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ABSTRACT. In the integration of the equations of motion of a system of particles, con-
ventional numerical methods generate an error in the total energy of the same order as
the truncation error. A simple modification of these methods is described, which re-

sults in exact conservation of the energy.
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1. INTRODUCTION.

When applied to the motion of a system of particles, conventional numerical methods
for the integration of ordinary differential equations only approximately conserve the
total energy of the system. The error in the calculated value of the energy is of the
same order as the truncation error in the velocities. In previous work [1]-[5], a new
class of methods was described, which maximally conserve the constants of motion.

These methods exactly conserve the total energy and linear momentum, and conserve the
total angular momentum to at least one higher order than the corresponding conventional
methods.

In what follows, our purpose is to show how conventional numerical methods--ex-
emplified by the third-order Taylor series and Adams' formulae--can be modified so
that exact conservation of energy occurs. This modification simply involves the in-
troduction of adjustable, multiplicative parameters, whose values are unity for the
conventional case.

2. EQUATIONS OF MOTION.

The following is a brief description of the equations of motion of a system of
n particles, interacting according to a pairwise-additive potential. For more details,
see [1] or [5].

Suppose particle i has mass m position vector
>

r, = (xi,yi,zi), .1

velocity vector
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Newton's law of motion
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relates the acceleration a; to the force }i’ given by
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where ¢ 1is the potential of interaction. It will be assumed that ¢ has the pair-

wise-additive form

0T, s Eppeaa) = L 6. (r;) (2.6)
i’z n i< ij o ij

>

where rij is the magnitude of the vector distance rij between particles i and
> >
r

N
i " rj - 2.7)

As a consequence of equation (2.6),

> n >
F. = IF, (2.8)
i =1 ji
where N N
> > d¢ r d¢,.
I T @.9)
) ji Ty i T3
> >
and Fji =0 if j = i. The introduction of equation (2.8) into equation (2.4) gives
the equation of motion
d¢,, T
> > n .
ma = p F, - 1 1A (2.10)
=1 J =1 “Fij Tij3

For n particles, equation (2.10) yields a system of second-order ordinary differ-
ential equations for the ;;. This system may be used to solve for the Pi' and ?i'
at any later time t' = t + At, given the ;; and ;; at time t.

Conservation of the total energy E occurs because of the existence of the poten-

tial ¢. Here,

1 S | > >
m,(v,* v,) + ¢ = L 7 mi(vi- Vi) + I ¢
i=1 i=1 i<j 1ij
> > > >
where a-b denotes the scalar product of two vectors a and b. Conservation of

energy is expressed by the equation
E(t') = E(t)

for any two times t and t', with E evaluated along the trajectory.
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3. CONVENTIONAL NUMERICAL METHODS
A simple example of a conventional approximation method for the numerical solu-

tion of equations (2.10) is provided by the truncated Taylor-series formulae

n 2 3
o= I+ v,at+ L (Ar)” 2. (AF) (3.1)
rc,i T, Vi n, jzl iji 3 + Gji 3
and
> 1 32 ae)?
Vi =V, 4= I i",At+6,iT (3.2)
c,i i mi j=1 ji j
> >, >, >,
where the r' and v' ., are the calculated values for the r and v at time
c,i c,i i i
t' =t + At, and
dF as.. v —d2¢ d¢ ..T
. ex Vi . r..r,
¢oo- i ___7ji iy 31 1 §i ) 31§ (3.3
ji dt dr.. r,. 2 r,. dr,. r..
ji “ji dtji ji ii ji
where
> >
dr, r...v,
i’ - i _ _Ji i
ji dt r,.
ji
and
> -2 _2
Vji Vi Vj

The method of equations (3.1) and (3.2) is of third-order, since

-7 4 (3.4)
L rc’i + 0[(at) ']
and
i I | 3 (3.5)
vy vc,i+ o[ (at)™]
due to the neglect of the succeeding Taylor-series terms. These errors generate an
error of 0[(At)3] in the value of the energy Eé calculated using the ?é i and
v '
c,i
=E'-E-= 3 (3.6)
AE, = E_ E = 0[(at)7]
The third-order Adams' method arises via equations (3.1) and (3.2) and the ap-
proximation
3.. =232 3.7)
Gij Gij + 0[At]
where
va FoigFig (3.8)
RIS M '
ij At
I i B >
n equation (3.8), Fc,ij denotes the value of Fij obtained from equation (2.9)
1 .
using the rc’ij. Equations (3.4), (3.5), and (3.6) also hold when the ¢é? are

