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ABSTRACT. An edge-ordered graph is an ordered pair (G,f), where G 1is a graph and

f is a bijective function, f:E(G) ~+ {1,2,...,|E(G)|}. A monotone path of length k

in (G,f) 1is a simple path Pk+l:v1v2...vk+1 in G such that either

f({vi,vi+1]) < f({v1+l,vi+2}) or f({vi’vi+l}) > f({vi+1,vi}) for 1 =1,2,...,k-1.
It is proved that a graph G has the property that (G,f) contains a monotone

path of length three for every f 1iff G contains as a subgraph, an odd cycle of

length at least five or one of six listed graphs.
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1. INTRODUCTION.

Graphs in this paper are finite, loopless and have no multiple edges. We denote
by G = G(V,E) a graph with E(G) as its edge-set of cardinality e(G) and V(G)
as its vertex-set. Let Kn, Pn’ Cn be the complete graph, the path and the cycle,
on n vertices, respectively. The vertex-chromatic number of G 1is denoted by
X(G), and d(v) 1is the degree of a vertex v € V(G). By H c G we mean that H 1is
a subgraph of G and H ¢ G 1is the negation of this fact.

Definitions and Notation

1. An edge-ordered graph is an ordered pair (G,f), where G 1is a graph and f
is a bijective function, f:E(G) + {1,2,3,...,e(G)}.

2. A monotone path of length k, k 2 3 in (G,f), denoted by MPk+1’ is a simple

R in G such that either
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or
f((vi,vi+1}) > f({vi+1,vi+2}) for i =1,2,...,k-1.
3. We denote by G ~> MPk the fact that (G,f) contains an MPk for every
function f, and let
Ak={clc+m>k}, kz3

The following Theorem 1.1 is well known, see [l], [2], [3], for a proof and
generalizations:
THEOREM 1.1. For every positive integer k, there is a minimal integer g(k),
€ 2 .
such that Kn Ak for every n 2 g(k)
The main result of this paper is:

THEOREM 1.2. A graph G belongs to A4 iff G contains either D 2 2,

C2n+
or one of the following graphs:

Ay g

H‘ H1 H3 Hg Hs H‘

Fig. 1

REMARK. Notice that a graph G belongs to A3 iff G contains a path P
2. PROOFS

3

The following lemmas are essential for the proof of Theorem 1.2.

>
LEMMA 2.1. The graphs Hl’ H2, H3, H4, HS’ H6’ and C2n+1 where n 2 2 belong

to A,.
4
PROOF. The proof is a straightforward verification for each of the graphs. We

prove that H4 € A The proof of the remaining cases is similar. Assume that

4
there is an f such that no MP4 occurs in (Hé’f)' It turns out that up to
isomorphism, the integers 1,2,3 can be assigned to the edges of H4 in the

following 5 ways:

A
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Now, one can see that in each case it is impossible to complete the labeling of the
edges such that (H4,f) does not contain an MP4.
The following definition is needed for the next lemma.

DEFINITION. Let a’b’cl’cz""’Cm+1’al""’32n be non-negative integers where
m20 and n 2 2. The graph Ll(m,a,b,cl,cz,...,cm+1), Lz(a,b), L3(a,b), and

Rzn(al,az,...azn) are defined in Fig. 2.
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LEMMA 2.2. (i). For all non-negative integers a,b,cl,cz,...cm+1,al,...,a2n

where m 20 and n 2 2, the graphs Ll’ Lz(a,b), L3(a,b), and Rzn(al,az,...,azn)
do not belong to A4.

(ii). The complete graph K4 does not belong to Aé'

PROOF. We set e for e(G). For the proof of (i), a partial labeling of the
edges of the graphs in question is presented in Fig. 3. The labeling of the remaining
edges is arbitrary. An MP4 will not occur. A labeling of E(K4) is also presented
in Fig. 3.

Lyta.b)
Ly(a.b)

l"(a‘.ot.....oznj

Fig. 3a
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m
€-1-35 , m even
x-
m+ 1 .
7 *t2, w odd .
e’2"§.w\even
y c + 1
= — *3, wm odd
m
> *2 , w even
2= m 1
+
e-1 - = , W odd

)

l..1 - Ll(m,a,b,c1.c2,...,cm”

Fig. 3b

PROOF OF THEOREM 1.2. Clearly, every graph G that contains CZn+1’ nz 2, or
an Hi’ i=1,...,6 belongs to AA' To prove the opposite containment let G € AA'
We may assume that G is connected and contains a P4, hence ¥x(G) 2 2. We cousider
two cases: x(G) = 2 and x(G) 2 3.

CASE 1. Let x(G) = 2. If G 1is a tree, let Pt:xlxz......xt be its longest
path. If t = 4, then G is double star yielding G ¥ AA’ a contradiction. Hence,
t 2 5. Note that the maximality of Pt implies that there is no vertex-disjoint path
to Pt’ say Pn, where n 2 3, with initial vertex Xy Or X_ ;. If for a certain i,
3 =1 s t-2 there is a vertex-disjoint path to Pt’ say Pm, where m 2 3, whose

initial vertex is xi, then H1 © G, and we are through. Otherwise, G can be embedded
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in a graph R2n(al’32""’32n) for a certain n and non-negative integers

al,az,...,a2n and in view of Lemma 2.2, G ¢ AQ, a contradiction. Thus we may assume
that G 1is not a tree.
Let C2t

- ¢ ¢ =
4-cycle. One can see that if H2 G and H3 G then G R4(al,az,a3,aé) for

be the shortest cycle in G. Assume first t = 2, i.e., C2t is a

some non-negative integers a;,a,,34,3, and hence by Lemma 2.2, G ¢ Aé’ a contradic-
tion. Thus we may assume that t 2 3. Similarly in view of the minimality of C2t
it follows that if H1 ¢ G then G = R2t(a1,a2,...,a2t) for some non-negative
integers a1,85,..058,, implying that G ¢ AQ’ a contradiction. Hence, the proof of
Case 1 is completed.

CASE 2. Let x(G) 2 3. Hence G contains an odd cycle If n 22 then

C .
we are through. So we may assume that G contains only triangi::} Let C3 be any
triangle in G with a vertex-set {x,y,z}. Consider two cases:

(i) Let d(x), d(y), d(z) 2 3. It follows that either H4 € G and we are
through, or KA < G or L2(0,1) € G. By Lemma 2.2, G # K,» hence K, S G implies
that H, < G. Again Lemma 2.2, G # Lz(a,b) for all non-negative integers a and b.

Hence 22(0,1) € G implies that one of the graphs H2’ Hé’ or H6 is contained in G.
This completes the proof of case (i).

(ii) Assume that at least one of the vertices x,y,z is of degree 2. By Lemma 2.2,
G 1s not a subgraph of L1 or Lz(O,b) or L3(a,b) for any non-negative integers
a, b, and c; hence G must contain one of the graphs Hl’ H2, H3, or HS' This

completes the proof of case (ii) and of the theorem.
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