and 2.

O

4. MATCHING POLYNOMIALS OF LINEAR HEXAGONAL CACTI.

We define the Linear cactus Ln to be the cactus consisting of n cells linked
together in such a way that n-2 of them have exactly one pair of opposite nodes of
valency 4 and exactly two (feminal) cells, each having a node of valency 2
opposite a node of valency 4. These nodes of valency 2 will be called the
terminal nodes of Ln (see Figure 1 (i)). Clearly Ln contains 5n+l nodes and 6n
edges. The graph obtained from Ln’ by attaching two chains of length 2 to one of
its terminal nodes, will be denoted by An (see Figure 1 (ii)). An occurs as an

intermediate graph when the reduction process is applied to Ln'

r S
Y u
(1) . (ii)
Figure 1
2
LEMMA 2. A = PoL + 2ww,P.A . .

PROOF. Apply the reduction process to the graph An by deleting edge st (see
Figure 1 (ii)). The reduced graph G~ will contain two components P2 and the
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graph An with P3 attached to it. The incorporated graph will contain three

components, an isolated node, P and An- Therefore

2 1°

A =G +wwPA
n n-

172" 2"n-1 °

Apply the reduction process to G by deleting edge tu. This yields

.o p2
6" =Pyl +wjw P A .

The result follows by substituting for G” in the equation above.

0

Let us apply the reduction process to the graph Ln by deleting edge cd (see

Figure 1 (i)). The reduced graph G~ will consist of Ln—l with P6 attached to

it. The incorporated graph will contain two components, P, and An-2' Therefore

4

L =G +wpPA . (4.1)

Using Lemma 1, we get

6" =Pl | *w,PA .

Hence from Equation (4.1),

Ln = PSLn-l + 2w2P4An_2 . (4.2)
From Lemma 2, we get
2
S A, =PL o+ 2wwPA L. (4.3)

_ 2
= ZWZPAAn—z = 2W2P4(P Ln-2 + 2w,w,P An—

17272 3) :

By substituting the expression for 2w, P An— obtained from Equation (4.2) we obtain

274
the following explicit recurrence for Ln.

2

L = (P5+2w1w2P2)Ln_1 + (2w

n 2w, w,P.P )Ln-2

2
2P2P4729 1 ¥5P )k

Hence by using the expressions for P2 and P5 obtained from Table 1 and then

simplifying, we obtain the following theorem.

5,,3,.22 43,24 5
THEOREM 4. Ln (w1+6w1+5w1w2)Ln_1 + (2w1w2+4w1w2+2w2)Ln_2 (n>1), with L0 vy
3
2

_ 6, 4 2 2
(by convention) and Ll = w1+6w1w2+9w1w2+2w .
5,..3 2 43,22 .5
Let us put a w1+6w1w2+5w1w2 and B 2w1w2+4w1w2+2w2. Then the recurrence

given in Theorem 4 becomes

L =olL + B8 L

o n—1 (4.4)

n-2"

By multiplying both sides of this equation by tn, and summing from n = 2 to ®, we
obtain the following generating function L(t) for m(Ln).

L0 + (L1 - aLO)t
COROLLARY 4.1. L(t) = ———————— , where L and L are as given in

1 - at - B8t2 0 1

Theorem 4.
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The following table gives values of m(Ln) for n =1, up to n = 6.
TABLE 2
Matching Polynomials of Linear Hexagonal Cacti

n m(Ln)