5 ij
used for the G, ..
ij
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4, ENERGY CONSERVING MODIFICATION OF CONVENTIONAL METHODS.
Consider the third-order methods of Section 3, with E;J replacing either the
a
Eij or Zfij :
n 3
LR UV S | ) Ry M €1 (4.1)
c,i i i m, _ ji 2 ji
i j=1
and
> > 1 n > -+ (At)2
V' =Vt I P At GRS (4.2)
c,i mogop | 31 ji
When equations (4.1) and (4.2) are used to obtain estimates for ;i and _\;i, an error
AEC is made in the total energy, which is given by
' o 1 -)v ) > [
BE = E - E= 121 7™ Og i Ve, iVt Yoo T ¢
n n n
= T I (31*'% r F ) 'fji
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At At at]
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i< ij i 3 ij
Ad,
> At > i
+ (vij + aij 2) Fij + At (4.3)
where
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n F, . F
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rErEr
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and
1 = 1 - ?l
c,ij c,j c,i (4.4)

> % *a . R
Suppose now, instead of using Gij = —éij or G in equation (4.3)--which leads

ij

to an error AEc of 0[(At)3]——that adjustable E:J given by

or

%k

¢.*= ¢ ¢C.. 4.5)
13 1] 13

> % *a

G, = €
15 7 45 Cij
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is used. The ij are to be chosen so that

€ =
i3 1 + 0[at] (4.6)
(preserving the order of the method) and so that exact conservation of energy occurs.

Solving
AE =0
c

for the eij gives, for example, for (4.5), the equation (cf. [1] and [5])

2
> > (at) > At
{ + —-— . - €
v1j aijAt + bij A } Gij > ij

Ad. .
> > At = ij _
+ (vij + a5 7;) Fij e < 0 %.7)

For n particles, equation (4.7) yields a set of implicit, coupled equations in the
€.., since the b,, and ¢' .. depend upon the values of the €_,.
ij ij c,ij i

For small At , the equations of (4.7) are strongly linear in the %j' The

>
only nonlinear dependences on the Ei' occur through the bij and ¢é ij (through
’

the ré ij). In both these cases, the terms involving the Eij occur with coefficients
proportional to (At)3. (Compare equations (4.1), (4.2), (4.4), and (4.7).) In con-
trast , the coefficients of the linear terms in €ij’ namely

~,. +a,.At) - &

Vig T 213°Y " Pi3 2

are of C[At].
Because the equations of (4.7) are linear except for terms of 0[(At)3], they

may be easily solved via the iteration formula

Ag. .
SES R
_ 2 At ij ij 2 ij %.8)
s T o 2—— .
e FYC A WY R C L
1] ij ij ij 4
For small At , the equations of (4.8) are solved via successive substitutions,
starting with
=1 (4.9)

€
ij
Iteration to convergence of the eij guarantees exact conservation of energy in the

method.
Higher-order formulae may be obtained directly in the same way as equation (4.7).

If the highest-order terms involve

o
ij at® ’

then these are replaced by

T(m)y* _ > (m)
Fij TTij Fij
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where the eij satisfy equation (4.6). The formulae for the b are substituted

c,i
in equation (4.3), the sum transformed to i<j, and the ij terms set individually

to zero. These resulting implicit equations in the Eij are then solved by standard
methods, with the first approximations given by equations (4.9).
For very high order methods, the extra algebra needed to obtain the Eij is con-

siderable, and substantially reduces the relative efficiency of the method. However,
it should be noted that conservation of energy guarantees stability in the usual sense
(bounded motion), which is always a desirable computational property.
5. NUMERICAL EXAMPLE.

As an illustration of the affect of the modification described in Section 4, the
modified and unmodified forms of the third-order Adams' method are compared numerically
on a sample two-dimensional problem involving two particles.

