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1. Introduction and preliminaries

Let H be a real Hilbert space, C a nonempty closed convex subset of H, and T: C —
C a mapping. Recall that T is nonexpansive if || Tx — Tyl < [lx — y|l forall x,y € C. A
point x € C is called a fixed point of T provided Tx = x. Denote by F(T) the set of fixed
points of T, that is, F(T) = {x € C: Tx = x}. Recall that a self-mapping f: C - Cisa
contraction on G, if there exists a constant & € (0,1) such that || f(x) — f(¥)Il < allx— Il
for all x, y € C. We use I1¢ to denote the collection of all contractions on C, that is, IT¢c =
{f | f:C— Cacontraction}. An operator A is strongly positive if there exists a constant
y > 0 with the property

(Ax,x) 27||x||2 Vx € H. (1.1)
Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems (see, e.g., [1, 2] and the references therein). A typical prob-

lem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

o1
rggE(Ax,x) —(x,b), (1.2)
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where C is the fixed point set of a nonexpansive mapping S, and b is a given point in H.
In [2], it is proved that the sequence {x,} defined by the iterative method below, with the
initial guess xo € H chosen arbitrarily,

Xpi1 = (I — 0, A)Sx, + b, n >0, (1.3)

converges strongly to the unique solution of the minimization problem (1.2) provided
the sequence {a,} satisfies certain conditions. Recently, Marino and Xu [1] introduced a
new iterative scheme by the viscosity approximation method

X1 = (I — 0y A)Sxy + any f (xn), n=0. (1.4)

They proved that the sequence {x,} generated by the above iterative scheme converges
strongly to the unique solution of the variational inequality ((A — yf)x*,x —x*) = 0,
x € C, which is the optimality condition for the minimization problem

1
Iglelél 3 (Ax,x) — h(x), (1.5)

where C is the fixed point set of a nonexpansive mapping S, and / is a potential function
foryf (ie, h'(x) =yf(x) forx e H.)

Mann’s iteration process [3] is often used to approximate a fixed point of a nonexpan-
sive mapping, which is defined as

Xnt1 = OnXn+ (1= 0y) Txy, n=0, (1.6)
where the initial guess xy is taken in C arbitrarily and the sequence {«,},_, is in the
interval [0,1]. But Mann’s iteration process has only weak convergence, in general. For
example, Reich [4] shows that if E is a uniformly convex Banach space and has a Frehet
differentiable norm and if the sequence {ay} is such that > a,(1 — a,) = o, then the
sequence {x,} generated by process (1.6) converges weakly to a point in F(T). Therefore,
many authors try to modify Mann’s iteration process to have strong convergence.

Kim and Xu [5] introduced the following iteration process:

xp = x € C arbitrarily chosen,
yn:ﬁnxn"'(l_ﬁn)T-xn: (1.7)
Xns1 = Qi+ (1 — oty) Y.
They proved that the sequence {x,} defined by (1.7) converges strongly to a fixed point
of T provided the control sequences {a,} and {f3,} satisty appropriate conditions.

Recently, Yao et al. [6] also modified Mann’s iterative scheme (1.7) and got a strong
convergence theorem. They improved the results of Kim and Xu [5] to some extent.
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In this paper, we study the mapping W, defined by
UnO = I)
Un =y T1Uno+ (1 = ym) 1,

Un2 = )/nZTZUnl + (1 - )’n2)I:
(1.8)

Unn-1=YuN-1TN-1Unn—2+ (1 = yun-1)],
W, =Un = YnNTNUn,N—l + (1 - )’nN)Ix

where {yu }, {yn2}>..., {yan} € (0,1]. Such a mapping W, is called the W,,-mapping gen-
erated by T1, T»,..., Ty and {ym }, {yn2}>..., {yan}. Nonexpansivity of each T; ensures the
nonexpansivity of W,. It follows from [7, Lemma 3.1] that F(W,,) = NN, F(T;).

