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ABSTRACT. Let SA(A,B,p,a)(IXI < -1SA<BsS1 and o £ a < p), denote the

2 ’
class of functions f£f(z) = ZP + z anzn analytic in U = {z: |z| < 1}, which
i0 n=p+1
satisfy for z =re € U
[
eiA sech 2f(z) _ ip tan A = p + [pB+(A-B) (p-a) lw(z)

f(z) 1 + Bw(z)

w(z) 1is analytic in U with w(o) = o and |w(z)| < Izl for z € U. In this

paper we obtain the bounds of a and we maximize Ia over the

_ 2
A p+2 va p+1|
class S (A,B,p,a) for complex values of u.

KEY WORDS AND PHRASES. p-Valent, amalytic, bounds, \-spirallike functions of order a.
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1. INTRODUCTION.

Let Ap(p a fixed integer greater than zero) denote the class of functions
-]

f(z) = P + Z a

keptl X

the class of bounded analytic functions w(z) in U satisfies the conditions

zk which are analytic in U = {z: IzI < 1}. We use Q2 to denote

w(o) = o and |w(z)| < |z| for z €U. Also let P(p,a)(with p a postive integer)

denote the class of functions with positive real part of order o that have the form

-
P(z) = p + Z ckzk
k=1
which are analytic in U and satisfy the conditions P(o) = p and Re{P(z)} > a
(o Sa<p) in U. The class P(p,a) was introduced by Patil and Thakare [1].

It was shown in [1] that the function P € P(p,a) if and only if

(1.1)
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_ p=(p-2a)w(z)
P(z) T+ w ° weQ., (1.2)

For IXI < % and p a fixed integer greater than zero, let SA(p,a) denote
the class of functions f(z) € Ap which satisfy

[ oA 2£(z)

.f—(z_)- } > a cos A (1.3)

Re

for z€ U and o £ a < p. We say the functions in SA(p,a) are p-valent A-spiral-
like of order a. The class Sk(p,a) was introduced by Patil énd Thakare [1]. It
was shown in [1l] that f € SA(p,u) if and only if there exists a function P €P(p,a)
such that

= cos A. P(z) + ip sin A. (1.4)

Let P(A,B)(-1 £ A < B £ 1) denote the class of functions Pl(z) =1+ z bnzn
n=1
analytic in U and such that Pl(z) € P(A,B) if and only if

Pl(z) _ l4+Aw(z)

—m,weﬂ, z €U . (1.5)

The class P(A,B) was introduced by Janowski [2].
For -1 S A<B=£1 and o £ a < p, denote by P(A,B,p,a) the class of func-
tions Pz(z) of form (l.1) which satisfy that Pz(z) € P(A,B,p,a) if and only if

Pz(z) = (p-a)Pl(z) + a, Pl(z) € P(A,B) (1.6)

Using (1.5) in (1.6), one can show that Pz(z) € P(A,B,p,a) if and only if

p_+ [pB+(A-B) (p-a)Jw(z)

T+ Bu(z) , WeE R, (1.7)

P,(2) =

Also let S (A,B,psa)(JA] <X, -1 SA<B=1 and oS a<p) denote the class

of functions f£(z) € Ap which satify

= cos A Pz(z)+1p sin A, P2(z) € P(A,B,p,a) . (1.8)
Using (1.7) in (1.8) one can easily show that:

f(z) € SA(A,B,p,a) if and only if

v

) el gec Ag%%%%l - ip tanA= P+ [p?+iA;:1i§-a)]w(z) L we Q. (1.9)

(11) zf?z) _ p + [pB+(a-B) (p-a)cos A e—iA]w(z) €0 (1.10)
£(z) T + Bw(z) s WS :

We shall need the following lemma in our investigation:
v K
LEMMA 1[3]). Let w(z) = Z bkz € Q, if v 1is any complex number, then
k=1
Ib, = v b,2| = max {1,]v]}. (1.11)

Bquality is attained for w(z) = 22 and w(z) = z.
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2. COEFFICIENT ESTIMATES FOR THE CLASS SA(A,B,p,a).