6 Ly 2.2 3
1 w1+ 6wlw2 + 9wlw2 + 2w2
11 9 72 5.3 3.4 5
+
2 Wy + 12w1w2 50w1w2 + 88w1w2 + lelw2 + 12w1w2
16 1y 12 2 10 3 8 U
+ + +
3 wl 18w1 w2 127wl W, + 1450w1 Wy 855w1w2
6 5 4 6 2.1 8
+
+ 862wlw2 + u29wlw2 + 86wlw2 uw2
21 19 17 2 15 3 13 4
y Wy + 2L&w1 w2 + 2u0w1 v, + 130Uwl W, + '4218w1 Wy
11 5 9 6 7.7 58
+ 8392w1 v, + 10278w1w2 + 75ul+w1w2 + 3109w1w2
3.9 10
+ 62!4w1w2 + lmwlw2
26 24 22 2 20 3 18 4
+ +
5 Wy + 3Ow1 Wy 389wl W, + 2866wl W, 13282w1 W,
165 14 6 12 7 10 8
+ H05u8w1 W, + 83162w1 w, + 11H92uw1 W, + 105797w1 Wy
8 9 610 4 11 2 .12 13
+ 6301uw1w2 + 229'45w1w2 + 459uw1w2 + l408w1w2 + 8w2
31 29 27 2 25 3 23 4
+ +
6 Wy + 36w1 W, 571&w1 W, + 5352wl Wy 32'475w1 Wo
215 19 6 17 7 15 8
+ + :
+ l351'48w1 W, 3981476w1 Wy + 830768w1 v, 12U7u15w1 v,
13.9 11 10 9 11 7 12
+ 133%972wl v, + 1002990w1 W, + 5114280w1w2 + 171469w1w2
5 13 3..1u 15
+
+ 3'4228w1w2 3512w1w2 + 128wlw2
We will obtain some results for the graph An' These will be useful in the
material which follows.
From Lemma 1, we have
2
POL = A - 2ww,PA . (4.5)
Multiplying Equation (4.2) by P2 yields

2°

2. .2
PL = Py(PcL | +2w,P A ).
2
By substituting for Pan and PgLn-l’ using Equation (4.5), we get the following
recurrence for Ah'
An = (2w1

2
w2P2+P5)An_1 + (2w2P2P4-2w1w2P2P5)An_2

Hence by comparing with Equation (4.4) and Corollary 4.1, we obtain the following

lemma.
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LEMMA 5.
1) A =cA _ +BA _, (n2),
- 10 8 6 2 4 3 2 4 5
with A1 LA +10w1w2+32w1w2+40w1w2+19w1w2+2w2 .
1

(11) A(t) = u(l-at-Bt2)™" ;

where u =a + (Al-uz)t .

(N.B. We take A0 to be a).

5. MATCHING POLYNOMIALS OF HEXAGONAL STAR CACTI.
We define the Atar cactus S” to be the cactus consisting of n cells attached

to a single node. It is clear that Sn contains 5n+l nodes and 6n edges. S4

is shown below in Figure 2.

Figure 2

Let us apply the reduction process to Sn by deleting the edge ab (see Figure
2). The reduced graph G” will consist of Sn_1 with P5 attached to it. The
incorporated graph will contain n components, P4 and n-1 copies of PS' There-
fore

. n-1
Sn =G" + w2P4P5 . (5.1)

By applying Lemma 1 to the graph G~ , we get

- n-1
G PSSn—l + sz[‘P5 .

Hence by substituting for G~ in Equation (5.1), we get the recurrence for m(Sn),
given in the following lemma.

LEMMA 6. S_ =P + 2w.p, P

1
550-1 2%4Fs

(n>1),

with S1 = L1 .
We can use Lemma 6 in order to obtain an explicit formula for m(Sn). However,
we will obtain the result by using a simple combinatorial argument.

n n-1
THEOREM 5. Sn wlP5 + 2nw2P4P5 (n>0).

PROOF. Partition the matchings in the graph Sn’ into two classes (i) those in
which node x (see Figure 3) is isolated and (ii) those in which it is not. The
matchings in (i) are matchings in the graph Sn—{x}. Therefore the contribution of
these matchings to m(Sn) is w1P5n' If node x 1is not isolated, then it is joined
to an edge. There are 2n edges incident to node x. Hence an edge can be chosen
in 2n ways. Once an edge is chosen, the 2n edges adjacent to it cannot be used

in any matching. Therefore the contribution of the matchings in class (ii) is
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Hence the result follows.

The following table gives values of m(Sn) for n=1l, up to n=7.

TABLE 3

Matching Polynomials of Hexagonal Star Cacti

m(Sn)

N

3

6 + 2w2

y 2.2
Wy + Gwlw + 9w1w2
11 7 5.3 3.4 5
Wy + 12w W, + 50w1w + 88w1w2 + lelw2 + 12w1w2
10 3

8 u
18wl w2 + 759w1w2

16 M. + 123w

Wy + 18w 2
6 5 4 6
+ 726w1w2 + 333wlw2

21 + 24wlgw + 228w17w2 + 1152w wg + 3438wlTwW

1 172 1 72 172

11. .5 9 6 7.7 5.8 3 9
+ 6288wl w2 + 7028w1w2 + '4608w1w2 + 1593w1w2 + 216w1w2
2

26 24 22 2 20 3 18 u
+ +
wl 3Ow1 W 365w1 w2 + 2450wl w2 + 10210w1 W,

2
6.5 14 6 12 7 10 8
2

w

PE RO N

2
2
12 2
172
+ 54

13 4

w 15
1

+ 27884wl w, + 51010wl W, + 62500w1 Wy + 50205w1 w2
9 610 4 11
2 + 6993wlw2 + 810w1w2

