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ABSTRACT. In this paper, an operational procedure is established to evaluate Hankel
type integrals. First, an operator L(8), 8 = —x g; is constructed, which defines the

integral. Then making use of some basic properties of this operator, an elementary
procedure is developed for evaluating integrals for a special class of analytic

functions. A few example are given to illustrate the technique.
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1. INTRODUCTION.

We consider the singular integral of the type
@

j' £(xt)J (2t)dt, (1.1)
(o]

where Ju is the usual Bessel function of the first kind of order v, v 2 - %-, and f(x) is

a suitable function. This integral can be viewed as defining the Hankel transform of
the function f. In this note, our main aim is to construct an operator L(8), 8 = —x g;(-.

so that L(8)[f(x)] defines the integral (1.1), [cf. 1, 89.5; 2]. We then establish
properties of the operator L(8), and with these help of the properties, we shall obtain
an operational procedure to evaluate the integral (1.1).
2. THE OPERATOR.

It is an easy matter to see that the differential operator On, where 0 = -x g; and

n a positive integer, is such that
0" [x*] = (~)™7,
for some constant a. Then pn(O), a polynomial of nt'h degree in 8, gives
a, _ a
Pn(o)[x ] = pn(-c)x .

Consequently,
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p(8)(x*) = lim pn(p)[xa]
N0

lim p (-a)xq
no O

p(~a)x”%,

where p(s) = lim pn(s), limit of a polynomial. Thus the operator p(8), is a
D

differential operator of infinite order and has the property that when applied to a

power function, simply replaces it with a multiplier. With this understanding, we may
write, symbolically,

N k
n = e 10 iy LID) 6K g4 p (6), sey.
N+» k=0 ' Nowo
Then,
0 (] = lin p (8)[x ®] = lim p ()% (2.1)
N N
=n® x®
for some s = 0 + ir, —® (1 ( ™,
If further
n
pn(O) = 0 (v-1+2k+8), and s = ¢ + ir, then
k=1
-8 n -8
P (P)[x "] = I (v-1+2k+8)([x )
k=1 (2.2)
n -8
= I (v-1+2k+s)x .
k=1
Next we write
x° = 2—;—% [x_s]
=1 (a0)[x5) = L (a-s)x®
a-8 a-90
or,
1 -8, _ , 1, -s
2% = G, (2.3)

for some constants a and s. This defines an operator of the type ;—%—;, in the sense

that when applied to a power function, simply reproduces it with a multiplier. This
property parallels that of the operator which is a polynomial or limit of a polynomial
in 6. By a repeated application of an operator of the type (2.3), we have

n 1 - _ 1 1 -8
O et ) = I Gorx @4

for some s, except where s =v -1 + 2k, k = 1,2,...,n.
Combining the results (2.1), (2.2) and (2.4), we construct the operator

- n
i¥-0) = 3 o7 X 2, (2.5)
such that
k: (1-8)[x®] = k: (1-s)x8, (2.6)
where

X _1 -s N u-s+2k+s _ .
kn(l—s)-in kgl(;:l—:zk_—s), s =0+ ir, <@ (71 (™
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Next, we shall establish properties of the function k: (1-8).
LA 1. [k% (Q-o-ir)| = n ° 0(1), as |r] — =.

This is quite obvious.

LEMMA 2. lim k: (1-8) exists and is uniform on every compact set of the s—axis.
n-"

PROOF. From above,

n
k: (1-s) = % 8 ln n I (u—l+2k+s)

I CTerkes
1 1
_ 1 s(rgroigrino) 2s -s/k
"z J A ommse
Consider the product
n n _
1O ey o T e (e e -
k=1 s k=1
n
= I [1+ ak(S)]-
k=1
Now,
. 2 . 2 2s -s/k
lim k (s) = lim k"[(1 + —)e - 1]
ko * Jomo -1+2k-s
2
=,1‘i:"2 ““:r:éi'ﬁ"l‘ﬁ*é?fz‘ SRRV
_ogal 1.2 2 1 2,1 2 1
= Lim Kl R 2 G2 T e ) 00 )
= 3 s(1v).
Or, ak(s) = %s(l—u)o(l), as k — o for all finite S, hence the infinite product
convergence uniformly on every compact set of the s—axis. Also
1 1
slrgregln ) g
e - e , a8 n — o,
T being the Euler’s constant; hence the result.
.*__‘l—snv—1+2k+s
In fact, 11:: kl’l (1 S) = ll:: 7 n kzl (m)
111 11 1
il T g 2k ), 22 2 g liZkis
e & k=1 SRR k=l K
) I"(l 1.1 ) .
= 2 —TT-T_ =k (1‘8), say, (2-7)
Mg
using Euler’s product for Ir-functions, (3, p.ll1].
Note that the function
1.1
¥ = L T (gvige)
2 ragge
= ‘[JU(ZX),S], (2.8)

the Mellin transform of Ju(2x), s =o+ir, @« (7 (o, and 0 <o < v+l, [4, p.326].

