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SABSTRACT. Let (A,B,p,a)(II < -I & A < B & and o a < p), denote the

n
class of functions f(z) z

p + [ a z analytic in U {z: Izl < I}, which
n

iO
n=p+l

satisfy for z re U

il zfz) p + [pB+(A-B) (p-a) ]w(z)
e sec%

f(z) ip tan + Bw(z)

w(z) is analytic in U with w(o)= o and lw(z) Izl for z U. In this

paper we obtain the bounds of an and we maximize lap+2 a2p+l over the

S
l

class (A,B,p,a) for complex values of
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1. INTRODUCTION.

Let A (p a fixed integer greater than zero) denote the class of functions
P

f(z) z
p + akzk which are analytic in U {z: Izl < I}. We use to denote

k=p+l

the class of bounded analytic functions w(z) in U satisfies the conditions

w(o)--o and lw(z) l-<-Izl for z e U. Also let e (p a) (with p a postive integer)

denote the class of functions with positive real part of order a that have the form

P(z) p + [ ckzk (I.I)
k=l

which are analytic in U and satisfy the conditions P(o) p and Re{P(z)} > a

(o --< a < p) in U. The class P(p,a) was introduced by Patil and Thakare [I].

It was shown in [I] that the function P P(p,a) if and only if
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P(z) p-(p-2a)w(z)
+ w(z)

w (1.2)

SFor Ill < and p a fixed integer greater than zero let (p,a) denote

the class of functions f(z) A which satisfy
P

i zfz)
Re e 5 > a cos I (1.3)

for z U and o a < p. We say the functions in S%(p,a) are p-valent l-spiral-

$like of order a The class (p,a) was introduced by Patil and Thakare [I]. It

was shown in [i] that f Sl(p,e) if and only if there exists a function p e P(p,a)

such that

i zz)
e f(z)

cos . P(z) + ip sin

Let P(A,B)(-I A < B i) denote the class of functions Pl(Z) + Z
n=l

analytic in U and such that Pl(Z) P(A,B) if and only if

l+Aw(z)
w z UPI(Z) I+Bw(z)

(1.4)

n

(1.5)

The class P(A,B) was introduced by Janowski [2].

For -I =< A < B and o =< a < p, denote by P(A,B,p,a) the class of func-

tions P2(z) of form (I.I) which satisfy that P2(z) P(A,B,p,a) if and only if

P2(z) (p-a)Pl(z) + a, Pl(Z) E P(A,B) (1.6)

Using (1.5) in (1.6), one can show that P2(z) E P(A,B,p,a) if and only if

P2(z) p + [pB+(A-B) (p-a) ]w(z)
+ Bw(z) w (1.7)

Also let (A,B,p,s)(ll < -I A < B and o e < p) denote the class

of functions f(z) A which satify
P

i zf)
e

f(z) cos P2(z)+ip sin , P2(z) P(A,B,p,a) (1.8)

Using (1.7) in (1.8) one can easily show that:

slf(z) (A,B,p,=) if and only if

il zfz) p + [pB+(A-B) (p-s) ]w(z)(i) e sec f(z) ip tan: + Bw(z) w . (1.9)

(ii)
z’(z) p + [pB+(A-B)(p-a)cos e ]w(z)

w .
f(z) + Bw(z) (l.iO)

We shall need the following lemma in our investigation:

LEMMA i_[.3]. Let w(z) bkzk , if v is any complex number, then
k=l

2 max {I,Ib2 b (l.il)

Equality is attained for w(z) #.2 and w(z) z.



2.

and
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COEFFICIENT ESTIMATES FOR THE CLASS Sk(A,B,p,a).
LEMMA 2. If integers p and m are greater than zero;

-I A < B <-- i, then

m-i l(B-A)(p-a)cos e-ix + BIt
2

j=o (j+l) 2

261

o < p, I1 < z
2

m=lcos2% (B_A) 2 (p_e) 2 + .
m2 k=l

[k2(B2 I) sec2

+ (B-A)2(p-e) 2 + 2kB(B-A)(p-e)]

2
k-I

II (B-A) (p-a)cos , e
-il + Bj[ }.

j=o (j+l) 2
(2.1)

PROOF. We prove the lemma by induction on m.

Next suppose that the result is true for m=q-l.

For m=l the lemma is obvious.