31 29 27 2 25 3 23 4
wl + 36wl w2 + 53le w2 + HH72w1 Wo + 23955w1 w2

215 19 6 17..7 15 8
+ 8732'4w1 w2 + 22368'+wl v, + u08336w1 w2 + 5315u3w1 w

2
13 .9 11 10 9 11 712
+ H87260w1 v, + 305'—678w1 Wy + 123768w1w2 + 28917w1k2

36 34 32 2 30 3 28 4
1 + u2w1 w2 + 735w1 w2 + 7378w1 w2 + u8321w1 w2
+ 220626w§6w; + 728903w§uwg + 1778970w§2w; + 32383u7wiowg

18 9 16_10 14
+ H399934w1 v, + 4426821w1 Wy + 3238326wl

12 12 10 13 8 1u . & 15
+ 166035wl W, + 568134w1 W, + 11”“53w1w2 + 10206w1w2

[y

+ 25110w.w

w

w11
2

6. MATCHING POLYNOMIALS OF HEXAGONAL CROWNS.
We define the hexagonal crown Cn’ to be the graph obtained by identifying the

two terminal nodes of Ln' We take C to be the graph shown below in Figure 3

1

(ii). Clearly Cn contains 5n nodes and 6n edges. C5 is shown below in

Figure 3(i).

(ii)

Figure 3
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Let us apply the reduction process to Cn by deleting edge ab (see Figure 3).

Let the reduced graph be GI and the incorporated graph G”“. Apply the reduction

process to Gi by deleting edge af.; the reduced graph will be An_1 and the

incorporated graph will be G”“. Therefore we get

Cp= A, * 2uG"" . (6.1)

Let us define the graph Bn to be the graph obtained from Ln by attaching two
chains of length 2 to each of its terminal nodes. Then G”” 1is the graph obtained

from B by removing one of its nodes of valency 1. Let x be the associated

n-2
terminal node. Apply the reduction process to G°” by deleting the edge incident

with x and containing a node of valency 1. The reduced graph will consist of a

nontrivial component Gé and an isolated node. The incorporated graph will contain

two components, P2 and Bn-3' Therefore we get

G = w1G2 + szan_3 . (6.2)

Apply the reduction process to Gé by deleting the edge of the chain attached to

node x, which is incident to x. The reduced graph will contain two components,

An-Z and P2. The incorporated graph will contain two components, Bn—3 and an

isolated node. Therefore

Gl =P.A + w.w (6.3)

17 Bofpp ¥ VWl
Hence by substituting for G”” 1in Equation (6.1) using Equations (6.2) and (6.3), we

get
C = A, +2wwPA o+ 2w2(wfw2+wzpz)sn_3 . (6.4)
LEMMA 7. (4i) Bn = PgAn + 2w1w2P2Bn_1 (n>1)
and therefore
(1) B() = P2ACE) [1-2wwP,e] ™),

2
when we take BO = Pza .

PROOF. Apply the reduction process to Bn by deleting one of the edges of an
attached chain, which is incident to a terminal node x of Ln' The reduced graph
will contain two components. P, and a non-trivial component G”. The incorporated

2
graph will contain three components Pl’ P2 and Bn-l' Therefore

Bn =P,G" + ww,P (6.5)

2 1¥2P280-1

By using Equation (6.3) with n replacing n-2, we get

G” = PZAn + WIWZBn-l .

Hence (1) follows by substituting for G” 1in (6.5). (ii) can be established using

0

standard techniques.
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The following lemma can be obtained by multiplying Equation (6.4) by ",

summing from n = 3 to =, then using (ii) of Lemma 7. The generating function

for m(Cn)

LEMMA 8.

where

gives correct coefficients of t? for n > 2.

c(t) = u(yé+e)
y(1-ac-8c2)
2
Y l—2w1w2P2t, § 1+2w1w2P2t and

2
€ = 2w2(w1w2+w2P2) .

The following theorem is immediate from Lemma 8.

THEOREM 6.