LEMMA 2. 1If integers p and m are greater than zero; o s a < p, |A| <2

and -1 £ A< B <1, then

. 2
mil I(B-A)(p-a)cos Ae 1A + Bjl

j=o (3+1)2

cos?A m=1
£95 2 {(B-A)2(p-2)2 + ) [kZ(B? - 1) sec®)
m? k=1
2

+ (B-A)2(p-a)? + 2kB(B-A) (p-a)]
j=o (3+1)?

kﬁl | (B-4) (p-a) cos re 1Ay Bil .
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(2.1)

PROOF. We prove the lemma by induction on m. For m=l , the lemma is obvious.

Next suppose that the result is true for m=q-1. We have

2 q=
COS7A {(B-A)2(p-a)2 + § [K2(BZ - 1) sec?A
q2 k=1

2

k-1 iA

+Bj|_}

+ (B=A)2(p=0)2 + 2kB(B-A)(p-a)] x 1 L(B=A)(p=e)cosAe
j=o G+1)?

2 q=
087X r(B-A)2(p-a)2 + ] [K2(BZ - 1) sec?A
q2 k=1

Kl ) (5 a) praycos e + g
+ (B-A)2(p-a)2 + 2kB(B-A) (p-a)] x I p-a)cos Ae 1

j=o (G+1)?2

[(g-1)2(B%-1)sec2X + (B-A)2(p-a)2 + 2(q-1)B(B-A) (p-a)]x

I
j=o (3+1)2

_ qEZ ](B-A)(p—a)cos )\e-iA + Bj[r %

j=o (3+1)2

(q-1)2B2+(B-A) 2 (p-a)2cos?A + 2(q-1) * B(B-A) (p-a)cos?A }

qZ

- - 2
_ 1| (B-a) (pra)cos A e + B
(3+1)

j=o

Showing that the result is valid for m=q. This proves the lemma.

THEOREM 1. If f£(z) = 2P+ | a2"¢ s*(a,B,p,a), then
k=p+1

i

Ia < n—(§+1) I(B—A)(p—a)cos e A + Bk]

n k=0 k+1

2
=2 | (B-a) (p-a)cos e I + Bl }

+

(2.2)
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for n 2 ptl and these bounds are sharp for all admissible A,B,X and a and for each

n.
PROOF. As f ¢ S (A,B,p,a), from (1.9), we have

iA . Zf,ﬂ _ P+[pB+(A-B) (p-a) Jw(z)
e’ secA £(2) -ip tan A 1+Bw(z) s WER,

This may be written as

{Be“‘ sec ).sf’(z) + [-pB+(B-A) (p-a)-ipB tan A Jf(z)} w(z)

i ’
= (p+ip tan A )f(z) - e sec A zf(z) .

Hence

ptk

I:Bei)‘ secA{pzP + ]| (p+k)a i }+
k=1 P

oo

[-pB+(B-A) (p-a)-ipB tan A ] {zP + Z ap+kzp+k}:| w(z)

k=1
° +k
= (p+tip tan i) { 2P + Z (ptk)a PLaig
ptk
k=1
eiA sec A { pzP + E (ptk)a zp+k}
P p+k

k=1

or

l:pBe“ sec A+ [-pB+(B-A) (p-a) -ip B tani ] +

DR (p+k)Bei>‘ sec A+ [-pB+(B-A)(p-a) - ip B tan A] }ap_‘_kzkjl w(z)

k=1
A b 12 K
= (ptip tan A - p ei secA) + Z { p+ip tan A -(p+k)e " sec Ala K2
k=1 P

which may be written as

1 I: {(p+k)Bei)‘ sec A+ [-pB+(B-A) (p-a) - ip B tanA]} ap+kzk:l w(z)

k=0
o«
i k
= z [p+ip tan A - (p+k)e sec A ]a z (2.3)
K=o ptk
b K+l
where a_=1 and w(z) = Z b z + .
P k=o k+l

Equating coefficients of z™ on both sides of (2.3), we obtain

m-1
) {(p+k)Beﬂ sec A+ [-pB + (B-A)(p-a) - ip B tani ]} a k Pmok
k=0 pt+ m-

ia
= {p+ip tanA- (ptm)e ~ sec A} 2 im ;
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which shows that ap+m on right-hand side depends only on

ap, ap+1, o e e s ap+(m_1)

of left-hand side. Hence we can write
m-1
=0
m

= z [ptip tan X - (p+k)ei}‘ secA]a
k=0 P

«©
k+ X Azk

z
+k kemtl k

for m=1,2,3,... and a proper choice of Ak(k 2 0).