We have

cos2 ql{(B-A)2(p-a)2 + [k2(B2 I) sec2l
q2 k=l

k-I
+ (B-A)2(p-a) 2 + 2kB(B-A)(p-a)] x ][

j=o

(B-A) (p-e)cos e

(j+l) 2

2
+Bi }:

cos2 q-2
{(B-A)2(p-a) 2 + [ [k2(B2 I) sec2%

q2 k=l

k-I 2

+ (B-A)2(p-a) 2 + 2kB(B-A)(p-a)] H [(B-A)(p-e)cos %e
-i% + Bil

j=o (j+l) 2

[(q-l)2(B2-1)sec2l + (B-A)e(p-e) 2 + 2(q-l)B(B-A)(p-e)]x

q-2 (B-A) (p-a)cos e
-il + B]

j=o (j+l) 2

2q-2 (B-A) (p-a)cos , e
-i% + B[

j=o (j+l) 2

2

(q-I)2B2+(B-A)2(p-s)2cos2I + 2(q-l) B(B-A)(p-e)cos2I
q2

II (B-A) (p-a)cos , e + B
j=o

(j+l)

Showing that the result is valid for m=q. This proves the lemma.

THEOREM I. If f(z) zp + [ akzk S%(A,B,p,e), then
k=p+l

n-(p+l) l(B-A)(p-e)cos le-il + Bk
a
n

k=o
k+l

(2.2)
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for n p+l and these bounds are sharp for all admissible A,B, and a and for each

n.

PROOF. As f S%(A,B,p,), from (1.9), we have

e sec
zfz)
f(z) -ip tan p+[pB+(A-B) (p-s) ]w(z)

l+Bw(z) w e .
This may be written as

{Bei sec lsf(z) + [-pB+(B-A)(p-e)-ipB tan If(z)} w(z)

(p+ip tan l)f(z) e sec lzfz)

Hence

Be
iI p+ksec {pzp + [. (p+k)ap+kZ +

k=l

or

[-pB+(B-A) (p-s)-ipB tan zp + ap+kzP+k} w(z)

(p+ip tan) zp + [ (P+k) ap+kzP+k}
k;1

zp p+kzP+k}see p + [. (p+k)a

Be
il

sec l+ [-pB+(B-A)(p-) -ip B tan I +

(p+k) Beil k1sec A + [-pB+(B-A) (p-s) ip B tan ] ap+kZ w(z)

(p+ip tan I p e secl) + [ p+ip tanl-(p+k)e
k=l

i k
sec } ap+kZ

which may be written as

[ (p+k) Be
k=o

sec l+ [-pB+(B-A)(p-s) ip B tan l] ap+kZk1 w(z)

[p+ip tan I- (p+k)eil k
sec ]ap+kZ

where a =I and w(z) [ bk+ z
k+l

P k=o

m
Equating coefficients of z on both sides of (2.3), we obtain

(2.3)

m-I
[. {(p+k)Beil sec l+ [-pB + (B-A)(p-a) ip B tanl ]} ap+k bin_kk=o

p+ip tan I (p+m)eiR sec X} ap+m
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which shows that ap+m on right-hand side depends only on

ap ap+ ap+(m_l)

of left-hand side. Hence we can write

m-1
[ E (p+k)B e

k=o
sec + [-pB+(B-A)(p-a) ip B tan ]} a

p+k kz w(z)

m
i%

z
k + [ Akzk. [p+ip tan- (p+k)e sec]ap+k

k=o k=+l

for m=1,2,3 and a proper choice of Ak(k => 0).
i0

Let z re 0 < r < i, 0 --< 0 2, then

m-I
l(p+k)Be i% sec + [-pB + (B-A)(p-a) ip B tan%]

2 2 2klap+kl r

2 2m-i

k--o
(p+k)Beil k i0k 2

sec + [-pB+(B-A)(p-a) -ipB tanl] ap+k r e dO

>__
2 m-I

i% k iSk
2 i8 2

f . {(p+k)Be sec+[-pB+(B-A)(p-a)-ip’B’tan]}ap+kr e lw( re )I "d8
k=o

2>_L f
2

m
il k i0k. {p+ip tan%-(p+k)e sec%}ap+kr e + [. AkrkeiSkl2

k=o k=m+l
dO

m
Ip+ip tan l-(p+k)ei% secl

2 2 2 2klap+kl r
me + [. IAkl r

k--m+l

m 2 2il 2kIp+ip tan-(p+k)e sec I lap+kl r (2.4)
k=o

Setting r in (2.4), the inequality (2.4) may be written as

m-I 2
l(p+k)Bei sec + [-pB+(B-A)(p-a) -ip B tan ]I

k=o

2 2
p+ip tanX (p+k)ei secl lap+kl

2 2
P + ip tan X-(p+m)ei see I lap+ml (2.5)

Simplification of (2.5) leads to

ap+m
2 cos21 m-I

(2.6)-< {k2 (B2-1)sec2 +(B-A) (p-a) (B-A) (p-a)+2kB ap+k 12
m2 k=o

Replacing p+m by n in (2.6), we are led to

lanl
2 cos2 n-(+l) {kZ(B2-1)sec2 +(B-A)(p-a)[(B-A)(p-a)+2kB]} ]ap+k 12, 2.7)

(n-p) 2 k--o
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where n p+l.