Very recently, Xu [2] studied the following iterative scheme:

Xpi1 = Qpu+ (I — 0, A) Tyy1xn, 120, (1.9)

where A is a linear bounded operator, T, = T;y mod N and the mod function takes values in
{1,2,...,N}. He proved that the sequence {x,} generated by the above iterative scheme
converges strongly to the unique solution of the minimization problem (1.2) provided T,

satisfy
F(Ty---TT1) =F(T\Ty -+ T5T2) = -+ - = F(Tn-1- - - Th Tn), (1.10)

and {a,} € (0,1) satisfying the following control conditions:
(C1) limy, oo @ty = 0
(C2) Z:;c:l Oy = 03
(C3) Yoy lon — apen| < 00 o1 limy,— o ot/ pn = 0.
Remark 1.1. There are many nonexpansive mappings, which do not satisfy (1.10). For

example, if X = [0,1] and T, T, are defined by Tix = x/2 4+ 1/2 and T>x = x/4, then
F(Tsz) = {4/7}, whereas F(Tle) = {1/7}

In this paper, motivated by Kim and Xu [5], Marino and Xu [1], Xu [2], and Yao et
al. [6], we introduce a composite iteration scheme as follows:

xo = x € C arbitrarily chosen,
)’n:/—’)nxn"'(l_ﬁn)wnxm (1.11)
Xn+1 = “n)’f(xn) + (I_ “nA))’na

where f € Il¢ is a contraction, and A is a linear bounded operator. We prove, under cer-
tain appropriate assumptions on the sequences {«, } and {f3,}, that {x,} defined by (1.11)
converges to a common fixed point of the finite family of nonexpansive mappings, which
solves some variation inequality and is also the optimality condition for the minimization
problem (1.5).
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Now, we consider some special cases of iterative scheme (1.11). When A =T andy =1

in (1.11), we have that (1.11) collapses to
X9 = x € C arbitrarily chosen,
Vn = PBuxn+ (1= Bn) Waxy, (1.12)
Xne1 = 0t f (xn) + (1 = ) Y.

When A =Tand y=11in (1.11), N = 1 and {y,} = 1 in (1.8), we have that (1.11) col-
lapses to the iterative scheme which was considered by Yao et al. [6]. When A = I and
y=1in(1.11), N =1and {y,n} =1in(1.8),and f(y) =u c Cforall y € Cin (1.11), we
have that (1.11) reduces to (1.7), which was considered by Kim and Xu [5].

In order to prove our main results, we need the following lemmas.

LemMa 1.2. In a Hilbert space H, there holds the inequality
llx+ yll? < x> +2(y,(x+y)), xy€H. (1.13)

LemMa 1.3 (Suzuki [8]). Let {x,} and {y,} be bounded sequences in a Banach space X and
let B, be a sequence in [0,1] with 0 < liminf,_ 8, < limsup,,_ , . < 1. Suppose x,1 =
(1 = Bu) yn =+ Puxy for all integers n = 0 and

limsup (|| yns1 — Yal| = ||Xus1 — xa|]) < 0. (1.14)
n— 00

Then lim,, .o || ¥, — x4l = 0.

LEMMA 1.4 (Xu [2]). Assume that {a,} is a sequence of nonnegative real numbers such that
Oy = (l_yn)an+8n) (115)

where y, is a sequence in (0,1) and {8, } is a sequence such that
(1) fozl Yn = 093
(i) imsup,,_ o, 8n/yn <0 0r 2, |8,] < 0.

Then lim,,—. . «,, = 0.

LemMA 1.5 (Marino and Xu [1]). Assume that A is a strongly positive linear bounded oper-
ator on a Hilbert space H with coefficienty >0and 0 < p < A 7Y, then ||I — pAll =1 —py.

LemMMA 1.6 (Marino and Xu [1]). Let H be a Hilbert space. Let A be a strongly positive linear
bounded selfadjoint operator with coefficient y > 0. Assume that 0 <y <y/a. Let T:C — C
be a nonexpansive mapping with a fixed point x; € C of the contraction C 3 x — ty f(x) +
(1 —tA)Tx. Then {x;} converges strongly as t — 0 to a fixed point X of T, which solves the
variational inequality

(A-yf)mz—%) <0, zeF(T). (1.16)

2. Main results

TaEOREM 2.1. Let C be a closed convex subset of a Hilbert space H. Let A be a strongly pos-
itive linear bounded operator with coefficient y >0 and W, is defined by (1.8). Assume that
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0<y<y/aandF = NN F(T;) # @. Givenamap f € I, the initial guess xo € C is chosen
arbitrarily and given sequences {a,};—o and {Bn} o in (0,1), the following conditions are
satisfied:

