

A MONOTONE PATH IN AN EDGE-ORDERED GRAPH

A. BIALOSTOCKI

Department of Mathematics and Applied Statistics
University of Idaho
Moscow, Idaho 83843

and

Y. RODITTY

School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv, Israel 69978

(Received January 8, 1986 and in revised form September 23, 1986)

ABSTRACT. An edge-ordered graph is an ordered pair (G, f) , where G is a graph and f is a bijective function, $f: E(G) \rightarrow \{1, 2, \dots, |E(G)|\}$. A monotone path of length k in (G, f) is a simple path $P_{k+1}: v_1 v_2 \dots v_{k+1}$ in G such that either $f(\{v_i, v_{i+1}\}) < f(\{v_{i+1}, v_{i+2}\})$ or $f(\{v_i, v_{i+1}\}) > f(\{v_{i+1}, v_i\})$ for $i = 1, 2, \dots, k-1$.

It is proved that a graph G has the property that (G, f) contains a monotone path of length three for every f iff G contains as a subgraph, an odd cycle of length at least five or one of six listed graphs.

KEY WORDS AND PHRASES. *Edge-ordered graph, monotone path.*

1980 AMS SUBJECT CLASSIFICATION CODE. 05C55, 05C38.

1. INTRODUCTION.

Graphs in this paper are finite, loopless and have no multiple edges. We denote by $G = G(V, E)$ a graph with $E(G)$ as its edge-set of cardinality $e(G)$ and $V(G)$ as its vertex-set. Let K_n , P_n , C_n be the complete graph, the path and the cycle, on n vertices, respectively. The vertex-chromatic number of G is denoted by $\chi(G)$, and $d(v)$ is the degree of a vertex $v \in V(G)$. By $H \subset G$ we mean that H is a subgraph of G and $H \not\subset G$ is the negation of this fact.

Definitions and Notation

1. An edge-ordered graph is an ordered pair (G, f) , where G is a graph and f is a bijective function, $f: E(G) \rightarrow \{1, 2, 3, \dots, e(G)\}$.
2. A monotone path of length k , $k \geq 3$ in (G, f) , denoted by MP_{k+1} , is a simple path $P_{k+1}: v_1 v_2 \dots v_{k+1}$ in G such that either

$$f(\{v_i, v_{i+1}\}) < f(\{v_{i+1}, v_{i+2}\})$$

or

$$f(\{v_i, v_{i+1}\}) > f(\{v_{i+1}, v_{i+2}\}) \quad \text{for } i = 1, 2, \dots, k-1.$$

3. We denote by $G + MP_k$ the fact that (G, f) contains an MP_k for every function f , and let

$$A_k = \{G \mid G + MP_k\}, \quad k \geq 3$$

The following Theorem 1.1 is well known, see [1], [2], [3], for a proof and generalizations:

THEOREM 1.1. For every positive integer k , there is a minimal integer $g(k)$, such that $H_n \in A_k$ for every $n \geq g(k)$.

The main result of this paper is:

THEOREM 1.2. A graph G belongs to A_4 iff G contains either C_{2n+1} , $n \geq 2$, or one of the following graphs:

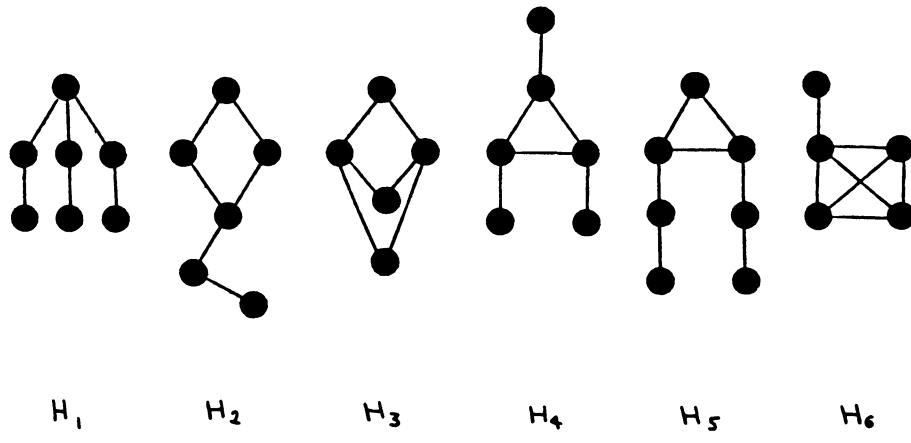


Fig. 1

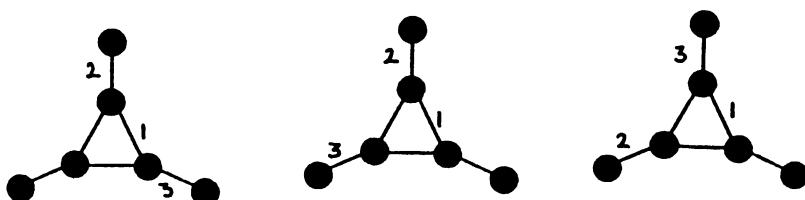
REMARK. Notice that a graph G belongs to A_3 iff G contains a path P_3 .

