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1. Introduction

Let E be a real Banach space. A mapping T : E—~E is said to be L-Lipschitzian if there exists
L > 0 such that

||[Tx—Ty|| <Llx—yll, Vx,y€E. (1.1)

T is said to be nonexpansive if L = 1 in (1.1).

Several authors have studied various methods for the iterative approximation of fixed
points of nonexpansive mappings. Recently, Wang [1] studied the following iteration
method in Hilbert spaces.

The hybrid iteration method. Let H be a Hilbert space, T : H—H a nonexpansive mapping

with F(T) = {x € H: Tx = x}#@, and F : H—H an L-Lipschitzian mapping which is also
n-strongly monotone, where T is 51-strongly monotone if there exists # > 0 such that

(Tx—Ty,x—y) 217||x—y||2, Vx, y € H. (1.2)
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Let {a,},, and {A,},_; be real sequences in [0,1), and @ > 0, then the sequence {x,},_,
is generated from an arbitrary x; € H by

Xpp1 = ApXn + (1 —a) T %, 1> 1, (1.3)

where Th+1x,, := Tx, — Ay 1uF(Tx,), p>0. Wang’s work was motivated by earlier results
of Xu and Kim [2] and Yamada [3], in addition to several other related results. Using this
iteration method, Wang proved the following main results.

LemMA 1.1 (see [1, page 3]). Let H be a Hilbert space, T : H—H a nonexpansive map-
ping with F(T) = {x e H: Tx = x} # @, and F: H—~H an n-strongly monotone and L-
Lipschitzian mapping. Let {x,},_, be the sequence generated from an arbitrary x, € H by

X1 = OuXp + (1 — ocn)TA"”xn, nx>1, (1.4)

where TM+1x,, 1= Tx, — As1tF(Txy), p >0, and let {a,},_, and {An}n_ be real sequences
in [0, 1) satisfying the following conditions:

(i) 0<a<a, <f<1,forsomea,f €(0,1),

(i) ZZO:V\n < o,

(iii) 0 < p < 25/L>
Then,

(a) lim .o [y — x™* || exists for each x* € F(T),

(b) lim — e [l — Txull = 0.

Tueorem 1.2 (see [1, page 5]). Let H, T, F(T), F,{T*1} 7 {xu} ey {otn} e 1> IAn b ey
wa, and f be as in Lemma 1.1. Let {x,},_, be the sequence generated from an arbitrary
x1 € H by

Xpi1 = ApXn + (1 — ) T, n> 1. (1.5)

Then,
(a) {x4},_, converges weakly to a fixed point of T,
(b) {x,},_, converges strongly to a fixed point of T if and only if lim inf ,_ . d(x,, F(T))
=0, where d(x,F(T)) := inf {|lx— pll : p € F(T)}.

It is our purpose in this paper to extend Lemma 1.1 and Theorem 1.2 from Hilbert
spaces to arbitrary Banach spaces. Our results are much more general and applicable
than the results of Wang [1] because the strong monotonicity condition imposed on F by
Wang is not required in our results.

2. Preliminaries

In the sequel, we will need what follows.
A Banach space E is said to satisfy Opial’s condition (see, e.g., [4]) if for each sequence
{xn},_1 in E which converges weakly to a point x € E, we have

limi£f||xn—x||<1i£lrlio£1f||xn—y||, Vy€eE. (2.1)
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Let E be a Banach space. A mapping T with domain D(T') and range R(T) in E is said to
be demiclosed at a point p € D(T) if, whenever, {x,},_, is a sequence in E which converges
weakly to a pointx € E and {Tx,},_, converges strongly to p, then Tx = p. Furthermore,
T is said to be demicompact if, whenever, {x,},_, is a bounded sequence in D(T) such
that {x, — Tx,},_, converges strongly, then {x,},_, has a subsequence which converges
strongly. T is said to satisfy condition (A) if F(T)# @ and there exists a nondecreasing
function f :[0,00)—[0,00) with f(0) =0 and f(¢) >0 for all t € (0,00) such that ||x —
Tx|l = f(d(x,F(T))) for all x € D(T), where d(x,F(T)) :=inf {||x — pll : p € F(T)}.

LEmMMA 2.1 (see [5]). Let E be a reflexive Banach space satisfying Opial’s condition and let
K be a nonempty closed convex subset of E. Let T : K—E be a nonexpansive mapping. Then,
(I = T) is demiclosed on K, where I is the identity mapping.

LemMA 2.2 (see [6, page 11841, [7]). Let {an},-i, {bn}, -y, and {8,},_, be sequences of
nonnegative real numbers satisfying the inequality

a1 < (1+6,)a,+b,, n=>1. (2.2)

If Y, 10, <ooand b, < o, then lim,_ay exists. In particular, if {a,},_, has a sub-
sequence which converges strongly to zero, then lim . a, = 0.