(C1 Z.:;c:o oy = 005

(C2) im0 &y = 05

(C3) 0 <liminf,_ B, < limsup,_.,, Bun < 1;

(C4) limy—.o |Yn,i — Yu-1,il =0, foralli=1,2,...,N.
Let {x,},-, be the composite process defined by (1.11). Then {x,},-, converges strongly to
q € F, which also solves the following variational inequality:

(yf(@ —Aq,p—q) <0, peF (2.1)

Proof. First, we observe that {x,};_, is bounded. Indeed, take a point p € F and notice
that

[yn = plI = Ballxn = pll+ (1 = Bu) Wi = pl| < [0 = pl. (2.2)
It follows that

[1ne1 = pl = llan (y f (xa) = Ap) + (I = nA) (yn = P

(2.3)
= [1 _‘xn(?_)’“)]”xn —P” 'Hxn“)’f(p) _Ap”-

By simple inductions, we have ||x, — pll < max{llxo—pll,I|Ap —yf(p)ll/(y — ya)}, which
gives that the sequence {x,} is bounded, so are {y,} and {z,}.
Next, we claim that

[|X441 — x| — 0. (2.4)

Put l, = (X441 — Buxn)/(1 — B4). Now, we compute 41 — I, that is,

Xn+1 = (1 _ﬁn)ln +[3,,xn, n=0. (2.5)
Observing that
. ‘Xn+1)’f(xn+l) + (I - ‘XnHA)ynJrl _ﬁnﬂxnﬂ
ln+1 - ln -
1 _/3n+1
_ “”)}f(xn) + (I - ‘XnA)yn _ﬁnxn
1=Bn (2.6)
_ Wit (Pf (1) = Ayui1) — an(pf (%) — Ayn)
1- ﬁn+l 1- ﬁn

+ Wn+lxn+1 - ann)
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we have

l || < _Gntl “nJrl

||Vf Xnt1) A)’n+1||+ ||A)’n Yf(xn)H

||ln+1
(2.7)
+ ||-xn+1 - xn” + HWonn - ann”-

Next, we will use M to denote the possible different constants appearing in the following
reasoning. It follows from the definition of W, that

[[ W10 — Wyxal|
=Yt N TN UnsiN-1%0 + (1 = Yt N) X0 — YuN TN Un -1 — (1 = yun) 4|
< Yoty = Yuv [ 2al[ + [[yne1.8 TN Ut N1 = Yun T UpN -1
< | ynern = YN | %l + | pns 8 (TN Unsin—1%0 — T Unn—1%0) ||
+ | ynsrn = Yun | || T Unn—1%n]|

<2M | Yn+1,N — YnN | + )’n+l,N||Un+1,N71xn - Un,Nflxn||~

(2.8)
Next, we consider
||Un+1,N—1xn - Un,N—lxn”
= ||y N-1TN-1Uns1N-2%n + (1 = Prs1n-1)Xn
= YuN-1TN-1UnN-2%n — (1 = Yun—1)%a]|
(2.9)

< [ Yurin-1 = YuN—1 | [|xa]| + prern-1 || TN=1 Unst.n—29n — Tn—1 Unn—2%a||
+ | ynsin-1 = YuN-1 ] || Tn-1Unn—2%n]|

<2M | Yn+1,N-1 — Yn,N—-1 | + ||Un+1,N—2-xn - Un,N—an||~
It follows that

|| Uns1,8-1%n — Unn—1%4]|
<2M | YuiiN-1 = YuN-1 ] +2M | yuiin-2 — YuN-2 | +1|Uns1,8-3%n — Unn—3%4]|

N-1

<2M z |Yn+1,i - Yn,i| + ||Un+l,1xn - Un,lan
i=2
N-1

<2M Z | Yn+1,i = Vn,i | .

i=1
(2.10)
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Substituting (2.10) into (2.8) yields that