_,.5,0.3 2 8
Cn = (w1+8w1w2+7w1w2)cn_1 - (2w1w2+14w

with Cl’ c

w,+20w

6
1 W

NN

43 24 5

1 2+6w1w —2w2)Cn_2
4,6, . 4 22,3

- 4w1w2(w1+3w1w2+3w1w2+w2)Cn_3 (n>3),

and C3 as given below in Table 4.

The following table gives values of m(Cn) for n=1, up to n = 6.

1

TABLE U4

Matching Polynomials of Hexagonal Crowns

m(Cn)
5 3 2
w1+6w1w2+5w1w2
10 8 6 2 4 3 2 4 5
wl +12w1w2+u6w1w2+suwlw2+33w1w2+4w2
15 13 . 11 2 9 3 7 4 5.5
w1 +18w1 w2+123w1 w2+l+02wlw2+663w1w2+558w1w2
3.6 7
+221wlw2+30w1w2
20 18 16 2 14 3 12 4, 10 5
Wy +2uwl w2+236wl w2+l232wl w2+3718w1 W, 6688w1 w,
8 6 6.7 4 8 2.9 10
+
+7220w1w2 H560w1w2+1553w1w2+232w1w2+8w2
25 23 21 2 19 3 17 4 15 5
+
wi +30w1 w2 385w1 w2+2770wl w2+12330wl w2+351&76w1 Wy
13 6 11 7 9 8 7.9 5 10
+ +
67270w1 Wy 84500w1 w2+69585w1w2+36350w1w2+11225w1w2
311 12
+177Ow1w2 +100wlw2
30 28 26 2 24 3 224 205
w1 +36wl w2+570w1 w2+5232wl w2+30927w1 w2+123876w1 w2
18 6 16 7 14 8 129
3‘45232wl w2+678336wl w2+914361+7wl w2+92u988w1 Wo
10 10 8 11 6 12 4 13
+628626wl Wy +286656w1w2 +826u1w1w2 +13500w1w2
2 1y 15

+996w1w2 +16w2

c(t)
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7. DEFECT-d MATCHINGS IN LINEAR HEXAGONAL CACTI.

We will denote the number of defect-d matchings in a graph G by Nd(G).
Therefore the number of perfect matchings will be NO(G). The total number of
matchings in G will be denoted by NT(G)‘ It is clear that Nd(G) is the
coefficient of the term in wld in m(G), and that NO(G) is the coefficient of the
term in wlo. Also NT(G) is obtained from m(G) by putting W =W, = 1.

The following theorem is immediate from Theorem 4, by equating coefficients of
the terms in wld. Notice that m(G) contains a term in wld if and only if d
and p (the number of nodes in G) have the same parity, since the edges in a match-
ing are incident to an even number of nodes.

THEOREM 7. Ln(n>l) has a defect-d matching if and only if d and n have
opposite parities and 0 < d s 5n+l, if n is odd, or 1 s d £ 5n+l, if n 1is even.

In this case,

Ny = Ny gLy 6Ny (L DF5Ng_ (L PIHNG (L ) HANg o (L ) +2NG (L o) s

with the initial values of Nd(Ln) as given above in Table 2.

The following corollary of Theorem 3 gives explicit formulae for the first
three coefficients of m(Ln).

COROLLARY 3.1. 1In m(Ln),

£ N5n+1(Ln) =1
(ii) N5n-1(Ln) = 6n

2
and (diii) NSn-3(Ln) = 18n"-13n+4 .
PROOF. Since Ln has 5ntl nodes and 6n edges, (i) and (ii) follow
immediately from Theorem 3. Ln has n-1 nodes of valency 4 and the remaining

4n+2 have valency 2. Therefore

€ = (n-1) (g) + 4n+2 = 10n-4 .

SN @) = P - Qo6 .

The result follows after simplifications.

O

Theorem 7 is a useful result, because it can be used to obtain explicit formulae
for all the coefficients of m(Ln). We will illustrate this by finding formulae for
the fourth and fifth coefficients of m(Ln).

Put d = 5n-5 in Theorem 7. This yields

N )+5N

sn-5Tn) = Nop_ 10Ty p) =65, gLy I+5Ng (L))
(7.1

+ 2N5n_9(Ln_2)+4N (Ln_2)+2N

5n-7 sn-5Tn-2)

Notice that NSn—lO(Ln—l)’ NSn—S(Ln—l) and NSn-6(Ln-1) are the fourth, third and
second coefficients of m(Ln-Z) and that

Non-7no2) = Ngp 5Ly ) = 0.
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Therefore by using Corollary 3.1, we get

N (L) = 18(=D2-13(n-1)+4, Ng (L ) = 6(n-1)

and (1 ) =1.