LemMa 2.3 (see [8, page 770]). Let E be an arbitrary normed space and let {t,}, _, be a real
sequence satisfying the following conditions:
(1) 0<t,<t<1 forall n=1and for somet € (0,1),
(ii) Zf:ltn = 0.
Let {uy},_; and {v,},_, be two sequences in E such that
(i) up = (1 = t)uy +tyvy, n>1,
(iv) lim,— o [t || = d for some d € [0, c0),
(v) limsup,,_  llvall <d,
(vi) {z?:1tj"j}::1 is bounded.
Then, d = 0.

3. Main results

TaEOREM 3.1. Let E be an arbitrary real Banach space, T : E—~E a nonexpansive mapping
with F(T) # @, and F : E=E an L-Lipschitzian mapping. Let {x,},._, be the sequence gen-
erated from an arbitrary x; € E by

Xpp1 = WX+ (1 —a) T, n> 1, (3.1)

where Th1x, := Tx, — As1tF(Txy), 4 >0, and {a,},_, and {An} ., are real sequences in
[0, 1) satisfying the following conditions:
(i) 0<a<a, <1 forall n>1 and for some o € (0,1),
(ii) 3,0, (1= ay) = oo,
(iil) X o Ay < o0,
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Then,
(a) lim - [l — x*|| exists for each x* € F(T),
(b) lim oo [[x — Tx4 [l = 0,
(c) {xn}, - converges strongly to a fixed point of T if and only iflim inf ,_ o d(x,, F(T))
=0.

Proof. Let x* € F(T) be arbitrary, then,

[t = x| = [l (o6 = x%) + (1 = @) (Txn = x*) = (1 = &) A1 pF (Toxs) |
< [Jon (2 = x™) + (1 = ) (Toxn — ™) ||+ (1 = 0tn) dsa | [F (Tox) ||
< oty — 2[4 (1 = o) [[ T = [+ (1 = o) Apsa e [F (Txn) = F (™) |
+ (1= ) Al [F (x™) |
< [Joen = 2*[| + (1 = @) AL |30 = x*[[+ (1 = o) dir | [F () |

= [1+48,]||xn — x*|| + 00,
(3.2)

where 8, = (1 — a,)AuipuLl and 0, = (1 — &) Al F(x™).

Since >, 18, <ocoand X, 0, < 0, it follows from Lemma 2.2 that lim ,,— o [|x,, — x* ||
exists. This completes the proof of (a).

Since {l|x, — x* ||}, is bounded, there exists M > 0 such that

l|xy —x*|| <M, Vn=x>1. (3.3)
Observe that
||xn+1 - Txn+1|| = ||anxn + (1 - “n)T/‘onn - Txn+1||
< |low (= Txp1) + (1 = &) (T, — Txps1) ||
+ (1= ) Al |F(Tx) |
S(an(xn_Txnﬂ)”-'—(l_ocn)”Txn_TanH (3.4)
+(1- ‘xn)/\nJrl/"HF(Txn) |
< ‘anxn _xn+1|| +0¢n||xn+l - Txn+1|| + (1 - “n)”xn _xn+1||
+ (1= &) Anrpt] |[F (Txn) |-
Thus,

||xn+] - Txn+l || =<

o e = xusal[ + Al |F (T || (3.5)

< ||xn = Txn|| + 2Ani1 | [F (Tx0) |-
It follows from (3.3) that

IF(Toxa) || = Ll = x*[| +[|[F(x*)|| = LM +||F (x*)[| < D (3.6)
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for all n = 1 and for some D > 0. Using (3.6) in (3.5), we obtain
[|%n+1 = Txne]| < ||%n — Txn|| + 2Ans1uD = ||x5 — Txn|| +y,,, (3.7)

where y, = 2A,41uD. Since Z;llyn < o0, it follows from Lemma 2.2 that lim,,—« ||x, —
Tx, | exists. Let lim,— o ||x, — Tx,|| = d, and set u,, = x, — Tx,, so that

Up+l = (1 - tn)un + 1y Vn, (38)

where t, = 1 — &, and v, = (1/(1 — a))(Txy — Txps1) — Apr1F(Tx,). Observe that 0 <
th<1—a=te(0,1)and >, t, = co. Furthermore,

1
—a,
1
1-—a,
= ||xn - Txn” +2/1n+1.”||F(Txn)||
< ||xn = Txn|| + 2Ans14D.

