

Research Article

On Fuzzy ε -Contractive Mappings in Fuzzy Metric Spaces

Dorel Miheţ

Received 24 December 2006; Accepted 1 March 2007

Recommended by Donal O'Regan

We answer into affirmative an open question raised by A. Razani in 2005. An essential role in our proofs is played by the separation axiom in the definition of a fuzzy metric space in the sense of George and Veeramani.

Copyright © 2007 Dorel Miheţ. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Preliminaries

In this section, we recall some definitions and results that will be used in the sequel.

Definition 1.1 (see [1]). A triple $(X, M, *)$, where X is an arbitrary set, $*$ is a continuous t -norm, and M is a fuzzy set on $X^2 \times (0, \infty)$, is said to be a *fuzzy metric space* (in the sense of George and Veeramani) if the following conditions are satisfied for all $x, y \in X$ and $s, t > 0$:

- (GV-1) $M(x, y, t) > 0$;
- (GV-2) $M(x, y, t) = 1$ if and only if $x = y$;
- (GV-3) $M(x, y, t) = M(y, x, t)$;
- (GV-4) $M(x, y, \cdot)$ is continuous;
- (GV-5) $M(x, z, t+s) \geq M(x, y, t) * M(y, z, s)$.

Note (see [2]) that the “separation” condition (GV-2) means that

$$\begin{aligned} M(x, x, t) &= 1 \quad \forall x \in X, \forall t > 0, \\ x \neq y \implies M(x, y, t) &< 1 \quad \forall t > 0. \end{aligned} \tag{1.1}$$

Definition 1.2 (see [1]). Let $(X, M, *)$ be a fuzzy metric space. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be *convergent* if there is $x \in X$ such that $\lim_{n \rightarrow \infty} M(x_n, x, t) = 1$ for each $t > 0$.

2 Fixed Point Theory and Applications

(the notation $\lim_{n \rightarrow \infty} x_n = x$ or $x_n \rightarrow x$ will be used). A mapping $f : X \rightarrow X$ is said to be *continuous* if $f(x_n) \rightarrow f(x)$ whenever (x_n) is a sequence in X convergent to x .

Definition 1.3 (see [3]). Let $(X, M, *)$ be a fuzzy metric space and $0 < \varepsilon < 1$. A mapping $f : X \rightarrow X$ is called *fuzzy ε -contractive* if $M(f(x), f(y), t) > M(x, y, t)$ whenever $1 - \varepsilon < M(x, y, t) < 1$.

The next continuity lemma can be found in [4] (also see [5, Theorem 12.2.3]).

LEMMA 1.4. *Let $(X, M, *)$ be a fuzzy metric space. If $\lim_{n \rightarrow \infty} x_n = x$ and $\lim_{n \rightarrow \infty} y_n = y$, then $\lim_{n \rightarrow \infty} M(x_n, y_n, t) = M(x, y, t)$ for all $t > 0$.*

2. Main results

The following theorem has been proved by Razani in [3].

THEOREM 2.1 (see [3, Theorem 3.3]). *Let $(X, M, *)$ be a fuzzy metric space, where the continuous t -norm is defined as $a * b = \min\{a, b\}$. Suppose f is a fuzzy ε -contractive self-mapping of X such that there exists a point $x \in X$ whose sequence of iterates $(f^n(x))$ contains a convergent subsequence $(f^{n_i}(x))$. Then $\xi = \lim_{i \rightarrow \infty} f^{n_i}(x)$ is a periodic point, that is, there is a positive integer k such that $f^k(\xi) = \xi$.*

In [3, Question 3.7], it has been asked whether Theorem 2.1 would remain true if $*$ is replaced by an arbitrary t -norm.

With Theorem 2.3, we answer into affirmative this question. In the proofs of our theorems, we need the following.

