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ABSTRACT. In this paper, solution of a pair of Coupled Partial Differential equations
is derived. These equations arise in the solution of problems of flow of homogeneous
liquids in fissured rocks and heat conduction involving two temperatures. These
equations have been considered by Hill and Aifantis, but the technique we use appears to
be simpler and more direct, and some new results are derived. Also, discussion about
the propagation of initial discontinuities is given and illustrated with graphs of some

special cases.
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1. INTRODUCTION.

In this paper we solve a pair of coupled Partial Differential Equations, which
pair may arise in a number of physical situations, including, e.g., flow of homogeneous
liquids in fissured rocks [1] and heat conduction involving two temperatures [2]. Such
equations have been considered by Hill [3], by Hill and Aifantis [4,5) and by Lee and
Hill [6], wherein they have arrived at the same solutions as those in this paper, albeit
by a different technique. Our method, in which inversion depends upon the idea behind
equation (3.5), appears to be simpler and more direct than that of these investigators.
Also, we have deduced some results from these solutions which are not derived in
literature. See also Gopalsamy and Aggarwala [7] where a slightly different pair of
coupled partial differential equations is considered in a different setting.

2. THE PROBLEM

We wish to find solutions u(x,t) and v(x,t) of the equations

g% = Dlvzu - au + blv (2.1a)
v _ 2
3t D2v v + agu - b2v (2.1b)

(where a;, bl,az and b2 are constants), with the initial conditions

u=f(x) and v=0at t = 0, and with (identical)
homogeneous boundary conditions on u and v.
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3. SOLUTION
Taking the Laplace Transform (u(x,t) — u(x,s)) of (2.1), we get
ST - DAE - ayu ¢ by 4 (%) (3.1a)
- 2_ - =
sV = Dzv v + asu b2v . (3.1b)
We now assume that there is a Fourier Transform (u(x,s) — a(t,s)) such that
vu = —525. Taking this Fourier Transform, we get
si = -D %0 - e )i + bV + T(6) (3.2a)
= 2= = =
sv = -D2§ v + agu - b2v (3.2b)

where T(¢) is the Fourier Transform of f(x).

These equations give

- a,f(¢) ( )
v = 3.38

IR

D D, (£5+¢5) (£5483)

where
2 [(s+a))D,+(s+b,)D ] F J[(s+al)D2~(s+b2)D1]2+4D102b1a2
1,2 25,1,

AT 1% 82, say. (3.3b)

To invert 5, consider the problem g% = v2h with h = f(x) at t = 0 and the same

boundary conditions as on u and v.
Taking the Laplace and Fourier Transforms, we get
S Y (3.4)
s + £

If we now consider the fact that the inverse Fourier Transform of h is given by

0
I e_St h(x,t)dt, then since
0
s._ % [ (o) )
2 .2 2 2 2 2
DIDZ(CZ*CI) £+ §1 [ S §2
it follows that the inverse Fourier Transform of v is given by
_ a, o g5t -3t
ve—2 [e -e ] h(x, t)dt (3.5)
DyDy(¢57¢1) 70
L .
i} Dag I At sinh(tdp? + 2 h(x,t)dt (3.6)
17270 JB + C
n/2
- Bf%‘ [ [ e™ 0, )18t sin 8)cosh(Ct cos 6)t sin 6 dodt (3.7)
172 0 70
(see [8], p.743(2))
a ® xn/2,. -sk,u -k,u -sk,u -k ,u
= ?ﬁgﬁ_ I I [e 1 ‘e 3 + e . e 4 ]h(x,u)I0 (Bu sin 8)u sin 8 dédu
172 "0 70
(3.8a)
where
Kk _=21*DP_D)-Dy
1,2 'zﬁzﬁ;‘ + 'Eﬁzﬁ;‘ cos 8 (3.8b)
D -
K, - 1%z * D3y Dyby - Dyay
3,4 D.D ~—2p.p. — Cos & . (3.8¢)

172 172
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The inverse Laplace Transform must now be performed w.r.t. s (s — t) and noting

that, with the usual notation,
0

| estsct-6rat = eS¢ (3.9)
0

(where & is the Dirac Delta function), it is given by

-k 34 -k4u
?n—n— Ij [ 5(t-uk)) + e 6(t—uk2)] I, (Bu sin )h(x,w)u sin 6 dodu. (3.10)
. J _1 t
Using f(u)&(t—klu)du e f | ve get
0 1 1
a, n/2 t —kat/k1
v = fﬁ—ﬁ— -E e Io(t B sin O/RI)h(x,t/kl)sin 8 de
/2 t k4t/k2
m— Io(t B sin 0/k2)h(x,t/k2)sin 8 dé
= I1 + 12 . (3.11)
Putting u = 1 in I,, u-= 1 in I,, and combining the two integrals, we get
LT AR
-6t D
a,te 1
ve=iiep [ e 1i(athtx,ut)du (3.12)
D, - D 0
1 2 D2
where
a, - b D,b, - a,D
r - D1 _ DZ , 5 1D2 _ D1 2 and
2 1 2
2/ab,
- . .
r——_D—rJ ”ﬁ u”uﬁ ;l (3 13)
2

Now, using (2.1b) and the fact that v°h = 0&h/dt, we get, after some
simplification
-a; t ay e 5t D1
u=-e h(x D t) + ——l—-—ﬁ—— t e_r"‘t

Dy

Equations (3.12), (3.13) and (3.14) give the solution to our problem.

It may be noted that equations (3.5) and (3.1b) may be used to invert these
relations [3].

4. SPECIAL CASE

u - D
Il(qt)h(x,ut) J ﬁ—_"_ du. (3.14)

The most important case for applications is when 8, = a, = b1 = b2 = a. In this

case the solution becomes
D

« e—at 1
vt ID t h(x,ut)I (nt)du (4.1a)
2
and
-at "1 U5
u= e thexnt) + D—I-—TI t h(x,ut) T, (nt) o du (4.1b)
Dy
where

2a
= 'z — ;z - s’ . .
n -In—l—_—-b—z-r v u Dz Dl u (4 lc)
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If, in this case, we assume that I h(x,t)dx = 1 for all t, we readily obtain

I v dx = e_at sinh at

j u dx = e_‘xt cosh at

(4.

(4.

2a)

2b)

which shows that if initially the "u-system" is supplied with a "unit" of heat and no

heat is escaping from the boundaries (the boundary conditions on h are the same as those

on u or v) then half of the heat goes into the "u-system" and the other half goes into

the "v-system" at the rate implied by equations (4.2). It is interesting to note that

this result is independent of the relative magnitudes of D1 and D,.

In many cases h(x,t) is given as a sum (or integral) of a function

multiplied by a function of t. If we assume

h(x,t) =Z F

-t
(x) e
8 B

integration gives
u = e—ath(x,Dlt) + eﬂat Z F, (x)G,(t)
8 A B

_ _—at
and v=e ; Fp(x)Hp(t)
where
-Bt(D,+D,)/2 A
Gy(t) = e 172 [cosh(tJAzli»Azz) S
JA21+A22
~pt(D,+D,)/2 sinh(tJA21+A22)
Hy(t) = ae T 12
JA§+A3

where
_B _ _
Ay =3 (D3 Dy), Ay = a

To obtain equations (4.3), we need

D TR N
1= b puty (at) ju du
1 D 1 Dl -u
2
and
Dy
-But
I2 = In e Au Io(nt)du
2
where n is given by (4.1lc).
If we put u = D1 sinze + D200528
we get
I - D1 - D2 e—Bt,(D1+D2)/2(I 1
1 2 374
and
/2
I2 =2 I: cosh(Alt cos x)Io(Azt sin x)sin x dx
where

n/2

13 =2 J; cosh(Alt ‘cos x)Io(Azt sin x)dx

and

sinh(tJ 1

(4.

(4.

(4.

(4.

(4.

(4.

(4.

of x

3a)

3b)

3c)

.3d)

3e)

3f)

4a)

4b)
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n/2
14 =2 Io 51nh(Alt cos x)Il(A2 t sin x)cos x dx.

These integrals may be evaluated with the help of known results (see, e.g.[8]
pages 742(1) and 743(2)).
5. SEPARATION OF VARIABLES

It is to be noted that equations (4.3) may also be derived by assuming the

solution to be of the type u = Fp(x)Gﬂ(t), v = Fp(x)Hﬁ(t) where Fp(x) are solutions of

VZF + BF_ = 0, solving the resultant pair of ordinary differential equations in GB and

B B

Hﬂ with Gp =1, HB = 0 at t = 0 and superposing. The same process may also be used to
solve equations (2.1), in which case the results are
-a,t
w=e D h(xDt) + I F(x)Gy(1) (5.1a)
B B B

v = z F5<X)Hp(t) (5.1b)

where

ZF () = £(x), B(x,t) = Z Fy(x) At

%2 e_kt sinh(tJAl+A2)