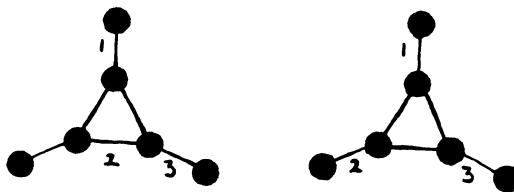
2. PROOFS

The following lemmas are essential for the proof of Theorem 1.2.

LEMMA 2.1. The graphs $H_1, H_2, H_3, H_4, H_5, H_6$, and C_{2n+1} where $n \geq 2$ belong to A_4 .

PROOF. The proof is a straightforward verification for each of the graphs. We prove that $H_4 \in A_4$. The proof of the remaining cases is similar. Assume that there is an f such that no MP_4 occurs in (H_4, f) . It turns out that up to isomorphism, the integers 1, 2, 3 can be assigned to the edges of H_4 in the following 5 ways:





Now, one can see that in each case it is impossible to complete the labeling of the edges such that (H_4, f) does not contain an MP_4 .

The following definition is needed for the next lemma.

DEFINITION. Let $a, b, c_1, c_2, \dots, c_{m+1}, a_1, \dots, a_{2n}$ be non-negative integers where $m \geq 0$ and $n \geq 2$. The graph $L_1(m, a, b, c_1, c_2, \dots, c_{m+1})$, $L_2(a, b)$, $L_3(a, b)$, and $R_{2n}(a_1, a_2, \dots, a_{2n})$ are defined in Fig. 2.

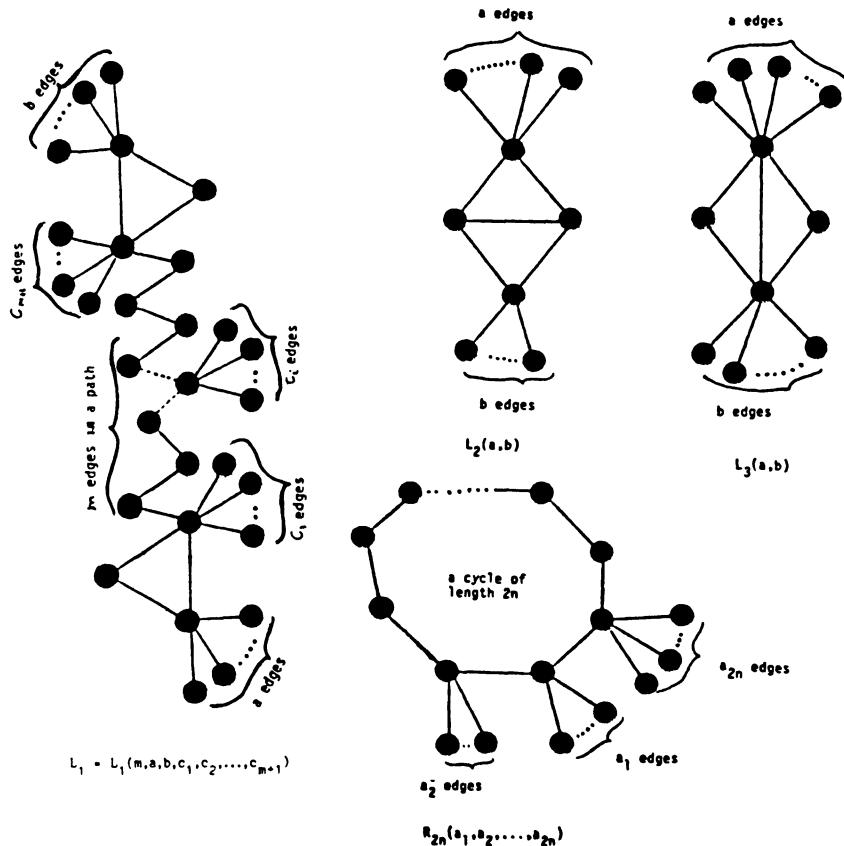


Fig. 2

LEMMA 2.2. (i). For all non-negative integers $a, b, c_1, c_2, \dots, c_{m+1}, a_1, \dots, a_{2n}$ where $m \geq 0$ and $n \geq 2$, the graphs L_1 , $L_2(a, b)$, $L_3(a, b)$, and $R_{2n}(a_1, a_2, \dots, a_{2n})$ do not belong to A_4 .