LEMMA 2.2. *Every fuzzy ε -contractive mapping in a fuzzy metric space is continuous.*

Proof. The continuity of the fuzzy ε -contractive mapping f is an immediate consequence of the implication

$$M(x, y, t) > 1 - \varepsilon \implies M(f(x), f(y), t) \geq M(x, y, t) \quad (2.1)$$

which can be proved as follows: if $M(x, y, t) < 1$, then $M(x, y, t) > 1 - \varepsilon$ implies $M(f(x), f(y), t) > M(x, y, t)$, while if $M(x, y, t) = 1$ then, due to (GV-2), we have $x = y$, hence $M(f(x), f(y), t) = M(x, y, t)$. \square

THEOREM 2.3. *Let $(X, M, *)$ be a fuzzy metric space. Then for every fuzzy ε -contractive mapping f on X with the property that there exists a point $x \in X$ whose sequence of iterates $(f^n(x))_{n \in \mathbb{N}}$ contains a convergent subsequence, the point $\xi = \lim_{i \rightarrow \infty} f^{n_i}(x)$ is a periodic point.*

Proof. Since $*$ is continuous, there is $\delta \in (0, \varepsilon)$ such that $(1 - \delta) * (1 - \delta) > 1 - \varepsilon$. Also, there is a positive integer N_1 such that $i \geq N_1$ implies $M(f^{n_i}(x), \xi, t/2) > 1 - \delta$, for all $t > 0$. Fix a $k \geq N_1$ and denote $n_{k+1} - n_k$ by s . As f is fuzzy ε -contractive and $M(f^{n_k}(x), \xi, t/2) > 1 - \varepsilon$, we have

$$M\left(f^{n_{k+1}}(x), f(\xi), \frac{t}{2}\right) \geq M\left(f^{n_k}(x), \xi, \frac{t}{2}\right) > 1 - \delta > 1 - \varepsilon \quad (2.2)$$

and, after $n_{k+1} - n_k$ iterations, $M(f^{n_{k+1}}(x), f^s(\xi), t/2) > 1 - \delta$. Therefore,

$$\begin{aligned} M(\xi, f^s(\xi), t) &\geq M\left(f^{n_{k+1}}(x), \xi, \frac{t}{2}\right) * M\left(f^{n_{k+1}}(x), f^s(\xi), \frac{t}{2}\right) \\ &\geq (1 - \delta) * (1 - \delta) > 1 - \varepsilon \quad \forall t > 0. \end{aligned} \quad (2.3)$$

Since f is continuous, $\lim_{i \rightarrow \infty} f^{n_i}(x) = \xi$ implies $\lim_{i \rightarrow \infty} f^{n_i+s}(x) = f^s(\xi)$, therefore, by Lemma 1.4,

$$\lim_{i \rightarrow \infty} M(f^{n_i}(x), f^{n_i+s}(x), t) = M(\xi, f^s(\xi), t) \quad \forall t > 0. \quad (2.4)$$

As the sequence of real numbers $(z_n)_{n \geq n_k}$, $z_n := M(f^n(x), f^{n+s}(x), t)_{n \geq n_k}$ is convergent for every $t > 0$ (being nondecreasing and bounded), one has

$$\lim_{n \rightarrow \infty} M(f^n(x), f^{n+s}(x), t) = M(\xi, f^s(\xi), t) \quad \forall t > 0. \quad (2.5)$$

On the other hand, from $f^{n_i}(f(x)) = f(f^{n_i}(x)) \rightarrow_{i \rightarrow \infty} f(\xi)$ and $f^{n_i}(f^{s+1}(x)) = f^{s+1}(f^{n_i}(x)) \rightarrow f^{s+1}(\xi)$, it follows that

$$\lim_{i \rightarrow \infty} M(f^{n_i+1}(x), f^{n_i+1+s}(x), t) = M(f(\xi), f^{s+1}(\xi), t) \quad \forall t > 0, \quad (2.6)$$

that is,

$$M(\xi, f^s(\xi), t) = M(f(\xi), f^{s+1}(\xi), t) \quad \forall t > 0. \quad (2.7)$$

We claim that $f^s(\xi) = \xi$. Indeed, if $f^s(\xi) \neq \xi$ then, due to (GV-2), $M(\xi, f^s(\xi), t) < 1$, for all $t > 0$ and since $M(\xi, f^s(\xi), t) > 1 - \varepsilon$ for all $t > 0$, we have $1 - \varepsilon < M(\xi, f^s(\xi), t) < 1$ for all $t > 0$. This implies $M(\xi, f^s(\xi), t) < M(f(\xi), f^{s+1}(\xi), t)$ for all $t > 0$, which is a contradiction. Therefore, $f^s(\xi) = \xi$, concluding the proof. \square

Example 2.4. Consider fuzzy metric space $(N^*, M, *)$, where $N^* = \{1, 2, \dots\}$, $a * b = \min\{a, b\}$, and

$$M(x, y, t) = \begin{cases} \frac{1}{2}, & x \neq y, \\ 1, & x = y, \end{cases} \quad (2.8)$$

for all $t > 0$. The mapping $f : N^* \rightarrow N^*$,

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is even,} \\ 2 & \text{if } x \text{ is odd,} \end{cases} \quad (2.9)$$

is fuzzy 1/2-contractive, in the absence of the condition $1 - \varepsilon < M(x, y, t) < 1$. The sequence of the successive approximations of 1 is 2, 1, 2, 1, 2, 1, ..., and its subsequence 1, 1, ... converges to 1, which is a periodic point for f .