Here n = 2,
m =m, = 2 (5.1)
and the gravitational interaction

1

¢ () = - —
12712 rio

(5.2)

is used. The initial conditions are chosen so that the center-of-mass of the system

is at rest with

- &
r,(0) = (5,0 (5.3)

>
v12(0) (0,1.63). (5.4)
The value of the energy is then

E = - 0.6715500000... (5.5)

Because of the form of ¢12 in (5.2), the exact motion that occurs traces out

a closed ellipse with major-axis
2a = 1.48909 23855 (5.6)

corresponding to upper and lower bounds on 2P of
r = 0.98909 23855

and r_= 0.50000 00000.

The motion repeats itself with period T equal to
T = 4.,0366 15087,

The implicit equations of the third-order methods were iterated to a relative con-

ergence of 10-8. A constant step-size of

At = T/80

was used. In order to focus attention on the errors made in the methods, results were

obtained at times t which were multiples of the period t , where the exact solu-
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tion returns to the initial conditions. Measures of the errors at these points are the
error in the calculated value of E, the deviations from zero of dX/dt and Y, and

the deviation of from 1/2.

r

Table I gives iiese quatities for several times t = mt. It can be seen that the
unmodified Adams' method makes an error in E as well as larger errors in dX/dt and
Y, and compares unfavorably with the modified method. Another simple measure of the
error for this problem is the number of steps over which a phase error of 180° is made:
Ty = 0.985 instead of 0.5. For the unmodified methods,

this was about 2800 steps (351). For the modified methods, at 20000 steps (2501), a

i.e., the time at which

phase error of less than 180° had been made.

Programs for the methods are given in the Appendix of [6].

ax

m Method E r dt Y
0 Exact? - 0.67155 0.50000 0.00000 0.00000
Ub - 0.67140 0.50221 0.20630 -0.08704
M€ - 0.67155 0.49997 0.02164 -0.00462
2 U - 0.67099 0.50873 0.40254 -0.17213
M - 0.67155 0.49997 0.04328 -0.00923
3 U - 0.67040 0.51924 0.58036 -0.25351
M - 0.67155 0.50001 0.06492 -0.01385
5 U - 0.66905 0.55019 0.86162 -0.39996
M - 0.67155 0.50017 0.10818 -0.02311
10 U - 0.66679 0.65934 1.15127 -0.64976
M - 0.67155 0.50116 0.21592 -0.04639
100 u - 0.66561 0.97998 0.82003 -0.97598
M - 0.67155 0.62554 1.35684 -0.57888

At times t = m

3Initial conditions

bUnmodified third-order Adams' method

“Third-order Adams' method modified to give exact energy conservation.
TABLE I.

Comparison of Modified and Unmodified lMethods
on a Simple Gravitation Problem

REFERENCES

1. LaBUDDE, R. A. and GREENSPAN, D., "Discrete Mechanics--A General Treatment', to be
published in J. Computational Phys.

2. LaBUDDE, R. A. and GREENSPAN, D., '"Discrete Mechanics for Anisotropic Potentials',
Univ. of Wis. Computer Sciences Dept. Report WIS-CS-203 (1974).

3. LaBUDDE, R. A. and GREENSPAN, D., "Energy and Momentum Conserving Methods of Arbi-
trary Order for the Numerical Integration of Equations of Motion. I. Motion
of a Single Particle", Univ. of Wis. Computer Sciences Dept. Report WIS-CS-
208 (1974).

4, LaBUDDE, R. A. and GREENSPAN, D., 'Discrete Mechanics for Nonseparable Potentials
with Application to the LEPS Form', Univ. of Wis. Computer Sciences Dept. Re-
port WIS-CS-210 (1974).

5. LaBUDDE, R. A. and GREENSPAN, D., "Energy and Momentum Conserving Methods of Arbi-
trary Order for the Numerical Integration of Equations of Motion. II. Motion
of a System of Particles,” Univ. of Wis. Computer Sciences Dept. Report WIS-
CS-215 (1974).

6. LaBUDDE, R. A., and GREENSPAN, D., "An Energy Conserving Modification of Numerical
Methods for the Integration of Equations of Motion," Univ. of Wis. Computer
Sciences Dept. Report WIS-CS-217 (1974).



Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