(ii). The complete graph K_4 does not belong to A_4 .

PROOF. We set e for $e(G)$. For the proof of (i), a partial labeling of the edges of the graphs in question is presented in Fig. 3. The labeling of the remaining edges is arbitrary. An MP_4 will not occur. A labeling of $E(K_4)$ is also presented in Fig. 3.

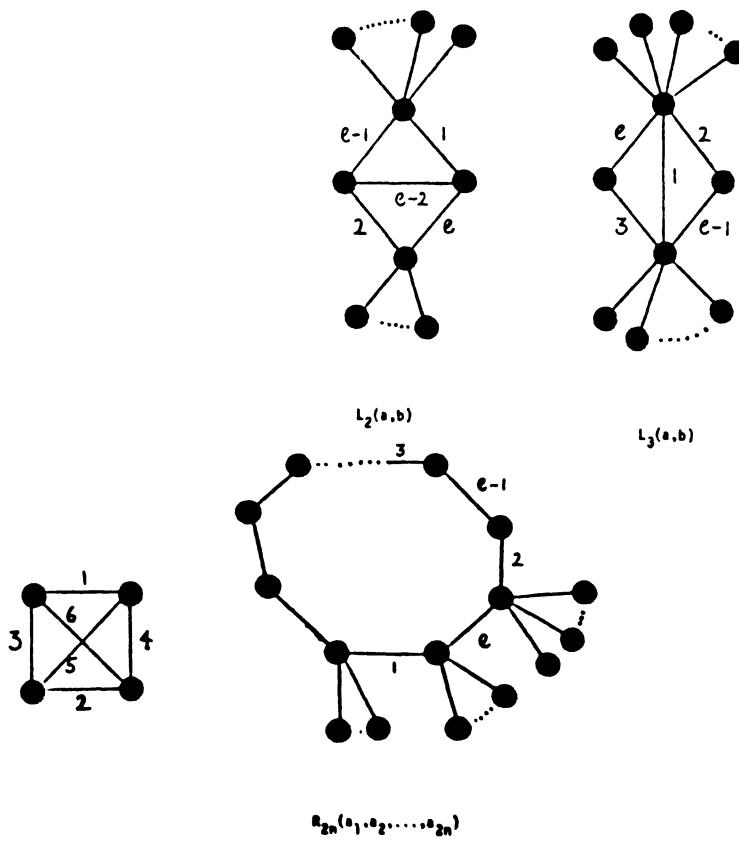
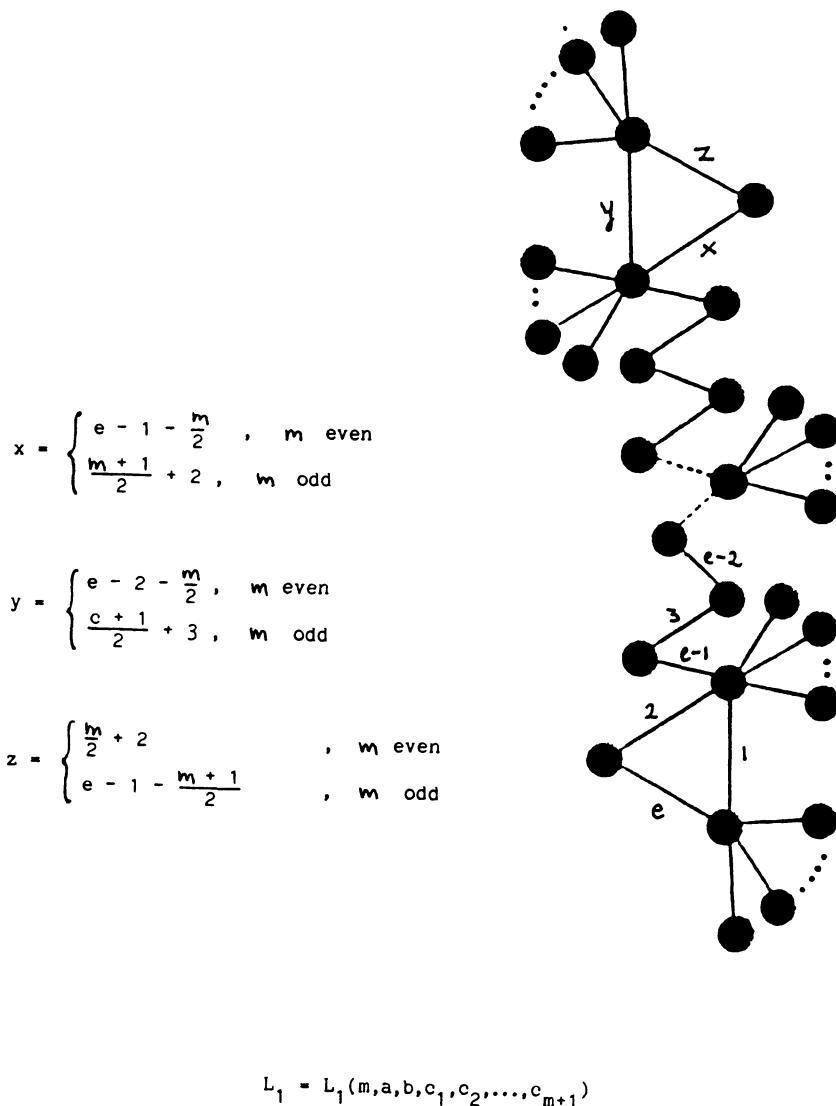