For n=p+l, (2.7) reduces to

or

lap+112 (B-A)2(p_a)2cos2 %

9

lap+11- (-) (p-a)cos x (2.8)

which is equivalent to (2.2).

To establish (2.2) for n > p+l, we will apply induction argument.

Fix n, n p+2, and suppose (2.2) holds for k 1,2 n-(p+l). Then

fan 12 24__< cos (B-A) 2 (p-a) 2 +
(n-p) 2

n- p+l)
{k2(B2-1)sec2% + (B-A) (p-a) (B-A) (p-a) + 2kB]

k--I
2

k-i
H (B-A) (p-a)cos e

-i% + Bj]
j=o (j+l) 2

(2.9)

Thus from (2.7), (2.9) and lemma 2 with m--n-p, we obtain

2 n-(p+l)
(B-A)(p-)cos e

-i 2
[a
n

< H + B’I
j--o (j+l) 2

This completes the proof of (2.2). This proof is based on a technique found in

Clunie [4].

For sharpness of (2.2) consider

z
p

f(z) [] l, B # 0

() (p-a)cose-i

(I-BE)

Remarks on Theorem I:

(I) Setting B=I and A=-I in Theorem I, we get the result of Patil and

Thakare [I].

(2) Setting B=I, A=-I and p=l in Theorem I, we get the result of Libera [5].

(3) Setting B=I, A=-I, p=l and a=0 in Theorem I, we get the result of

Zamorski [6].

(4) Setting B=I, A=-I, p=l and %=0 in Theorem I, we get the result of

Robertson [7] and Schild [8].

THEOREM 2. If f(z)=zp + akzk E S%(A,B,p,a) and is any complex

number, then k=p+l

a2 <= (B-A)(p-a)lap+2- p+l 2
cosmax i, (B-A)(p-a)(2-l)cos -eil} (2.10)

This inequality is sharp for each .
PROOF. As f E SA(A,B,p,a), from (1.9) we have

il zf’(z) p+[pB+(A-B) (p-a) ]w(z)e sec f(z -ip tan
l+Bw(z) (2.11)
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where w(z) . bkzk c .
k=l

Rewriting the form (2.11) as
ik zf’(z)

p-e sac k
f(z) + ip tan k

w(z)
Beiksec kzf’(.z) + [-pB+(B-A)(p-a)-ip tank

f(z)

e seck [pf (z)-zf’(z)

Bei i
secl-(zf (z)) +[-Bp e lseck +(B-A)(p-a)]f(z)

il k
-e sec i kap+k z

k;1

(B-A)(p-a)[l + ,
k=l

k Beil k
ap+k z + see k

k=
ap+kZ

iX k
-e sac k . k ap+k z

k=l

(B-A) (p-a) + .
k=l

(B-A) (p-a)+ < Beiksec } ap+k]Z

i ap+l
-e sac k

(B-A) (p-a)
z + (B-A) (p-a)

x

x {2 a -((B-A)(P-a)+Beikse.Cl)a2 z 2 + ...]
p+2 (B-A) (p-a) p+l

and then comparing coefficients of z and z 2 on both sides, we have

iX
e sec X

bl (B-A) (p-) ap+l

b
2

ik
e sack

(B-A) 2 (p-a) 2
2 (B-A) (p-a) ap+2 (B-A) (p-a)+eiksecA a 2

p+1
]"

Thus

(B-A) (p-a)
ap+l i)t bl

e seek

and

ap+2
(B-A) (p-a)

b2 + (B-A) (p-a)+eiksecl, a2
i 2 (B-A) (p-a) p+l

2 e sec k

Hence

ap+2 a2
p+l

,(B-A) (p-a) b + (B-A) (p-a)+eiksecl
2etXsec k 2 2 (B-A) (p-a) ]a2p+l

(B-A, (p-a) b + (B-A) (p-a)+eikseck
2eiksec k 2 2 (B-A) (p-a) P

(B-A) 2 (p-a) 2

2 bl
e lsec2

2 (2.12)
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Thus taking modulus of both sides of (2.12), we are led to

lap+2 a2p+ll

(B-A) (p-e.) (B-A) (.p-e)+ei%secl
2

cos Ib 2 2(B-A)(p-n)
} 2(B-A)(p-e)ll b121

e sec I

(B-A)(p-e)2 cos Ib2 {e sec l-il(B-A)(p-e)(2-l) bl 2 I. (2.13)
e sec I

Using lemma in (2.13), we get

lap+2 a2p+ll (B-A)2(P-n) coslmax {I, l(B-A)(p-n)(2-l) cos l-e I}

and since (I.ii) is sharp, then (2.10) is also sharp.

Remark on Theorem 2. Setting (i) B=I and A=-I, (li) B=I, A=-I and p=l,

(iii) B=I, A=-I, p=l and e=0, (iv) B=I, A=-I and =0, in Theorem 2, we get the

results of Patil and Thakare [I].
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