Non-9(a2

By substituting these values in Equation (7.1), we obtain the following lemma
which give a recurrence for the fourth coefficient of m(Ln).

LEMMA.

2
No (L) = Ng | o(L |)+108n°-264n+182 (n>2),

with NO(LI) =2 .
By using standard techniques we establish the following theorem.
THEOREM 8.
3 2
NSn-S(Ln) = 2(18n7-39n"+34n-12) (n>0)

Put d = 5n-7 in Theorem 7. This yields

)+6N SN

Non7 () = Nop 1oLy )+ 10Ty n-8Lnp)

+ NG (L )HNG (L )+2N (7.2)

5n-9 Sn—7(Ln—2)

Using Theorem 8, we get

N 0o = 2 [18(-1)3-39(a-1) 34 (m-1)+12] .

using Corollary 3.1, we get

- 2 = Gl
NSn-B(Ln-l) = 18(n-1)"-13(n-1)+4, NSn-ll(Ln-Z) 6(n-2)

and NSn-9(Ln-2) =1,

It is clear that NSn-7(Ln-2) = 0. By substituting these values in Equation
(7.2) and then simplifying, we obtain the following lemma.
LEMMA 10.

3 2
Ng,_ ;L)) = Ng_ (L 1) + (261n7-1026n"+1759n-1081) (n>2),

with N3(L2) =61 .

By solving the above recurrence, we obtain the following theorem which gives an
explicit formula for the fifth coefficient of m(Ln).
THEOREM 9.

N, (L) =3 (108n°-468n74841n"~745n0+264) (1) .

The following theorem gives an explicit formula for the number of perfect match-
ings in Ln'
THEOREM 10. Ln has a perfect matching if and only if n 1s odd, and in this
case,
No(L) = (/2
PROOF. Suppose that n 1is odd. Then from Theorem 7, d = 0. Put d =0 in
Theorem 7. This yields
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Ng(L) = 2 Ny(L _,) » with Ny(L)) = 2.
_ 52
= 2°Ny (@ )
s 2(n-1)/2N0(L1) _ 2(n+1)/2

Conversely, suppose that Ln has a perfect matching. Then it must have an even

g

We will use Theorem 7 in order to derive explicit expressions for the number of

number of nodes. =2 5n+l 1is even. =>n 1is odd.

defect-d matchings in Ln’ for d =1 and d = 2.
LEMMA 11.

_ n/2
N (L) = 2N (L ) +5(27°7)

(n-even)

with NI(L 1

o)
PROOF. Put d =1 in Theorem 7. This yields

Nl(Ln) = SNO(Ln_l) + ZNI(Ln_l) .
The result then follows from Theorem 10. []

The following theorem gives an explicit formula for the number of defect-1
matchings in Ln (n-even).
THEOREM 11.
Nl(Ln) = (5n+2)
PROOF. From Lemma 11,
Nl(Ln) = 2N1(Ln_2) + 6n , where 6n = 5(2

2(n—2)/2 (n-even) .

n/2).

- 2
= N@L) =8 +28 o+ 2N (@ ) .

° n-4
= z 2
k=0

5.2“/2(553) +6.2M2

k/2 4+ o(@=2)/2

-k NI(LZ) (k-even)

The result follows after simplifications.

LEMMA 12 N,(L) = 2,(L__) + (25n-12""D/2 (nooaq),

with N2(L1) =9.
PROOF. Put d = 2 in Theorem 7. This yields

NZ(Ln) = 5N1(Ln) + NO(Ln—Z) + ZNZ(Ln-Z) (n-add)

sis-D+21207 /2 4 4@ D) Lon

using Theorems 10 and 11. The result follows after simplifications.
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By solving the recurrence given in Lemma 12, using standard techniques (e.g. see
Proof of Theorem 11), we obtain the following theorem, which gives an explicit
formula for the number of defect-2 matchings in Ln(n—odd).

THEOREM 12.

N, (L )= (25n2+36n+11)2 (27 /2

(n-odd) .