Now, we define the operator
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1.1, 1
r( )
K*(1-0) = 3 —?ﬁlv——?- 0= x § (2.9)
I3
LEMMA 3. K‘(I—O)[x_s] = k*(l—s)xhs, where k*(l-s) is defined above.
PROOF. k‘(l—o)[x_s] = lim k:(l—e)[x-s], where by using Euler’s product for
-
n
r-functions, k*(1-0) = Lim k*(1-p) = limn ? 1 (LK), as in (2.5) above.
o - k=1

Now, using the results (2.6) and (2.7) we have
K*(1-0) [x®] = lim k¥ (1-0)[x %]

e
= lim k! (1-s)x ®
nw
= K*(1-s)x S,
as desired.
3. THE INTEGRAL.
THEOREM 1. Let f(x) be such that f*(s) = A[f(x):s]) € L(o-i®,0+i®) and
k(x) = Jy(2x), v - % and 0 < 0 <v + 1. Then
L]
Ka-0)(£00) = [ £xt)3 (2t)at, (3.1)
o

where k*(l-—o) is the operator defined by (2.8) above.

PROOF. Since f*(s) defines the Mellin transform of f(x), we may write
+jio N
1K (1-0) [£(0)] = k*(1-0) iy j'q £*(s)x5ds

o—i®
N 1 1 % -s
lim k_(1-6) J‘” f (s)x "ds
nw & o-i®
o+i®

- lin g |

o-i®

£*(o)K2(1-0) [x ®]ds

1 +ie X 3 -s
lim r f (s)k (1-8)x “ds,
2x1 o—i® n

due to Lemma 3. To justify bringing the operator k:(l—s) inside the integral sign, we

have simply to show that the resulting integral
+io0 3
r £*(8)k* (1-s)x %ds (3.2)
. n
o—-iw
is uniformly convergent for all finite x. This is so, since

|jp+i“ f‘(s)k:(l-s)x“‘ds|

o-ie®

] « x -o—-ir
| [ fPermdaoine idr
o n

.
0 [ 1f¥ i ldr < =,
—00

for x > 0, o > 0, since f*(s) € L (0-i®,0+i®) and by using tahe results of Lemma 1. In
fact the integral (3.2) converges absolutely, as well. Together with the results of
Lemma 2 and 3, we can then apply Lebesgue’s limit theorem, to obtain
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K*(1-0) [£(x)]

..az"‘

+j00
in 2717{ r @)K (1-e)x %ds
o—1%®

tie X -
£ (s)[Lim k (1-8)x Sds
g-i®» n-»o

K1
o1 J“”i“ * (s)k* (1-8)x 5d
= L . S S )X S

3]

o-iw
= [ fxt)g (2v)at,
)
due to the Parseval theorem for Mellin transforms [5, chapt. II]J, and since k*(s) =
I[Ju(Zt);s]. Hence the theorem.

Thus the equation (3.1) defines k*(l—o) as an integral operator, having the property
that
K*(1-0) [x*) = K (1+a)®
for some a, due to Lemma 3. In light of the operational calculus generated by the
operator k*(l—o), one can now evaluate the integrals of the Hankel type, using the
operational procedures. For instance if f(x) is analytic and expressed in a power
series
® X
f(x) = 2 Cnxn , Ix| <r,
n=o
for some r and a, then

K*(1-8) [£(x)] xta

X L]

k' (1-8) 2 C x
~ 7n
=0

® x

z c k'(1-0) ¥

n=o n

(-]
z cnk*(1+n+a)x"*°‘ , Ix| <R,
(o]

-}
[

for some R, where

r( )
ET L i sl
I ggvgng
The above analysis is justified provided
1 | 2| = 0.
n- n
Hence we now have an operational procedure for evaluating the given integrals, in fact,
00 [
[ ot vat = 2 ot max™, (3.3)
) n=o
*ma | Fgg®)
where f(x) = X Cnx and k (s) = I[Ju(t):s] =3 .
r(1sgvge)

4. SPECIAL CASES AND EXAMPLES.
Consider the case when v = % Then from (3.1), we have

2 gt 22E2Y g4 = 1 *1-0) (10 (4.1)
Jr o Jt
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31
r( )
where k*(1-8) = 1 T2 o instance, we let f(x) = x*, |u| < & , then
2 31 2
I (3+58)
u o ug | TG29)
L[t ?sin2t)dt = 3 — 35— )
s o r(rzo)
3.1
1 "(7[*’2“) u
¥
or,
1 3.1
® u = T(zt)
t 2 sin(2t)dt = ’-’z' T
) T(nﬂ)
Putting u = - % , gives us the classical result,
* 8in(2t) _n
| 2o ac -5
o
Similarly, by letting v = - % in (3.1), we have
A [ pext) <828 g¢ = W*1-0) (£(x)], (4.2)
VI Jt
11
r( )
where K*(1-0) = 5 —ff—?; )
I(3+59)
And if f(x) = x", lul < %, we have from above
1 1,1
CRTSS = T (ztom)
t 2 cos(2t)dt = % 17 -
o I'(nu)

