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ABSTRACT: In this paper we consider finite p'-nilpotent groups which is a gener-
alization of finite p-nilpotent groups. This generalization leads us to consider
the various special subgroups such as the Frattini subgroup, Fitting subgroup, and
the hypercenter in this generalized setting. The paper also considers the condi-
tions under which product of p'-nilpotent groups will be a p'-nilpotent group.
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1. INTRODUCTION.

We consider only finite groups. It is well known that a group is p-nilpotent
if it has a normal complement. We generalize this concept by defining a group G
to be wm-nilpotent, = a set of primes, if G has a normal ='-subgroup N with G/N
a nilpotent n-group. Let P be the set of all primes. When m = {p}, =-nilpotency
is same as p-nilpotency. When = = P - {p}, w-nilpotency is called p'-nilpotency.
In 1959 W.E. Deskins [1] defined the p-Frattini subgroup, ®p(G), as the intersec-
tion of all maximal subgroups of p-free index in G. He showed that ¢p(G) is p'-

nilpotent [2]. M. Torres [3] defined o*(G) = ¢p(G). Results similar to those

™
peP.
for ¢(G) were obtained by E. Arrington-Idowu [4] for ¢p(G) and by M. Torres for
¢*(G). We use these results and obtain characterizations for a group to be nil-

potent, metanilpotent. Using known results on p-nilpotent groups we observe that

p'-nilpotent groups form a saturated formation fp. We obtain results on the fp-

hypercenter of G similar to those known for the usual hypercenter of G and also a
characterization for a group to be p'-nilpotent. Some additional results are also
proved. We use standard notation and terminology as in [5].
2. DEFINITIONS AND KNOWN RESULTS.

DEFINITION 2.1 : G is wn-nilpotent, m a set of primes, if Gn, <G and G/G“, is a

nilpotent n-group. When = = P - {p}, G is called a p'-nilpotent group.

EXAMPLE 2.2 : Let G = A5 x H where H is nilpotent and 2,3,5 do not 1ie in =n(H).
G is m-nilpotent for m = n(H). G is not solvable.

Thus, a m-nilpotent group need not be solvable in general. However, a p'-nil-
potent group is always solvable.

The following proposition is easy to prove.
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PROPOSITION 2.3 : G is m-nilpotent if and only if G is p-nilpotent ¥ p e =.

COROLLARY 2.4 : G is p'-nilpotent if and only if G is g-nilpotent ¥ q # p.

It is well known that p-nilpotent groups form a subgroup closed saturated forma-
tion and that the intersection of two subgroup closed saturated formations is a sub-
group closed saturated formation. In view of Corollary 2.4 we then have that the

p'-ripotent groups form a subgroup closed saturated formation, Ep. We define Ep

locally as follows in order to make it integrated.

(p)
(q)

{ all p'-nilpotent groups }

_é'n

{1} ¥gqg#p.

_é-n

DEFINITION 2.5 : The Ep-hxgercenter of G, ZF (G) , is the largest normal sub-
)

group of G all of whose G-chief factors are [p-centra].

DEFINITION 2.6 : Let F be a formation having an integrated local definition.
N < G is called an F-immersed subgroup of G if: (i) N<= G, (ii) all G-chief factors
that lie in N are F-central.

DEFINITION 2.7 : A formation F is said to be normally closed if G ¢ F and N <G,
then N ¢ F.

Using tne following tneorem of M. Hale we can conclude that ZF (G) is p'-nil-
)

potent.
THEOREM 2.8 (M. Hale, Prop. 6 of [6]) : For a saturated formation F, F-immersed
subgroups 1ie in F if and only if F is normally closed.
We include the following two theorems for easy reference.
THEOREM 2.9 (E. Arrington-Idowu) : Let G be a group.
(i) x ¢ ¢p(G) if and only if G= <R, x > with p J [G : <R>] implies G = <R>.

(1.1.3 of [4]).
(i1) M<2G implies QP(M) < @p(G). (1.1.7 of [4]).
(ii1) QP(G) = G if and only if G is a p-group. (1.1.2 of [4]).
(iv) if G is p'-nilpotent, then every maximal subgroup of p-free index is

normal in G. (2.1.10 of [4]).
(v) Fp(G/¢p(G)) = Fp(G)/Qp(G), where Fp(G) is the largest normal p'-nilpotent
subgroup of G. (2.2.3 of [4]).
(vi) let D and M be normal subgroups of G with D < MM @D(G). Then M is p'-
nilpotent if and only if M/D is p'-nilpotent. (2.1.7 of [4]).
*

THEOREM 2.10 (M. Torres [3]) : ¢ (G)/F(G) < o(G/F(G)).

It is easy to verify that the product of normal p'-nilpotent subgroups of G is a
normal p'-nilpotent subgroup of G. Thus, every group G possesses a unique largest
normal p'-nilpotent subgroup, Fp(G).

(6).
It is easy to see that Op(G) is the Sylow p-subgroup of Fp(G) and ¢p(G). In the

*
DEFINITION 2.11 : F (G) = pIp Fp

light of this observation the following inclusions are obvious:

2(6) < F(6) < o™ (6) < F (6).
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3. F(6), o (6).
LEMMA 3.1 : Fp(G)/Op(G) = F(G/Op(G))-

PROOF: F _(G) is p'-nilpotent and the Sylow p-subgroup of Fp(G) is Op(G). Thus
Fp(G)/Op(G)
= G/Op(G) implies Np/Op(G) <1 G/Op(G), we have Np <2 G. Hence Np = Op(G).

©

A

F(G/Op(G)) = N/Op(G), say. Since (N/Op(G))p = Np/O/(G) char N/Op(G)

Therefore, N/Op(G) is a nilpotent group of p-free order and hence N is a p'-nil-
potent normal subgroup of G. Thus N < Fp(G). This shows that Fp(G)/Op(G) =
F(G/Op(G)). Q.E.D.

THEOREM 3.2 : F*(G) and ¢*(G) are metanilpotent.
PROOF: Fp(G)/F(G) = (Fp(G)/Op(G))/(F(G)/Op(G)) shows that Fp(G)/F(G) is nil-

potent. Hence pIp (Fp(G)/F(G)) = ( ng_F (G))/F(G) is nilpotent, i.e., F*(G)/F(G)

* p * * *
is nilpotent. Hence F (G) is metanilpotent. Since ¢ (G) < F (G), ¢ (G) is also
metanilpotent. Q.E.D.
PROPOSITION 3.3 : (i) F,(6/9(6)) = F,(6)/e(G),
* *
(ii) F (6/e(G)) = F (G)/¢(G).

PROOF : Fp(G)/¢(G) is a p'-nilpotent normal subgroup of G/¢(G). Hence Fp(G)/¢(G)
< Fp(G/@(G)). Let Fp(G/<I>(G)) = N/¢(G). (N/@(G))p = NPQ(G)/Q(G) char N/¢(G) =
G/2(G) implies Np¢(G)/®(G)<ﬂ G/¢(G) and hence Np®(G)<ﬂ G. Using Frattini argument,

= = . . s G ~
we have G NG(Np)¢(G). Hence G NG(Np) Thus Np<= G. Moreover N/Np®( )
(N/@(G))/(Npé(G)/¢(G)) is nilpotent. Therefore, N N ¢(G) < G. Using the general-

qPp
. .. - . = . N
ized Frattini argument we have G NG(Nqu)Q(G) Hence G NG(Nqu) Thus Nq D
G<¥q. Since N is solvable N can be written as a permutable product of its Sylow
subgroups, say, N =N ... N . Take N, =N_. Using the previous argument, we
P P P p
have N. N < F (G) ¥ i. Thus N < F_(G) and so (i) follows.
P1 Pj p p
* . 3
F/(6/0(6)) = pmp Fo(6/6(8)) = xp F(6)/(G) , using (1)
= (pzp Fpl6))/0(0)
= F(6)/2(6). Q.E.D.

It is well known that ¢(G) < G for a finite group G. We saw in 2.9(iii) that
¢p(G) = G if and only if G is a p-group. We now prove a similar result for ¢*(G).

THEOREM 3.4 : G is nilpotent if and only if & (G) = G.
PROOF: G nilpotent implies F(G) = G and hence 2" (G) = G.
Suppose ¢ (G) = G. We first consider the case ¢(G) # 1. In this case consider

6/6(6). o7 (6/6(8)) = xp ¢ (6/e(6))

ot (8,(6)/2(6))

(ptp 2,(0))/2(0)
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2"(6)/4(6)

G/o(G).

By induction on |G|, G/¢(G) is nilpotent and hence G is nilpotent. Next consider
*
the case ¢(G) = 1. If ¢ (G) = @p(G) for some prime p, then G = ¢p(G), a p-group

by 2.9(iii). Thus G is nilpotent in this case also.
*
We now assume that ¢p(G) <o (G) ¥ peP. Consider G/Op(G) s G/Oq(G) for p # q.

o (6/0,(G)) = o (G)/Op(G) G/0,(G).

® (G/Oq(G)) ¢ (G)/Oq(G) G/Oq(G).

By induction on |G|, G/O (G) and G/Oq(G) are nilpotent. Hence G = G/( Op(G) N
0 (G) ) C::9(6/0 (G)) x (G/Oq(G)) implies that G is nilpotent. Q.E.D.

It is well known that G is nilpotent if and only if G' < ¢(G). We now obtain
a similar characterization for a group to be metanilpotent, i.e., Fitting length
at most 2. First we prove the following lemma.

LEMMA 3.5 : Let H<tG. Then H/H f\¢*(G) nilpotent implies that H is metanil-
potent.

PROOF: From 2.10 ¢ (6)/F(G) < o(6/F(G)). Let 2(6/F(6)) = X/F(G). He' (6)/¢ " (6)
= H/HN ¢*(G) is nilpotent by hypothesis. Hence HX/¢ (G) = (H *( )/¢ (G))

(/67 (G))

is nilpotent. Thus (HX/F(6))/(¢ (G)/F(G)) = HX/e (G) is nilpotent. Now
(H/F(G)) (X/F(G))/(X/F(G)) = {(H/F(G)) (X/F(G))/(®*(G)/F(G))}%{(X/F(G)/(¢*(G)/F(G))}
shows that (HX/F(G))/(X/F(G)) nilpotent. Since product of nilpotent normal sub-
groups is a nilpotent normal subgroup, we see that H/F(G) is a nilpotent normal
subgroup of G/F(G), i.e., H is metanilpotent. Q.E.D.

THEOREM 3.6 : 2(G) < 2 if and only if G' ;:Q*(G).

PROOF: G' < Q*(G) implies G/¢*(G) abelian. Thus G is metanilpotent by 3.5,
i.e., 2(G) < 2.

Conversely, #(G) < 2 implies that G is solvable. Hence Op(G) # 1 for some p.

Clearly 2(6/0,(6)) < 2. By induction on |G|, (6/0,(6))" < o*(e/op(e)).
i.e., 6'0, (G)/O 6) <o (G)/O (6). Hence G' < 6'0,(6) < o7 (6). Q.E.D.

4, p'-NILPOTENT GROUPS.
In this section we obtain several results on p'-nilpotent groups. We know that

a minimal normal subgroup of a nilpotent group lies in the center of the group.
The corresponding result is not true for p'-nilpotent groups, in general, as A4
shows with p = 2. In the 1light of this observation we give the following propo-
sition.

PROPOSITION 4.1 : Let G be p'-nilpotent and let N be a minimal normal subgroup
of p-free order in G. Then N < Z(G).

PROOF: Since G is p'-nilpotent, it is solvable. N is of p-free order implies
that N < " weP. P is nilpotent since G is p'-nilpotent. N is a prime power
group since G is solvable. N is of p-free order shows that N is a g-group, q # p.
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Gp<ﬂ G since G is p'-nilpotent. Hence [ N, Gp =1, i.e., Gp < CG(N). N<1G

implies N ;=Gq ¥ Gq . This shows that L = NN Z(Gq) # 1. GP is nilpotent, so

6P < Cg(L). Thus 6 = GpGp < CglL), d.e., CglL) = G. Hence L = N = NN Z(6,)

because N is a minimal normal subgroup of G. Hence N < Z(Gq). Combining this with
N < 6P, 6P nilpotent, we have G° < Co(N). Thus G = GpGp < Cg(N),

i.e., N < Z(G). Q.E.D.

Next we obtain some information on maximal subgroups of p-free index in a group
which possesses a p'-nilpotent maximal subgroup.

PROPOSITION 4.2 : Let N be a p'-nilpotent maximal subgroup of G. Then for
every maximal subgroup M of p-free index in G we have either MG < NG or M= G.

The proof follows easily from 2.9(iv).

J.G. Thompson showed that if a group has a maximal subgroup which is nilpotent
of odd order then G is solvable, in particular, G is nonsimple. We now prove a
similar theorem for a group with a p'-nilpotent maximal subgroup under suitable
conditions and give examples to show that the conditions are necessary.

THEOREM 4.3 : Let N < G, N p'-nilpotent. If (i) p | [ G : N,

(ii) N is not a 2-group,

then G is a nonsimple group.

PROOF: (1) Suppose p | |N|. Then Np<ﬂlh i.e., N < NG(N ). Sincep | [G:NIJ,

p

Np < Gp for some Gp. Hence Np < NG(Nﬁ)' Let g ¢ NG(Np) - Np. Hence < N , g > <
NG(Np)’ i.e., Np<= G, since N < G.
(2) p I IN].

Hence N is nilpotent. If N is not a Hall subgroup of G, then there exists a prime
gl ( IN] ,[LG:NJ). As in (1) we see that Nq<ﬂ G. So we now assume that N

is a Hall subgroup of G. Suppose N is of odd order. Then using Thompson's theorem
mentioned above we see that G is nonsimple, hence we assume that N is of even order,

by hypothesis N is not a 2-group. Let r be any prime divisor of |N|. Then Nr -

N and hence N < NG(Nr)‘ Since N < G we have eijther NG(Nr) =G or NG(Nr) = N. If
NG(Nr) = G for some r, then N.< G and hence G is nonsimple. On the other hand,

if NG(Nr) = N ¥ r dividing |N|, then G is not simple by a theorem of Wielandt

(see Satz 7.3, p. 444 of [5]). Q.E.D.
REMARK : Hypotheses (i) and (ii) are necessary in 4.3. Take G = A5 and N = A4.
N < G, Nis 2'-nilpotent and [ G : N J = 5. G is simple. Take G = PSL( 2 , 31 )

and N = GZ' N < G, N is nilpotent and G is simple.

We know that if N <3G, then ®p(N) ;,@p(G) by 2.9(ii). Hence @p(N) < @p(G) n N.

The question of when equality holds leads to the next result.
THEOREM 4.4 : Let N be a p'-nilpotent normal Hall subgroup of G. Let N n QP(G)

be nilpotent. Then QP(N) =Nn @p(G).

PROOF: Let D = Nn @D(G). As noted before ¢p(N) < D. N p'-nilpotent implies

Np<!G. Also, N <o

(N) <o (G). Hence p } [ D: ®p(N) ], but for some i,

p p p
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p. | L D:

; (N) J where N =NN_ ... N . Suppose that P

® I R
p PPy P, L P, P

are the only primes that do not divide [ D : QP(N) ] besides p, where {jl s eee s js}

S

{1, ... , r}. Let M be a normal Hall subgroup of N minimal with respect to
(I, [D:¢p(N)]) > 1. Take M = Nprjl .. ijSNpi and note that
(M ,[CD: ®p(N) J) = pi >1, p; #p. Mhasa normal Hall subgroup K such that
M/K = Mpi since M is p'-nilpotent. Let Qo = Dpi . D nilpotent implies Q0 char
D <2 G, so Qy <9 G. Since p; | IM] and M is a Hall subgroup in N, Q; < M.

q’p(Mp.) = @(Mp.). Consider L = Ké(Mpi) <M. Since L < NM(L), M,o< NM(K) =M,

1 1 1

Mpi ;NM(chpi)), we have L <t M. Suppose Qp < L. Since P, 1 1K, Q < ¢(Mpi).

Using Hilfssatz 3.3(a), p.269 of [5], QO < 8(N) < ¢p(N); e, p; JCD: ®p(N) 7.

p

This is a contradiction and so Q0 £ L. We now show that this too leads to a con-
tradiction. Let R = LQ0 . M s a normal Hall subgroup of N so that M is a normal
Hall subgroup of G, since N is a normal Hall subgroup of G. Using Schur's

complementation theorem ( Theorem 2.1, p.221 of [7]) G =MV, M V =1. Since

L= K@(Mp‘) and M = KMp » M/L is an elementary abelian p,- group. Further,
i i

Ps | [V|. Consider G/L = (M/L)-(VL/L). VL/L =V, so V can be considered as
operating on a module M/L over GF(pi). We can apply Maschke's theorem to R/L < M/L
since P, 1 |v]. Hence M/L = (R/L) x (RI/L) where R;/L <3 G/L. i.e., M= RR, and
RM R1 = L. QO £ L implies that L <R, so R1 < M. Hence Rlv < G. R1V U< G

VU M= KMp and p, Py € m(M). Therefore,
i

Gp <K<L<Uj; i.e., LG:UJis p-free. Hence QD(G) < U. By choice of

fia

for some U <- G. L g R1 < R1

Q0 R QO <D< ®p(G) < U. Therefore, LQoR1V <U. LQ0R1V = RR,V =MV =G < U.

1
Thus we arrive at a contradiction when we assume that ép(N) < D. Hence

®p(N) = D. Q.E.D.

COROLLARY 4.5 : If F(G) is a Hall subroup of G, then ¢pF(G)) =
F(G) QP(G) ¥ p.

THEOREM 4.6 : Let G be solvable with M <@ N <1 G and let N be a Hall subgroup
of G with N F\¢p(G) nilpotent. Let = be a set of primes containing p. Then
N/(M(NN @D(G))) n-closed implies N/M m-closed.

PROOF : Let L = M(N F\¢p(G)) and let H/L be the Hall m-subgroup of N/L.

L/M = (NN @p(G))/(Mrﬁ ¢p(G)), a nilpotent group. Hence L/M has a normal Hall

'-subgroup K/M and (L/M)/(K/M) = L/K, a m-subgroup. K/M char L/M <3 H/M implies
K/M <1 H/M.
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(1) We shall show that K/M is a Hall ='-subgroup of H/M. Suppose
q | (IkMl, CHM : k/MD ). q | |K/M| implies q is a w'-number.
q | [H/M : K/M] = [H : K] implies q | [L : KJ, so q is a m-number. Hence q = 1.
Applying Schur's complementation theorem to K/M as a normal Hall subgroup of H/M
we have H/M = (K/M)-(A/M) with KMA = M. Applying generalized Frattini argument,
we have N/M = (NN/M(A/M))-(H/M) = (NN(A)H)/M. Hence N = NN(A)H = NN(A)AK =

NN(A)K = NN(A)L, since K < L.
NN(A)M(N(\ ¢p(G))
NN(A) Qp(N), since M < A and

op(N) = NN ¢p(G) from 4.4. By hypothesis p € 7, so NN(A) has p-free index in N.

Applying 2.9(i), we have NN(A) =N, j.e., A < N.
(2) We shall show that A/M is a Hall wm-subgroup of N/M. [N/L : H/L] =
[N : H] = [N/M : H/M] is a ='-number. [N/M : A/MJ = [N/M : H/M] CH/M : A/M].
[H/M : A/M] is a w'-number. Thus we have shown that N/M is m-closed. Q.E.D.
THEOREM 4.7 : Let G be solvable with M <= N <9 G and let N be a Hall subgroup
of G with N F\QP(G) nilpotent. If N/(M(N f\¢p(G))) is p'-nilpotent, then N/M is

n'-nilpotent.

PROOF : Let L = M(NN QP(G)). N/L p'-nilpotent implies N/L p-closed. Hence
N/M p-closed by 4.6. N _M/M char N/M. N/N L = (N/L)/(N _L/L) is nilpotent. Let
q | IN/NpMI, soq#p. Also, q | |N/NpL|. Take = = {p , q}. N/NpL is m-closed.

Apply 4.6 to NpM and N/NpL and conclude that N/NpM is m-closed; i.e., ¥ q | !N/NpMI,

N/NpM has its Sylow g-subgroup normal. Hence N/NpM is nilpotent; i.e., N/M is
p'-nilpotent. Q.E.D.

H. Wielandt has shown that if a group possesses three solvable subgroups of
pairwise relatively prime indices, then G is solvable (see Satz 1.9, p.662 of [5]).
We now prove the corresponding theorem for p'-nilpotent groups.

THEOREM 4.8 : Let G have three p'-nilpotent subgroups of pairwise relatively
prime indices. Then G is p'-nilpotent.

PROOF : Let Hi » 1 =1,2,3 be p'-nilpotent with [G : Hi] pairwise relatively
prime. Let D = HlfW H2 and let p | |H1l. Let Pi be the Sylow p-subgroup of Hi'
([G: H1] , [G: sz ) =1 implies G = HIHZ‘ fG : H2] = [H1 : DJ. p divides only
one of [G : H2], [G : H3]. Without loss of generality assume that p | [G : H2].

Hence P, = prW Hy. P; < H; implies PiD < H;. [PlD : D] = Cpy = PlfW DJ is a

power of p. [PlD : D] [Hl : PID] = [H1 : D] =[G : H2] shows that

[PID : D] | [G: H2], i.e.,p | [G: H2]. This contradiction shows that P,D=D, i.e

h.h h

= g- - h
Pp<D. ¥geG, g=hhy, hehy, P9=p M2 =ph2cphy

1 2°
geG>. N<=G. Plg = P1h2 < P2 implies that N is a p-group. Consider G/N. By

Let N = <P19;

induction on |G|, we have G/N p'-nilpotent, so Gp/N <a G/N. Hence Gp <1 G. Consi-

der G/Gp and use induction on |G|. Hence G/Gp is a p-free order p'-nilpotent group

141
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and hence G/Gp is nilpotent. Therefore, G is p'-nilpotent. Q.E.D.
5. gp-HYPERCENTER.

In this section we denote by fp the information of p'-nilpotent groups. As
observed in section 2, fp is a saturated subgroup closed formation with an inte-
grated local definition. In general Op(G) < I (G) as Sy shows with p = 2. In
this section we sometimes consider groups from the class

Fp= 650,60 (6) 1.

<Z
="F
-
It is well known that hypercenter Z_(G) can be characterized as follows:
(i) intersection of all maximal nilpotent subgroups of G,
(ii) dintersection of the normalizers of all Sylow subgroups of G.
We obtain two similar characterizations for ZF (G) when G ¢ El’ G solvable. Using

-
one of these characterizations we obtain a condition for a group to be p'-nilpotent.

THEOREM 5.1 : Let G be solvable, G e F,. Then Z. (G) = ~n (N (Sq) 3 S
. 5 atp ° d

is a Sylow g-complement}.

PROOF : Suppose Zp (G) = 1. Since Ge F, , 0 (6) < Z. (G). Hence 0 (G) = 1.
F 1°°7p F p
- -
Let D = N { NG(Sq) ; s9 s a Sylow g-complement}. Suppose D # 1. Clearly

q#p
D= Gand for g # p, DNSY =09 < D. Thus D is q-nilpotent ¥ q # p, so D is

p'-nilpotent. Dp char D <@ G implies D_ <I G. Hence Dp g:Op(G) = 1. Thus D is of

p
p-free order and hence D is nilpotent. Let N <D, N a minimal normal subgroup of G.

N is an r-group with r # p, and since N < NGSP) with ( [N] , |S"] ) = 1, we see that
[s",N]=1. N< G, implies NN Z(G.) # 1. Hence there exists x # 1,
x e NN Z(G.) with S Ca(N) < Cq(x). i.e., G = 58" = 5,Cg(N) < Cq(x). Hence

CG(x) = G. Thus N = <x> < Z(G) < Zc (G) = 1. This is contrary to N # 1. Hence

-

D = 1. Assume now that ZF (G) # 1. Let N be a minimal normal subgroup of G
-

contained in ZF (G). We now consider two cases.

—p
CASE 1. N is a p-group.
In G/N, by induction on |G|, we have Z. (6/N) = N {N., (SI/N)}. Since the
b qtp N

definition of ZF (G) is based on the chief factors, we see that ZF (G/N) = ZF (G)/N.
- - -
Also, NG/N(Sq/N) = (Ng(SHI/N. Thus Z (6)/N=( N Ng(SHI/N; e,
-+ q#p
e (6) = 0 (Ng(sH).
- q#p

CASE 2. N is an r-group, r # p.
Since N < Zo (G), we have N < Z(G) using 4.1. Hence N < NG(Sq) ¥ q. Therefore,

—p
7o (G/N) = N (N, (S9/N)). As in case 1, the result now follows.  Q.E.D.
L qtp N
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It is easy to verify that if M and N are normal p'-nilpotent subgroups of G,
then MN is a normal p'-nilpotent subgroup of G. However, if we drop the normality
requirement on one of the subgroups, say M, then MN is still a subgroup, but not
necessarily p'-nilpotent. Consider G = 34, M= GZ’ N = A4. M is 2'-nilpotent, N

is 2'-nilpotent normal in G. However G = MN is not 2'-nilpotent. We prove in the

next theorem that if M is p'-nilpotent and N < G with N < ZF (G), then MN is
p
p'-nilpotent.

THEOREM 5.2 : Let M be a p'-nilpotent subgroup of G, N < G, N < 7 (G).
)

Then MN is p'-nilpotent.

PROOF : Let L be a minimal normal subgroup of G contained in N. Consider
G/L. By induction on |G|, (ML/L)-(N/L) is p'-nilpotent in G/L.

CASE 1. L is a p-group
(M) /L = MN/L since MN/L is p'-nilpotent. (MN)PL/L = (MN)P is nilpotent. Thus,

(MN)/(MN)D is nilpotent. and hence MN is p'-nilpotent.

CASE 2. L is a g-group, q # p.
Using 4.1, L <Z(G). By induction on |G|, MN/L is p'-nilpotent. (MN)pL/L <t MN/L

implies (MN) <= MN since L < Z(G). Also, (/)9 = (/L)L = MN/L ¥ q # p.

Hence (MN)q <3 MN since L < Z(G); i.e., MN is g-nilpotent ¥ q # p and hence MN is
nilpotent by 2.4. Q.E.D.
We now use this theorem to obtain a description for ZF (G) as the intersection

of all maximal p'-nilpotent subgroups of G.

THEOREM 5.3 : Let G € Ei‘ Then ZF (G) is the intersection of a maximal
-

p'-nilpotent subgroups of G.
PROOF : Let C = M(H ; H is a maximal p'-nilpotent subgroup of G). Suppose

ZF (G) = 1. We now show that C = 1. (learly C < G. Suppose C # 1. Since C <H,
p

C is p'-nilpotent. Cp char C ~a G implies that Cp <1 G. Thus Cp ;:Op(G) <

pr(G) =1 implies Cp = 1. Therefore, C is nilpotent. Now using an argument
similar to that used in the proof of 5.1 we will arrive at a contradiction to the
assumption that C # 1.

(1) There exists a one to one correspondence between the maximal p'-nilpotent
subgroups of G and of G/N, N as in 5.1.

For, by 5.2, N < H for every maximal p'-nilpotent subgroup il. Suppose K/N is
a maximal p'-nilpotent subgroup of G/N. If N is a p-group, then K/N =
(Kp/N)-(KpN/N) where K /N < K/N and KPN/N = kP is nilpotent. Thus K is a

p'-nilpotent subgroup of G, hence a maximal p'-nilpotent subgroup of G. If N is a
q-group, q # p, then N < Z(G) by 4.1. Hence K/N p'-nilpotent implies K p'-nilpotent
as shown in the proof of 5.2. Thus K is a maximal p'-nilpotent subgroup of G
whenever K/N is a maximal p'-nilpotent subgroup of G/N.
(2) Consider G/N and apply induction on |G|. Thus, Z; (G/N) = M(H/N ; H/N
)

is maximal p'-nilpotent in G/N). i.e., ZF (G)/N = M(H ; H is maximal p'-nilpotent
-
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in G)/N. Hence Zp (6) = M(H ; H is maximal p'-nilpotent in G). Q.E.D.
p
Next we obtain a condition for a p'-element to lie in ZF (G).
)

THEOREM 5.4 : Let G be a p-closed group, G e El‘ Let g be a p'-element in G.
Then the following are equivalent:
(1) g ez (6),
-
(ii) for every p'-element x in G with (|x|, |g|) = 1, there exists y in G such

that xyg = gxy.
PROOF : The theorem is trivially true if e (G)
-

1. So assume that
ZF (G) # 1. Assume that g e ZF (G). G e E_1 shows that Op(G) < ZF (G). Further,
p - p

Z- (G) is p'-nilpotent. Moreover, all p'-chief factors of G that are contained in

L
43 (G) are central. If Op(G) =1, then ZF (6) = Z_(G). Using a well known property
- -
of hypercenter, we have gx = xg. If Op(G) #1, Op(G) = Gp since G is p-closed. By
definition G/GF is p'-nilpotent, where GF is the Ep-residual of G. Let gGF s

- - -5

XGp be p'-elements of relative prime orders. By induction on 1G],
-

(gGF )(xyGF ) = (xyGF )(gGF ) for a suitable y ¢ G; i.e., [g , 7 e GF .
- - - P -5

— Y Yy
Consider G = G/Gp . By induction on |G|, g sz and x le commute for some

Yy y
suitable Y1 » ¥p in G such that y; =y y,. fi.e., (g 2 s X 1] € Gp s
1

ML Teg A y .
e Gy, f.e., [g , x'Je Gp. Using Satz 1.3, p.562 of [8] we

i.e., [g, x

-1

note that gc = cg where ¢ = [g , ] e GF and g ¢ e (6). g xY g=1[g, xy]'1 =

)

L Therefore, ¥ k > 0, g'k xY gk =xY ¢k In particular, for |g| = m,
gMxY g"=xYc™ de., c™=1. Sincec e Gp and (p , m) =1, we have ¢ = 1,
i.e., g x o= xY g. Hence (i) implies (ii).
For proving the reverse implication we consider G = 6/Z; (G). Letg-= 9Z¢ (G),
)
X = xZg (6), Ig] =m, |x] =n, (m, n) =1.
)
Let ™= { distinct primes dividing m }
T = { distinct primes dividing n }
<g> = <91 X <Gp> 5 <X> = <Xy> X <Xy> where <9y> = <9>“1 s Xy> = <x>1T2 . Now

y y
applying (ii) for 91 » Xq We have 91X 1. Xq 1g1 for a suitable v ¢ G. By choice
*
of m,n we have gm e Ip (6) , X" e Zp (G). Since K> = <X> Xy = X" where
m P 2
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m* = |x,| 5 X, = Zp (G). Similarly g, € Z. (G). We noted earlier that
1 2 F 2 F
D =
g Hence (g, Zo (6) (x; ' 7, (6)) = (x,' ! 7 (8))(g; Zp (6))
1% =% 9 . Hence (g; Zp X = (x g .
Btk bR L

Yy
Since x5 5 9, € Zp (G) , the above equation yields, (g Ze (G))(x 1 Zp (G)) =
- - -

(xyl Ze (6))(g Zp (6)). i.e.,g=gZ (6) eZ (6) =1, i.e., geZ (G).
- - - - -
Hence (ii) implies (i). Q.E.D.
We now give an example to show that the condition that G be p-closed in 5.4
is essential.
EXAMPLE 5.5 : Let A = €a1> X <a,> X <ag> , a1.2 =1, i =1,2,3. B =

<b;b%=1>C=AxB. D=<d;d =1> 6=[D, af = a2, , ag - ay

ag =ay, bd = b. l6| = |c|-Ip] =24 - 7 =168. Z(G) =B, G, ; = AD < G. Consider
G/Z(G). This is of order 56. One Sylow 7-subgroup of G/Z(G) is DZ(G)/Z(G). Using
Sylow's theorem, the number of Sylow 7-subgroups of G/Z(G) is of the form 1 + 7k

and 1 + 7k divides 8. If DZ(G)/Z(G) < G/Z(G), then DZ(G) <« G. D char DZ(G) < G

implies D << G, but D <4 G. Hence 1 + 7k # 1 and hence 1 + 7k = 8. i.e.,
[G : NG(G7)] = 8. 62,7 =63 , Sylow 3-complement in G. G3,7 = 62 , Sylow
2-complement in G. [ G : NG(GZ) J = number of Sylow 2-complements in G = 8 implies

2:

G NG(GZ). Let G be the formation of 7'-nilpotent groups.

_ 2 3
@@)— ﬂ{NdG)}n{NdG)}

N Ng(67) 3, since 6° < G.
B = Z(G).
Thus ZG(G) =7 (6) = 2(G) = B, 07(G) =1z ZG(G). Clearly G is not 7-closed. Every

2-element commutes with every 3-element but yet no 2-element lies in ZG(G).

THEOREM 5.6 : Let G be a solvable group, G ¢ fl' G is p'-nilpotent if and only
if

(i) G is p-closed,

(ii) for every pair of '-elements x,y of relatively prime orders, there exists

g in G such that x yg = yg X.

PROOF : Assume that G is '-nilpotent. It is a simple matter to verify that
(i) and (ii) are satisfied.

Conversely, assume that G satisfies (i) and (ii). Using 5.4, we see that all
p'-elements of G lie in ZEp(G). Since G ¢ E‘1 , Op(G) < ZEp(G). By (i) Op(G) = Gp .

Thus ZF (G) = GpGp = G. Since ZF (G) is p'-nilpotent, G is p'-nilpotent. Q.E.D.
- -
REMARK : Example 5.5 shows that we can not drop (i) in the statement of 5.6.

We conclude this paper by obtaining a generating set for the Ep—residua] of G.
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THEOREM 5.7 : Let G be a solvable p-ciosed group with G ¢ EJ. Then GF
-

< [x, yg] ; X,y are p'-elements of relatively prime orders and g is a suitable
element in G >,

PROOF : Let N = < [x , yg] 3 X,Y,g as in statement >. By definition G/GF

~p

is p'-nilpotent. Using 5.6 we have N < Gp . Let G = G/N. Take x = xN and y = yN.
P
Using an argument as in the proof of 5.4 we have [x , yg] e N.

__9 _9_ _
i.e., Xy =y X . Now applying 5.6 we see that G is p'-nilpotent and so
Ge < N. Thus G =N. Q.E.D.
- -
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