By putting W=, = 1 in Corollary 4.1, we obtain the following generating
function NTL(t) for NT(Ln)'

NTL(t) - __liEE__E .
1-12t-8t
Now et A + B , where a and b are the roots of the equation
2 t-a t-b
1-12t-8t
2, 3t 1
t + 3738 0.
. Ala -B/b
N L(t) = .
| 1 t/a l-t/b
By equating coefficients of tn, we get
n+l n+l

NT(Ln) = -A(1l/a)" "-B(1l/b) .

By finding A, B, a and b from the relation above, we obtain the following theorem
which gives an explicit formula for the total number of matchings in Ln.
THEOREM 13.

Np(L) = c(6-2/ID™! + Ze+2/TDH™  (0o0)
where c¢ = ZiéﬁII and ¢ 1is the surd conjugate of c.
8v11

8. DEFECT-d MATCHINGS IN STAR CACTI.

The following corollary of Theorem 3 gives simplified formulae for the first
three coefficients of m(Sn).

COROLLARY 3.2. In m(Sn),

o N5n+1(sn) =

(i1) N = 6n

Sn-l(sn)
and (iii) Njn_3(Sn) = n(l6n-7) .
PROOF. (i) and (ii) are immediate from the theorem. Sn has one node of

valency 2n and 5n nodes of valency 2. It follows that

€= (%?) + 50 = 2n’+4n .

2N .5 = &) - (P .

The desired result is obtained after simplificationms.

The following result is added for completeness. It can be easily established.
LEMMA 13. NO(Sn) =0, ¥n>0.

The following theorem gives an explicit formula for the total number of matchings
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in Sn'
THEOREM 14. N.(S ) = 2(4+50)8" L |

PROOF. Put W =W, S 1 in Theorem 5. This yields

_ N n-1
NT(Sn) =8 + 2n.5(8 ) .

This reduces to the desired result.

O

9. DEFECT-d MATCHINGS IN HEXAGONAL CROWNS.

The following theorem can be obtained from Theorem 6 by equating coefficients of

the terms in wld.

THEOREM 15. Cn(n>4) has a defect-d matching if and only if n and d have
the same parity and 0 £ d £ 5n if n is evenor 1 £d s 5n if n 1is odd. In

this case,

Na(Cy) = Ng_s(Cpp) + 8Ny 3(C_ ) + TNy (G )

Myg(Cpg) = 14Ny ((Cp) = 208, ,(Cpp)
" BNy (Cpp) + 2Ny (G, ) - 4Ny 5(Cp3)

- 12N, (€ _p) - 12N, 4(C__3) - 4N, | (C__p) (n>4),

with the initial values of Nd(Cn) as given in Table 4.
COROLLARY 3.3. In m (Cn)’

—

@) N (€)=

(11) Ny _,(C) = 6n

and (iii)

Ng _4(C)) = n(180-13) (n>1).

PROOF. (i) and (ii) follow immediately from the theorem. Cn has n nodes of

valency 4 and 4n nodes of valency 2. Therefore

€ = n(;) + 4n = 10n .

s - (6ny _
= N5n—4(cn) = ( 2) 10n .

The result therefore follows. []

We will use Theorem 15 and Corollary 3.3 in order to obtain explicit formulae
for the fourth and fifth coefficients of m(Cn).
Let us put d = 5n - 6 1in Theorem 15. This yields

Nsn-6(Cn) = Nsp-11(Cpy) + 8Nsp_g(Cp_p) + TN 5(Cp)

5n-7""n-1

- WG 14(Cpp) T AN 15(C o p) = 20Ng 10(Ch2)

) + 2N

- 6N 8y 5n-6Cn-2) = 4Nsp_13(C,3)

T I, 11 (Cpy) T 12, g (Cg) = ANg, 5 (Cpy) .1

It is clear that N (C

507 ) and NSn-Q(cn-l) are the second and third

n-1
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coefficients respectively of m(Cn—l)' N5n~10(cn-2)’ NSn—lZ(Cn—Z) and NSn—lh(C )

n-2
are the first, second and third coefficients respectively of m(Cn_z). Also
NSn-B(Cn—Z) = NSn—G(Cn-Z) = 0. It can be easily seen that

Non-13Ca-3) = Nsp_11(Cag) = Mg g(Cg) = Ngp (G 9) = 0 .
From Corollary 3.3, we have

N5q-7(Cpy) = 6(n-D)

2
Ng _o(C,_y) = 18(n-1)"-13(n-1)

Non-10Cn-2) =

Nsn-12(Cp-p) = 6(-2)

and = 18(n-2)2-13(n-2) .

N5n-14Ca-2)
By substituting these values into Equation (9.1), and then simplifying, we obtain the
following lemma.

LEMMA 13. (c,_) + 2(54n’-1320479)  (a>2)

N5n-6(Cn) = Nsp_11
with NQ(CZ) = 64.

The recurrence given in the above lemma can be solved by standard techniques.
The solution is given in the following theorem.

THEOREM 16. N, (C) = 2n(18n°-39n+22) (n>0).

A similar analysis can be done by putting d = 5n-8 in Theorem 15. This would
yield an explicit formula and a recurrence for the fifth coefficient of m(Cn). We
will omit the proofs, since they would be quite similar to those of Lemma 13 and
Theorem 16.

LEMMA 14. _)) + (216n°-1026n%+16150-809) (n>3),

N5n-8(Cn) = Nsp13¢h
with N7(C3) = 663.

The solution of the recurrence given in the above lemma, is given in the
following theorem.

n 3
THEOREM 17. NSn-S(Cn) = 5(108n

-468024697n-353) (n>1).

The following theorem gives an explicit formula for the number of perfect
matchings in Cn'

THEOREM 18. N (C_) = 2(n+2)/2

(n-even) .
PROOF. Put d = 0 in Theorem 15. This yields

NO(Cn) = ZNO(Cn—Z) (n-even)

2
=2 NO(Cn-h)

n-2
2 NO(CZ)'

Hence the result follows. []
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The following lemma is analogous to Lemma 11. It can be established by putting
d = 1 in Theorem 15 and then substituting for NO(Cn-l) and NO(cn-3) using
Theorem 18.

- (n+1)/2
LEMMA 15. N (C ) = 2N,(C__,) + 5.2

(n-odd and n>1), with Nl(cl) =5,

An explicit formula for the number of defect-1 matchings in Cn can now be obtained
by solving the above recurrence for Nl(cn)' A solution constructed along the lines
of the proof of Theorem 11, yields the following result.

THEOREM 19. N (C) = Gn)2®@ D2 saay .

Put d = 2 in Theorem 15. This yields
NZ(Cn) = 7N1<Cn-1) - 6N0(Cn_2) + 2N2(Cn_2) - ANI(Cn_3)

= 752D/ L 602 oy ) - 45322

On simplification, we obtain the following lemma.

LEMMA 16. N,(C) = 2N,(C__) + (250-172""2/% (n-even), with N,(cp) = O

By solving the above recurrence using standard techniques, we obtain the
following theorem which gives an explicit formula for the number of defect-2
matchings in Cn(n—even).

THEOREM 20. N,(C ) = n(25n+16)2 (0672

(n-even).

The following lemma gives a recurrence for the total number of matchings in Cn'
It can be obtained from Theorem 6 by putting W, =W, = 1.
LEMMA 17. NT(Cn) = 16NT(Cn—1) - AONT(Cn_Z) - 32NT(Cn-3) (n>4), with

NT(CI) = 18, NT(CZ) = 160, NT(C3) = 2016 and NT(CA) = 25472.
By multiplying the above recurrence by tn, summing from n = 0 to ®, and then

simplifying, using the boundary conditions, we obtain (with NT(C0)=0),

18t—128c2+176t3+192t4

1-16t+40t2+32t3

NTC(t)

2(1-6t)

1-12t-8t2

6t-2 +

Hence we obtain the following lemma, which gives a generating function NTC(t) for
m(Cn). (It gives correct coefficients of t", for n>1).

LEMMA 18.
2(1-6t)

N.C(t) =
T 1-12¢-8t2

Hence by using the standard technique illustrated above in establishing Theorem
13, we obtain the following theorem which gives an explicit formula for the total

number of matchings in a hexagonal crown.

THEOREM 21. N_(C_) = c(6+2/ID™ + E(6-2/TD™!  (w>1), where c = —/1_1,,'3 .

10. DISCUSSION.
Our article gives a comprehensive account about matchings in the linear and star

cacti, and in the hexagonal crown. As far as other hexagonal cacti are concerned, we
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have given results which, together with the theorems given in Sections 2 and 3, can
be used to obtain their matching polynomials. It would be virtually impossible to
give results from which the matching polynomial any arbitrary hexagonal cactus could
be obtained by mere substitution.

Most of our results on defect-d matchings (d>0) can be extended. We have indeed
extended some of these results, but have not given them here, since no new techniques
are involved. Also, they would have made the article unacceptably long.
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