In the following, we show that the assertion [3, Corollary 3.5] claiming that in the conditions of Theorem 2.1 we cannot have $M(\xi, f(\xi), t) > 1 - \varepsilon$, is not correct. As a matter

4 Fixed Point Theory and Applications

of fact, we will show in Theorem 2.7 that $M(\xi, f(\xi), t) > 1 - \varepsilon$ is a sufficient condition for the existence of a fixed point for a fuzzy ε -contractive mapping.

Example 2.5. Consider the standard fuzzy metric space $(X, M, *)$, where $X = (-\infty, \infty)$, $M(x, y, t) = t/(t + |x - y|)$, $a * b = \min\{a, b\}$, and the mapping $f : X \rightarrow X$, $f(x) = x/2$. Since

$$M(f(x), f(y), t) = \frac{2t}{2t + |x - y|} > \frac{t}{t + |x - y|} = M(x, y, t) \quad (2.10)$$

for all $x, y \in X$, $x \neq y$, and $t > 0$, f is fuzzy ε -contractive for every $\varepsilon \in (0, 1)$ and it is immediate that the sequence of iterates of any point converges to 0. As 0 is a fixed point of f , we have $M(0, f(0), t) = 1 > 1 - \varepsilon$ for every $\varepsilon \in (0, 1)$.

The error in the proof of the corollary derives from the fact that the (strict) inequality $M(f^2(\xi), f(\xi), t) > M(f(\xi), \xi, t)$ (see [3]) takes place only if $M(f(\xi), \xi, t) \neq 1$, that is, (due to (GV-2)) only if $f(\xi) \neq \xi$. The next proposition is a correct version of [3, Corollary 3.5].

PROPOSITION 2.6. *Let $(X, M, *)$ be a fuzzy metric space and let $f : X \rightarrow X$ be a fuzzy ε -contractive mapping. Suppose that there is $\xi \in X$ such that $M(\xi, f(\xi), t) > 1 - \varepsilon$ for some $t > 0$ and $f^k(\xi) = \xi$ for some integer $k \geq 1$. Then $f(\xi) = \xi$.*

Proof. From $M(\xi, f(\xi), t) > 1 - \varepsilon$, it follows that

$$M(f^l(\xi), f^{l+1}(\xi), t) \geq M(f(\xi), f^2(\xi), t) \quad (2.11)$$

for all $l \geq 1$. Thus,

$$M(\xi, f(\xi), t) = M(f^k(\xi), f^{k+1}(\xi), t) \geq M(f(\xi), f^2(\xi), t). \quad (2.12)$$

If we had $f(\xi) \neq \xi$, then due to (GV-2), $M(\xi, f(\xi), t) \neq 1$. As $M(\xi, f(\xi), t) > 1 - \varepsilon$, from the definition of a ε -fuzzy contractive mapping, the strict inequality

$$M(f(\xi), f^2(\xi), t) > M(\xi, f(\xi), t) \quad (2.13)$$

would follow, and thus we would obtain

$$M(\xi, f(\xi), t) \geq M(f(\xi), f^2(\xi), t) > M(\xi, f(\xi), t). \quad (2.14)$$

This contradiction completes the proof. \square

A sufficient condition for the existence of a fixed point for a fuzzy ε -contraction is given in the next theorem.

THEOREM 2.7. *Let $(X, M, *)$ be a fuzzy metric space and let $f : X \rightarrow X$ be a fuzzy ε -contractive mapping. Suppose that for some $x \in X$, the sequence $(f^n(x))_{n \in \mathbb{N}}$ contains a convergent subsequence and let $\zeta \in X$ be its limit. If there exists $t_0 > 0$ such that $M(x, f(x), t_0) > 1 - \varepsilon$ and $M(\zeta, f(\zeta), t_0) > 1 - \varepsilon$, then ζ is a fixed point of f .*