Let z=rele,0<r<1,0§e§2ﬂ,then

263

z [{(p+k)B ei)‘ sec A+ [-pB+(B-A) (p-a) - ip B tan A ]} ap+k zk] w(z) =

m-1 i 2 2k
z |(p+k)Be sec A+ [-pB + (B-A)(p-a) - ip B tan)\]l |ap+k| r
k=0
21 2m-1 2
== [ I Z {(p+k)Bei)\ sec A+ [-pB+(B-A) (p-a) -ipB * tanA] }a rk eiek| d6
2m g k=0 ptk
2t m-1 2 2
: L. g ) {(P+k)Be1)‘ sec A + [-pB + (B-A) (p-a)-ip*B-tan)]} a rkeiek| |w(reie)| +db
2w 0 k=0 ptk
2t m . ® 2
L g | ¥ {p+ip tan).-(p+k)eix secAla rke:Lek ) Akrkeiekl - de
M0 ko Ptk kemt1
m 2 2 ® 2
2 z | p+ip tanl-(p+k)ei)\ sec)‘l |a +k| r2k+ Z IAk| er
k=0 P k=m+1
m 2
2 Z |p+ip tanA-(p+k)ei}‘ sec )\I Ia I er . (2.4)
ptk
k=0
Setting r > 1 in (2.4), the inequality (2.4) may be written as
m-1 ix 2
z { l(p+k)Be sec A+ [-pB+(B-A) (p-a) -ip B tan A]I -
k=0
iA 2 2
- | p+ip tan A -(p+k)e " secA| } |ap+k|
2 2
2 ]p + ip t:ank-(p-l—m)ei)t sec A| Ia | . (2.5)
ptm
Simplification of (2.5) leads to
2 cos?A m=1 2,02 2 .
la, | ===+« T {k2(B%-1)sec?\ +(B-A) (p-a)[(B-A) (p-a)+2kB]}|a__. | (2.6)
ptm m? k=0 Ptk
Replacing p+m by n 1in (2.6), we are led to
2 2 n-(p+1) 2 .
la_|“sSos™A . § {k2 (B2-1)sec?\ +(B-A) (p-a) [ (B-A) (p-a)+2kB]1} |a_.. | , (2.7)
" (a-p)? k=0 ptk
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where n 2 p+l.
For n=p+l, (2.7) reduces to
la_ . |% s (B-A)2(p-a)2cosA

p+l -

2
or |ap+1| s (B-A) (p-a)cos A (2.8)

which is equivalent to (2.2).
To establish (2.2) for n > p+l, we will apply induction argument.
Fix n, n 2 p+2, and suppose (2.2) holds for k = 1,2,..., n-(p+l). Then

2 2
la|” = 087X ((B-A)2(p-a)? +
(n-p)2
n-(p+1)
z {kz(Bz-l)secz)‘ + (B-A) (p-a) [ (B-A) (p-a) + 2kB] }
k=1
2
k-1 -1A
< 1 | (B-A) (p-a)cos A e oy Bj| }o. (2.9)
j=o (3+1)?

Thus from (2.7), (2.9) and lemma 2 with wm=n-p, we obtain

~

|a ]‘ < n-ﬁpH)LB-A) (p-a)cos A et 4 Bj|~
j=o (3+1)?

This completes the proof of (2.2). This proof is based on a technique found in
Clunie [4].
For sharpness of (2.2) consider
P
f(z) = z , |8l =1, B840

(Eﬁé)(p—a)coske-iA
(1-Béz)

Remarks on Theorem 1:

(1) Setting B=1 and A=-1 in Theorem 1, we get the result of Patil and
Thakare [1].