Fig. 3a



$$L_1 = L_1(m, a, b, c_1, c_2, \dots, c_{m+1})$$

Fig. 3b

PROOF OF THEOREM 1.2. Clearly, every graph G that contains C_{2n+1} , $n \geq 2$, or an H_i , $i = 1, \dots, 6$ belongs to A_4 . To prove the opposite containment let $G \in A_4$. We may assume that G is connected and contains a P_4 , hence $\chi(G) \geq 2$. We consider two cases: $\chi(G) = 2$ and $\chi(G) \geq 3$.

CASE 1. Let $\chi(G) = 2$. If G is a tree, let $P_t: x_1 x_2 \dots x_t$ be its longest path. If $t = 4$, then G is double star yielding $G \notin A_4$, a contradiction. Hence, $t \geq 5$. Note that the maximality of P_t implies that there is no vertex-disjoint path to P_t , say P_n , where $n \geq 3$, with initial vertex x_2 or x_{t-1} . If for a certain i , $3 \leq i \leq t-2$ there is a vertex-disjoint path to P_t , say P_m , where $m \geq 3$, whose initial vertex is x_i , then $H_1 \subseteq G$, and we are through. Otherwise, G can be embedded

in a graph $R_{2n}(a_1, a_2, \dots, a_{2n})$ for a certain n and non-negative integers a_1, a_2, \dots, a_{2n} and in view of Lemma 2.2, $G \notin A_4$, a contradiction. Thus we may assume that G is not a tree.

Let C_{2t} be the shortest cycle in G . Assume first $t = 2$, i.e., C_{2t} is a 4-cycle. One can see that if $H_2 \notin G$ and $H_3 \notin G$ then $G = R_4(a_1, a_2, a_3, a_4)$ for some non-negative integers a_1, a_2, a_3, a_4 and hence by Lemma 2.2, $G \notin A_4$, a contradiction. Thus we may assume that $t \geq 3$. Similarly in view of the minimality of C_{2t} it follows that if $H_1 \notin G$ then $G = R_{2t}(a_1, a_2, \dots, a_{2t})$ for some non-negative integers a_1, a_2, \dots, a_{2t} implying that $G \notin A_4$, a contradiction. Hence, the proof of Case 1 is completed.

CASE 2. Let $\chi(G) \geq 3$. Hence G contains an odd cycle C_{2n+1} . If $n \geq 2$ then we are through. So we may assume that G contains only triangles. Let C_3 be any triangle in G with a vertex-set $\{x, y, z\}$. Consider two cases:

(i) Let $d(x), d(y), d(z) \geq 3$. It follows that either $H_4 \subset G$ and we are through, or $K_4 \subset G$ or $L_2(0,1) \subset G$. By Lemma 2.2, $G \neq K_4$, hence $K_4 \subset G$ implies that $H_6 \subset G$. Again Lemma 2.2, $G \neq L_2(a,b)$ for all non-negative integers a and b . Hence $L_2(0,1) \subset G$ implies that one of the graphs H_2, H_4 , or H_6 is contained in G . This completes the proof of case (i).

(ii) Assume that at least one of the vertices x, y, z is of degree 2. By Lemma 2.2, G is not a subgraph of L_1 or $L_2(0,b)$ or $L_3(a,b)$ for any non-negative integers a, b , and c ; hence G must contain one of the graphs H_1, H_2, H_3 , or H_5 . This completes the proof of case (ii) and of the theorem.

REFERENCES

1. BIALOSTOCKI, A. An Analog of the Erdős-Szekeres Theorem. Submitted.
2. CALDERBANK, A.R., CHUNG, F.R.K. and STURTEVANT, D.G. Increasing Sequences with Nonzero Block Sums and Increasing Paths in Edge-Ordered Graphs, *Discrete Math* 50(1984), 15-28.
3. CHVÁTAL, V. and KOMLÓS, J. Some Combinatorial Theorems on Monotonicity, *Canad. Math. Bull.* 14(1971), 151-157.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk