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ABSTRACT: Let § be an irrational number and let {t} denote the fractional part of

t. For each N let I < IN be the intervals resulting from the partition of

I
0,1
[0,1] by the points {kzs}, k =1,2,...,N. Let T(N) be the number of distinct lengths
these intervals can assume. It is shown that T(N) - ». This is in contrast to the

case of the sequence {n$}, where T(N) < 3.
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1. INTRODUCTION.

Let § be an irrational number and let {t} denote the fractional part of t
({t} =t (mod 1) = t - [t], where [.] is the greatest integer function). For each
fixed N the points {S}, {23}, {39}, ..., {N8} partition on the interval [0,1] into
N+1 subintervals. It is well known that the lengths of these intervals can assume
only 3 values: o, B and 0+R. The values of o and B can be actually given explicitly
in terms of N and the continued fraction expansion of %. This is known as Steinhaus
conjecture and it was first proved by Swierczkowski in [1]. For an excellent
exposition of all this, see [2]. In this note we investigate the analogous problem
for the sequence {nzs}. It turns out that in this case the number of different
lengths these subintervals can assume, is unbounded. More precisely we have the
following results.
2. MAIN RESULTS.

Theorem | Let § be an irrational. For each integer N let IO’ I‘, e IN be the
N+1 subintervals resulting from partition of [0,1] by the points {kzs}, k=1,2,...,N.
Let T(N) be the number of distinct lengths these subintervals assume. Then for each
e >0,

2 In N }

T(N) > Nexp{-(l+e)ln 2 Ta 1o N

for N > N(e) . (2.1
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In particular T(N) 3'N‘_6 for every § > 0 and N > N(§).
In what follows & > O is some fixed irrational. We need the following four
simple lemmas.

LEMMA 1. For any integers r,s
{(x+s)8} = {8} + {s%} - E (2.2)

where E = 0 or 1.

PROOF. We have

(r + 8)9% = {(r+s)8} + [(r+s)9]

{re} + {s9} + [r9] + [s8] = {r9} + {s8} + integer

Thus, if 0 < {r8} + {s9} < | then (2) holds with E = 0,
and if 1< {r8} + {s9} < 2 then (2) holds with E = 1.
LEMMA 2. Suppose x,y are integers, {x&} < {y&}. Then

{(y-x)8} if x<vy
{y8} - {x8} = (2.3)
I - {(x-y)8} if y < x
PROOF. Suppose x < y so that y = x + k. Then by Lemma |
{ys} = {x0} + {x8} - E .

If E=1 then {y8} < {x8} contrary to hypothesis, so that E = 0 and (2.3) holds.

If y< x, let x=y + k, k> 0. Again, by Lemma |

{x&} = {yS} + {kS} -E .

If E=0 then {x8} > {y8} so that E = -1 and (2.3) holds again.
LEMMA 3. For any two non-negative integers x,y, {xs} #1 - {y&}
PROOF. If {x%} + {y%} = 1 then by Lemma I

{(x+y)8} = {x8} + {y9} ~E=1-E=0or I

contradicting the fact that § is irrational.

LEMMA 4. Suppose X5 Ys X, ¥, are non-negative integers and let

A= {yIS} - {x19}>0 , B= {y 8} - {x28}>0 .

2
If A = B then Y TX TV, Xy .

PROOF. We will use Lemmas 2 and 3 and consider 4 cases
I: X <Y % < ¥y 3
II: xl<y], x2>y2;
IIT: X, > Y X < ¥y 5
Iv: X, > Yy Xy > ¥y -
In case I we get from Lemma 2

A= {(y] - x])9} , B= {(y2 - xZ)S}

so A = B implies Yy -x =y, - X, -
In case II, by Lemma 2 we get

A= {(y] - xl)9} , B=1- {(x2 - yz)S}
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so A = B cannot hold by Lemma 3.
Similarly, A = B cannot hold in case III, and A = B implies Yy, - %=
Y, = % in case IV.

We are now ready to prove the Theorem l|. Let N be fixed and consider the

oy . 2 2 2 2 2
partition of [0,1] by the points {o 8} = o, {199}, {2 s}, {3 8}, ..., {N“8}. If we
exclude the right most interval (i.e. the interval [{x29},l] for some x), we are left
with a collection A(N) of N intervals. If two of these intervals [{x?&}, {y%&}] and
[{ng}, {yﬁ&}] are of equal length then

y? - x% = y§ - xg (2.4)

by Lemma 4. Let T(N) be the number of distinct lengths these intervals from A(N) can
assume. The collection A(N) is then divided into T(N) subsets, any two intervals from

one subset are of equal length. One of these subsets must contain N/T(N) intervals.

Thus, by (2.4), there exists an integer k, | < k §>N2 such that the equation
2 2
k =y° - x° = (y-x)(y+x) (2.5)
has N/T(N) solutions in integers x,y, | < x <y E_Nz . Each such solution produces 2
distinct divisors of k. If y% - x? = yg - xi, 1 <X <y < N2 for i = 1,2 and

(xl,yl) # (xz,yz), then y, - x, # Yy, = X, and y + x| # Y, *+ %x,. Thus
N/T(N) < %d(k) (2.6)

where d(z) is the number of divisors of d. It is well known that for each ¢ > 0

In 2z

m} = CP(E,Z) for z > z(€)

d(z) < exp{(l+€) 1n 2

This was first proved by Wigert in [3], see also [4], Satz 5.2. Since k < NZ we get
from (2.6)

2N/T(N) < (e, k) < cp(s,Nz)

exp {(1+€) 1n 2 I 21in N } (2.7)

n2+ 1lnlnN

2 ln N }
In In N

I A

exp {(1+€) 1n 2 for N > Nl(e)

Solving this inequality for T(N) gives (2.1).

The argument carries over almost without any change to the sequence {npS} for any
integer p > I. The corresponding estimate is then as follows.

THEOREM 2. Let ¢ be an irrational and p > | an integer. For each integer N let
IO’ Il’ cees IN be the N+l subintervals resulting from partition of [0,1] by the
points {kZS}, k=1,2,...,N. Let T (N) be the number of distinct lengths these
intervals can assume. Then for eacg €>0

lnN}

1a 1o N for N > N(e)

Tp(N) > N exp{-(l+¢) 1n 2P
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