Putting u = 0, give us the well-known result,

0
J‘ cos£2t) dt = frz .
o Jt
We now consider a few examples to illustrate the procedure given in formula (3.3).
1. Let f(x) = e *. Then from (3.3), we have
1,11 .1
- D (Grppigutgn)
u —xt 21 n+u
[ ke 3, (2t)dt = 5 2 LR a2 i

° neo  n! I(ztguguge)

The series on the right-hand side converges absolutely for |x| < 2, where |v| < l+u and

vl 2 - % . Using the functional equation I'(z)I'(l-z) = Ei% , and splitting the series

(4.3)

into odd and even terms. We obtain from the right hand side of (4.3),
11 .1 2n

o (-1 (grguigutn) (ggurguin) 2
cos ;—(u—u) z 12 (’2(—)
n=o n! l’(n+2-)

o (1) rsdedemyra-dode,m) 2nn
sing (uv) I it alf it ol ()
n=o

gll'-'

§| I""

n!r(n+~g-)

Hence,
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1,1 .1 ..,11.1 1.1 .1 11.1.1 x*

[[#e™a, 208t = gt cosf eI (gl gyt oF (g 33 )

o

(4.4)
2
+ 3= 8in Jro) (Inpigl (1) F) (L, 1-gogu; 3, 5)

due to the result (3.3). Some special cases of this result such as when u = v and u = 0
can easily be derived. The range of the result (4.4) can be extended to x > 0, by
analytic continuation.
2. Let f(x) = x_AJ"(n). Then from (3.3), we have
1.1 .1 1 2n+u—A

© @ (-1) (rgurgughtn)x

| ar™5, (xe)a (2t)at =

o

z .
n=o n!2 2™ Hr (ene1)r (%"‘%“_%“%'\‘n)

(4.5)

Now,
11 1.1 11.1 1 L

[ (grgugughall (ggvigeghtn) =

(-1 )-s in;-( 1-v+u-A)

- ALl Lol L1,

Therefore the right hand side of (4.5), then gives

= . z ( )
,.(1 T 1 %A),?l T 1A) nmo 'l (1+ptn) T
2_"_11'(1 1.1 IA)x”_A 2
D 11.1 1, 1.1.1 1 X
= F, ( A, A 1+us ),
r(l T 1 1l)1.(1+") (gt atrtan g T
where Ix| < 2, Re(utv) + 1 > Re A > -1, [6, p.48].

As a special case if A = v—u-1, then
2—u-1x2u-v+1
T(v-u 2

- 2
j' (xt) V¥ lJu(xt)Ju(Zt)dt = Py (Lt Lo 1o 5
o

2—u—1x2n—u+1 x2 vl

R (= 1-7) » x| < 2.

k K

3. Let f(x) =¥ ™1 1 3 (ax), M= = u.,a.)OandO(Reu(ReM+]2‘+g.
i=1 M * i=1 bt

Or,

2n+u.
; ko Do)
X J“.(aix) - 'zl =0 n.'T'Zn+yi+]S X

1 i i

£(x) = & 2n+v-1

Then

a, 2
» k k = (-)% !
M1 . 2 . 2l
jo(xt) T J“i(aixt)Jv(Zt)dt = k*(1-0) I 2 g ¥ ]
a, 2n+u,
© (-D-) 7

k
R 1 e v
= n! n+ui+

i=1l n=o

k*(2nw)x2m—1
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a. 2ntu.
© D% T

=1 ; z L2l
22 oo BT R ADI(R)
2n+yu.
L k (-2) rw) e (D (-,) ) 5
=3 izl x 0 VR T CTT Ve S R ]

k ( )
_rw) u—l 2
—2— iz lr_(_r” + ’ [6) p'54] *

4. Finally we will derive a general result formally.

Let
8),...,8

_ _.2A ,m,n 2 P
£ = x2A a2 [ Ibl”" ] , P+ a< 2(mm).

Then

j £(xt)I (2t)dt = k*(1-8) [£(x)]
(o]
n
II l'(b -8) I (l—a +s)

k (1 0)2—-? I J =1 J=l x28+2ACsdB

14
H r(l-b.+s) o r(a.-s)
J1+1 J=n+1 J

n

r —s) II r(l—a +8)
J=1 S (1+428+24) x

P
r(l-b.+s) o r(a.-s)
1 jem+l Y

2s+2A ds

- [

(b -s) H r(l-a. +s)l‘(2-+20+s+)t)
J‘ Jj= 1 J=1 sx23+2A ds
L

II l'(l-b .+8) I r(a, —s)r(zd-zu— 8—A)
Jj=m+l —n+1
2A G-,n+1 CXZ'W_A’QI””’%’?W_"]
pt2,q . '

with the usual conditions on paremeters, [6, p.9l].
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