(2) Setting B=1, A=-1 and p=l1 in Theorem 1, we get the result of Libera [5].

(3) Setting B=1, A=-1, p=1 and a=0 in Theorem 1, we get the result of
Zamorski [6].

(4) Setting B=1, A=-1, p=1 and A=0 in Theorem 1, we get the result of
Robertson [7] and Schild [8]. -

THEOREM 2. If f(z)=2F + Z a zk € SA(A,B,p,a) and u 1is any complex

k
number, then k=p+1

|ap+2-u a2p+1| s (B_Ai; =% os Amax { 1, | (B-A) (p-a) (2u-1)cosA —eixl} (2.10)

This inequality is sharp for each .
PROOF. As f € SA(A,B,p,a), from (1.9) we have

eiAsec A_E%?£§l -ip tan A = P+[PBT£:;%2§P-G)]V(Z) (2.11)
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©

where w(z) = ] b zk € Q.

Rewriting the form (2.11) as
ix zf“(z)
p-e” sec }‘——f(z) + ip tan A

% + [-pB+(B-A) (p-a)-ip tanA B]

w(z) n
Belxsecx

eiA secA[pf(z)-z£7(z)]

Bel? sec A+ (2£7(2)) +[-Bp ellsech +(B-A) (p-a)£(z)

k

i) v
-e sec A X kap+k z

k=1

-] -]
(B-A) (p-a)[1 + zk] + Beix sec A Z k a
ki k=1

J a X
-1 ptk ptk

oo

-eix sec A z k a +k 2
k=1 P

k

(B-A) (p-a) + ) [{ (B-A)(p-a)+«k BeiAsec Ala

+1<]zk
k=1 4

awl

ix L
e s MG 2t TEh e X

i
x {2 a 2 _((B—A)(p-a)+Be secA)az

2
P (5-) (p-9) }z4 4+ .00

ptl

and then comparing coefficients of z and z2 on both sides, we have

iA
b, = - & sec A a
1 (B-4) (p-~) “ptl
eiA sech ix 2
b2 = - — [2(B-A)(p—u)ap+2 - {(B-A) (p-a)+e "secA }a p+1]°
(B-A) “(p-a)
Thus
A e B |
pt+l i
e 'secA
and
i
a - _ (B-8)(p-0) |, (B-A)(p-0)+e seck
p+2 2 ei)‘sec N 2(B-A) (p-a) pt+l
Hence
- 2 =
ap+2 va ptl
ix
_ (B-A) (p-2) b + [(B-A)(P'a)+e sech _ 1]a2
2e:l. sec A 2 2(B-A) (p-a) p+l
—A) (p- —A) (p- iA A2 (peg)2
-_ 3 in)(ga) b, + [(le(\l);_(.i)ti(t)tz) sech _ u](git;) (p-2) b12 R (2.12)
2e” "sec A P e sec?i
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Thus taking modulus of both sides of (2.12), we are led to

2 =
'uap_‘_ll

i
(B-A) (p-2) _(B-A) (p-a)+e "secA _ . 2(B-A)(p=0) , 2
2SR cos 2 b, - { 3 0B-A) (p=a) u} ETI b,

ix
- (B-A)Z(E-a) cos t [b, - (2 sec)\;)‘(B—A)ip-a)(ZU’l) b2 |. (2.13)
e sec

Using lemma 1 in (2.13), we get

- ua? l s (B_Az; —%) cosA max {1, l(B-A)(p—a)(Zu-l) cos A-eikl}

Ia p+l

p+2
and since (1.11) is sharp, then (2.10) is also sharp.

Remark on Theorem 2. Setting (i) B=1 and A=-1, (ii) B=1, A=-1 and p=1,
(iii) B=1, A=-1, p=1 and a=0, (iv) B=1, A=-1 and A=0, in Theorem 2, we get the
results of Patil and Thakare [1].
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