[[vall = 7= 1T = Tl [+ Ausa | F (T2 ||

=<

||xn - xn+1|| +An+1[1||F(Txn) || (3.9

Thus, lim sup,,_, llv,ll < d. Also,

n
D tvj
j=1

‘ 1
jZ::I(l —(Xj)|:(l_

(TXj - TXj+1) —/\j+1/4F(ij)] H
(X]')

=<

Z (Txj — Txj) ||+ Z (1= a;j)Ajnpl[F(Tx;)||
j=1 j=1

< ||T.X'1 — Txn+1|| +‘leZ/\j+1 (310)
j=1

< ||X1 _xn+1|| +‘MDZA]‘+1
j=1

< |1 = x*|| + ||xne1 = x*||+ D> Aj <K
j=1
for all n > 1 and for some K > 0. Hence, {Z;=1tjvj}:=l is bounded. It now follows from
Lemma 2.3 that im ,—« [|v4 ]| = lim ,— [|x, — Tx, |l = 0. This completes the proof of (b).
From (3.2), we obtain

[[xne1 = x*|| < [148n]||%0 = x* ||+ 04 < ||x0 —x™|| + My + 0 = ||xtn — x*||+ >
(3.11)

where 8, = M, + 0. Hence, d(x,11,F(T)) < d(x,, F(T)) + 8, Since >, B, < oo, it fol-
lows from Lemma 2.2 that lim,,_. o d(x,,, F(T)) exists.
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If {x,},_, converges strongly to a fixed point p of T, then lim . |x, — pll = 0. Since
0 <d(x,,F(T)) < ||x, — pll, (3.12)

we have lim inf ,,_ o d(x,, F(T)) = 0.

Conversely, suppose lim inf ,,_. . d(x,,, F(T)) = 0, then we have lim,,_. .o d(x,, F(T)) = 0.
Thus for arbitrary € > 0, there exists a positive integer N such that d(x,,F(T)) < €/4 for
all n > Nj. Furthermore, >, 8, < co implies that there exists a positive integer N, such
that Z;‘;nﬁj <€/4 foralln = N,. Choose N = max {N;,N,}, then d(xx,F(T)) < €/4 and
Z;‘;Nﬁj < €/4. It follows from (3.11) that for all #n,m = N and for all p € F(T'), we have

120 = tm| | < llen = pI| + | = |

<l -pll+ S B+l —pll+ S 6,

j=N+1 j=N+1 (3.13)

<2y —pll+2 2 B;.
j=N
Taking infimum over all p € F(T'), we obtain

||xn—xm||SZd(xN,F(T))+2§ﬁj<€, Vn,m > N. (3.14)
=N

Thus, {x,},._, is Cauchy. Suppose lim ,—.x, = u, then since lim ,— |lx, — Tx,|l = 0, we
have u € F(T). This completes the proof of (c). O

TaEOREM 3.2. Let E be a real reflexive Banach space satisfying Opial’s condition, T : E~E a
nonexpansive mapping with F(T) # &, and F : E—E an L-Lipschitzian mapping. Let {x,},_,
be the sequence generated from an arbitrary x, € H by

Xpp1 = ApXn + (1 —a) T, 0> 1, (3.15)

where Thix, := Tx, — A1 wE(Txy), u>0,and {a,},_, and {A,},_, are real sequences in
[0,1) satisfying the following conditions:
(1) 0<a=<a,<1 forall n=1and for some a € (0,1),
(if) 3, (1 - ) = o0,
(ifi) 3ok < 0.
Then, {x,},_, converges weakly to a fixed point of T.

Proof. From Lemma 2.1, (I — T) is demiclosed at zero, and since lim .« [|x, — Tl = 0
and E satisfies Opial’s condition, it follows from standard argument that {x,},_; con-
verges weakly to a fixed point of T. O

Remark 3.3. It follows from Lemma 2.2 and Theorem 3.1 that under the hypothesis of
Theorem 3.1, {x,},_, converges strongly to a fixed point p of T if and only if {x,},_,
has a subsequence {x, j};" , Which converges strongly to p. Thus, under the hypothesis
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of Theorem 3.1, if T is in addition completely continuous or demicompact, then {x,},_;
converges strongly to a fixed point of T..

Furthermore, if T satisfies condition (A), then lim inf, . »d(x,, F(T)) = 0; so under
the conditions of Theorem 3.1, if T satisfies condition (A), then {x,},_, converges
strongly to a fixed point of T.

Remark 3.4. Theorems 3.1 and 3.2 and Remark 3.3 extend the results of [1] from Hilbert
spaces to much more general Banach spaces as considered here. Furthermore, the strong
monotonicity condition imposed on F in [1] is not required in our results.
Prototypes of our real sequences {a,},_; and {A,},_, are a, = n/(n+1),n > 1 and
A=1n+1)*n=1.
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