Proof. Let $x_n = f^n(x)$ and let $(x_{n_k})_{k \in \mathbb{N}}$ be a convergent subsequence of (x_n) . As the sequence $(f(x_{n_k}))_{k \in \mathbb{N}}$ converges to $f(\zeta)$ and the sequence $(f(f(x_{n_k})))_{k \in \mathbb{N}}$ converges to

$f(f(\zeta))$ (see Lemma 2.2), we have (see Lemma 1.4)

$$\begin{aligned} M(x_{n_k}, f(x_{n_k}), t) &\longrightarrow M(\zeta, f(\zeta), t) \quad \forall t > 0, \\ M(f(x_{n_k}), f^2(x_{n_k}), t) &\longrightarrow M(f(\zeta), f^2(\zeta), t) \quad \forall t > 0. \end{aligned} \quad (2.15)$$

Since $M(x, f(x), t_0) > 1 - \varepsilon$, the sequence $(z_n)_{n \in \mathbb{N}}$, $z_n := M(x_n, f(x_n), t_0)$ is a nondecreasing sequence of numbers in $[0, 1]$, therefore it is convergent. As its subsequence $(M(x_{n_k}, f(x_{n_k}), t_0))$ converges to $M(\zeta, f(\zeta), t_0)$, it follows that z_n converges to $M(\zeta, f(\zeta), t_0)$. Also,

$$\lim_{n \rightarrow \infty} z_{n+1} = \lim_{n \rightarrow \infty} M(f(x_n), f^2(x_n), t_0) = M(f(\zeta), f^2(\zeta), t_0), \quad (2.16)$$

therefore the equality $M(\zeta, f(\zeta), t_0) = M(f(\zeta), f^2(\zeta), t_0)$ holds.

Suppose $\zeta \neq f(\zeta)$. Then, due to (GV-2), $M(\zeta, f(\zeta), t_0)$ is not 1, hence $1 - \varepsilon < M(\zeta, f(\zeta), t_0) < 1$. This implies that $M(f(\zeta), f^2(\zeta), t_0) > M(\zeta, f(\zeta), t_0)$, contradicting the above equality. Therefore, ζ is a fixed point of f . \square

Example 2.8. Let $X = (0, \infty)$, $M(x, y, t) = \min\{x, y\}/\max\{x, y\}$ for all $t > 0$ and $a * b = ab$. Then (see [6]), $(X, M, *)$ is a fuzzy metric space. Since $\sqrt{t} > t$ for all $t \in (0, 1)$, the mapping $f : X \rightarrow X$, $f(x) = \sqrt{x}$, is fuzzy ε -contractive for every $\varepsilon \in (0, 1)$ and the sequence $(f^n(1))_{n \in \mathbb{N}}$ is convergent to 1, the fixed point of f . Note that the condition $M(1, f(1), t) > 1 - \varepsilon$ is not satisfied by the mapping in Example 2.4.

Remark 2.9. Theorem 2.3 is Theorem 2.4 in our archived manuscript 35106, submitted in the 4th of August 2005 to FPTA. Recently, Ćirić et al. [7] solved a similar question of Razani for mappings in intuitionistic fuzzy metric spaces.

References

- [1] A. George and P. Veeramani, “On some results in fuzzy metric spaces,” *Fuzzy Sets and Systems*, vol. 64, no. 3, pp. 395–399, 1994.
- [2] V. Gregori and S. Romaguera, “Characterizing completable fuzzy metric spaces,” *Fuzzy Sets and Systems*, vol. 144, no. 3, pp. 411–420, 2004.
- [3] A. Razani, “A contraction theorem in fuzzy metric spaces,” *Fixed Point Theory and Applications*, vol. 2005, no. 3, pp. 257–265, 2005.
- [4] M. Grabiec, “Fixed points in fuzzy metric spaces,” *Fuzzy Sets and Systems*, vol. 27, no. 3, pp. 385–389, 1988.
- [5] B. Schweizer and A. Sklar, *Probabilistic Metric Spaces*, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA, 1983.
- [6] V. Radu, “Some suitable metrics on fuzzy metric spaces,” *Fixed Point Theory*, vol. 5, no. 2, pp. 323–347, 2004.
- [7] L. Ćirić, S. Ješić, and J. S. Ume, “The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces,” to appear in *Chaos, Solitons & Fractals*.

Dorel Miheţ: Faculty of Mathematics and Computer Science, West University of Timişoara, Bv. V. Parvan 4, 300223 Timişoara, Romania

Email addresses: doru_mihet@yahoo.com ; mihet@math.uvt.ro

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be