N-1
||Wn+1xn - Wn-an <2M | Yn+1,N — Yn,N | +2Yn+1,NM z |)/n+1,i — VYn,i |

i=1

(2.11)
N
< ZMZ [ Vi1 — Vi -
i=1
It follows that
||ln+l - lnH - ||xn _xn71||
Ay
<< _[;1 1y Genen) = Apwaall+ 1= 114y =y f G +2MZ | Y1 = Y.
n+ i=1
(2.12)
Observing conditions (C1), (C4) and takeing the limits as n — oo, we get
limsup (||Li+1 = Li|| = [|%5+1 — xa]|) < 0. (2.13)

We can obtain lim,,—« |, — x, || = 0 easily by Lemma 1.3. Since X1 — x, = (1 = 8,) (L, —
X,), we have that (2.4) holds. Observing that x,1 — y, = a,(y f(x,) — Ay,), we can easily
get limy,—« || ¥n — %4411l = 0, which implies that
||)’n*xn||5||xn*xn+l||+||xn+1*yn||’ (2.14)
that is,
lim [[y, — x| = 0. (2.15)

On the other hand, we have

W = x| < [|%0 = yull +1lyn = Waxall < %0 = pall + Bullxn — Waxal], (2.16)

which implies (1 — 8,) | Wux, — x4l < lIx, — yull. From condition (C3) and (2.15), we
obtain

[|Wox, — x4|| — 0. (2.17)
Next, we claim that

limsup (yf(q) — Ag,x, — q) <0, (2.18)

n—oo

where g = lim;_.ox; with x; being the fixed point of the contraction x — ty f(x) + (I —
tA)W,x. Then, x; solves the fixed point equation x; = ty f (x;) + (I — tA) Wyx;. Thus, we
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have |lx; — x|l = (I = tA)(Wuxy — x,) + t(y f (x¢) — Ax,)|l. It follows from Lemma 1.2
that

||xt _xn“z = ||(I_ tA)(ant _xn) +t()’f(xt) _Axn)||2

<(1 _vt)ZHant _xn||2 +2t<))f(xt) — AXpy X — Xn)

i (2.19)
(1—2yt+(yt ||X: xn“ +fn(t)
+ 26y f () — Axy 2t — Xn) + 2t (AXt — AXpy Xt — X )
where
fu() = 2l = xul| + |20 = Waxn| ) ||62 — Waxu|]| — 0, asn — 0. (2.20)
It follows that
i 1
(Axe =y f (x0), %0 —xn) < 5 (Ax; — AxpyXp — Xn) + 27 (). (2.21)
Let n — o in (2.21) and note that (2.20) yields
limsup (Ax; — y f (x¢), %0 — xu) < %M (2.22)

where M > 0 is a constant such that M > y{Ax; — Ax,,x: — x,,) forallt € (0,1) and n > 1.
Taking t — 0 from (2.22), we have limsup,_,limsup,,_. ., (Ax; — y f (x),x; — x,) < 0. Since
H is a Hilbert space, the order of limsup,_, and limsup,,_, is exchangeable, and hence
(2.18) holds. Now from Lemma 1.2, we have

ni1 = ql* = ||(T = @nA) (30 — @) + & (yf (x2) — Aq) |

<11 = @A) (3 = @)I” + 200 (y f (x0) = AGy X1 — )

2 2 2 2 (2.23)
< (1= anp)”|lxn — ql| +‘an‘x<||xn_Q|| +||xn+l_Q||>
+2a,(yf(q) = AgyXni1 — q),
which implies that
e (l—ocny + anya 2 _
s = £ U281 20y )~ g —g)
Zan(y—(xy)] 2
- - 2.24
=[1 -2 il .20
20,(y — ay) [ 1 B B any’ ]
A p— ?_ayW(q) Ads X1 q>+72(?_ay)M-
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Putl, =20, (¥ — any)/(1 — ayay) and t, = 1/(y — ap)(y f (@) — Ag, X1 — q) + 0y /(2(y —
ay))M, that is,

xer = qlI” < (1= L) |xa — ql| + Lt (2.25)

It follows from conditions (C1), (C2), and (2.22) that lim,—cl, =0, >, I, = o0, and
limsup,_ . t, < 0. Apply Lemma 1.4 to (2.25) to conclude that x, — g. This completes
the proof. O

Remark 2.2. Our results relax the condition of Kim and Xu [1] imposed on control se-
quences and also improve the results of Yao et al. [6] from one single mapping to a finite
family of nonexpansive mappings, respectively.
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