Hﬂ(t) =

JAE+A2

A
cosh(tJAf+Ag) o1 Rt innced
1a2:42

Aptay

kt

- vy N s D
Gp(t) = e A1+A2) - e

where now

=
"

(DIB + DZB +a+ b2)/2

1

Al = (Dlﬂ +a; - Dzﬁ - b2)/2
Ay = Jagh) .
6. PROPAGATION OF INITIAL DISCONTINUITIES
It is to be noticed that the last term in Gp(t) simply cancels out the first

term in u. We shall disregard this term in Gﬁ(t) in this discussion. If now DIDZ # 0,

then the initial discontinuities of u and v are immediately smoothed out. If D1 # 0 and

—bzt —bzt 2
D, = 0, then for large values of 8 in (5.1), Hﬁ(t) x e /B8 and Gp(t) = e /B8°, so

that if 2 Fp(x) (= f(x)) is discontinuous at some point, then this initial discontinuity

of u is smoothed out for t > 0. If, however, D1 = 0 and D2 # 0, then for large values

-a,t

-a 1

t
of B Hyt)=e 1"/p  and Gy(t) = e
discontinuities of u do not get propagated into v, they stay as discontinuities of u and
-a,t
decay exponentially as e 1 . The same statement is also true for discontinuities in

+ 0(%), so that, while the initial

normal derivatives across some surface.
If D1 = 0, and we eliminate v from equations (2.1), we get
2
d“u g 2 2 Su _
;;2 - D2 5t v'u - albzv u + (al+b2) 3t + (albz-azbl)u = 0. (6.1)

If now we prescribe the initial values of u and g% and the boundary values of u for
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(6.1) and if the initial values of u as we approach the boundary do not coincide with
the boundary values of u as we approach t = 0, then there is an initial discontinuity in
u near the boundary which does not die out immediately. The boundary condition on u in
this case should be modified from the consideration that for D2 # 0, there are no
discontinuities in v and then, integration of (2.la) gives

-a,t -a,t t a,8

us,t) =u(s,00e * +e ' [ e 1 byv(s,8)de (6.2)
o

where s is a point on the boundary. If, e.g., u(x,0) = PO’ u(s,t) = P1 for t > 0

alPl for t > 0), (6.2) gives

(which, using (2.la), gives blv(s,t)
—alt
u(s,t) = Pl + (PO—Pl)e . (6.3)
This equation once again indicates that the initial discontinuities of u (PO—P1 in this

-a,t

case) die out exponentially as e 1 . The result in equation (6.3) coincides with the
one obtained in [1] for the case when g% term is absent in (2.1b) and D1 = 0. In
equation (6.2), u(s,0) = Lim u(x,0). In (6.3), P0 and Pl are constants. Also f(x) (or

XS
&f/0n in the case of possible discontinuities in the normal derivatives) in the above

discussion is assumed to be such that 2 Fﬁ(x)/ﬁ (or z(de(x)/dn)/p respectively) is

uniformly convergent. The symbol x denotes a vector in n-dimensions throughout, however
the following examples and graphs are given for n = 1.

Examples: We give some examples to illustrate the above results. Numerical values are
a, =8, = bl = b2 = 1.

1. In this case f(x) = x/2 for 0 < x < .5 and f(x) = l-%-i for .5 < x < 1.

indicated in Figs. 1-6.

D1 = 0 and D2 = 1. Fig. 1 illustrates the decay of discontinuity in du/dx at x = .5.

2. f(x) is the same as in example 1. D1 =1, D2 = 0. Fig. 2 illustrates the

smoothing of discontinuity for t > 0.
3. f(x) =0 for 0 £x < .5and f(x) =1 for .5 ¢(x<1. u=v=0atx=0 and
x = 1. Fig. 3 illustrates the decay of discontinuity in u at x = .5 and the

modification of boundary value at x = 1. Dl =0, D2 = 1.
4. Same as example 3 but with D1 =1, D2 = 0. Discontinuities are smoothed out

in Fig. 4.

0 at x =0 and x = 1. Fig. 5
=1,

5. In this case f(x) = 1 - cos mx, &u/fn

illustrates u -+ 1/2, v+ 1/2 as t -+ =, Dl =0, D2

6. Same as example 5 with D1 =1, D2 = 0.
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FIG. 3. DECAY OF DISCONTINUITY IN u at x = 0.5.
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