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prove that the iteration converges strongly to common fixed points of the mappings with-
out commutativity assumption.

Copyright © 2006 Yonghong Yao et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . A
mapping T of C into itself is said to be nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, (1.1)

for each x, y ∈ C. For a mapping T of C into itself, we denote by F(T) the set of fixed
points of T . We also denote by N and R+ the set of positive integers and nonnegative real
numbers, respectively.

Baillon [1] proved the first nonlinear ergodic theorem. Let C be a nonempty bounded
convex closed subset of a Hilbert space H and let T be a nonexpansive mapping of C into
itself. Then, for an arbitrary x ∈ C, {(1/(n+ 1))

∑n
i=0T

ix}∞n=0 converges weakly to a fixed
point of T . Wittmann [9] studied the following iteration scheme, which has first been
considered by Halpern [3]:

x0 = x ∈ C,

xn+1 = αn+1x+
(
1−αn+1

)
Txn, n≥ 0,

(1.2)

where a sequence {αn} in [0,1] is chosen so that limn→∞αn = 0,
∑∞

n=1αn =∞, and
∑∞

n=1

|αn+1 − αn| <∞; see also Reich [7]. Wittmann proved that for any x ∈ C, the sequence
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{xn} defined by (1.2) converges strongly to the unique element Px ∈ F(T), where P is the
metric projection of H onto F(T).

Recall that two mappings S and T of H into itself are called commutative if

ST = TS, (1.3)

for all x, y ∈H .
Recently, Shimizu and Takahashi [8] have first considered an iteration scheme for two

commutative nonexpansive mappings S and T and proved that the iterations converge
strongly to a common fixed point of S and T . They obtained the following result.

Theorem 1.1 (see [8]). Let H be a Hilbert space, and let C be a nonempty closed convex
subset of H . Let S and T be nonexpansive mappings of C into itself such that ST = TS and
F(S)

⋂
F(T) is nonempty. Suppose that {αn}∞n=0 ⊆ [0,1] satisfies

(i) limn→∞αn = 0, and
(ii)

∑∞
n=0αn =∞.

Then, for an arbitrary x ∈ C, the sequence {xn}∞n=0 generated by x0 = x and

xn+1 = αnx+
(
1−αn

) 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
SiT jxn, n≥ 0, (1.4)

converges strongly to a common fixed point Px of S and T , where P is the metric projection
of H onto F(S)

⋂
F(T).

Remark 1.2. At this point, we note that the authors have imposed the commutativity on
the mappings S and T . But there are many mappings, that do not satisfy ST = TS. For
example, if X = [−1/2,1/2], and S and T of X into itself are defined by

S= x2, T = sinx, (1.5)

then ST = sin2 x, whereas TS= sinx2.

In this paper, we deal with the strong convergence to common fixed points of two
nonexpansive mappings in a Hilbert space. We consider an iteration scheme for non-
expansive mappings without commutativity assumption and prove that the iterations
converge strongly to a common fixed point of the mappings Ti, i= 1,2.

2. Preliminaries

Let C be a closed convex subset of a Hilbert space H and let S and T be nonexpansive
mappings of C into itself. Then we consider the iteration scheme

x0 = x ∈ C,

xn+1 = αnx+
(
1−αn

) 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
SiT j yn,

yn = βnxn +
(
1−βn

) 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
TiSjxn, n≥ 0,

(2.1)
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where {αn} and {βn} are two sequences in [0,1]. We know that a Hilbert space H satisfies
Opial’s condition [6], that is, if a sequence {xn} in H converges weakly to an element y of
H and y 	= z, then

liminf
n→∞

∥
∥xn− y

∥
∥ < liminf

n→∞
∥
∥xn− z

∥
∥. (2.2)

In what follows, we will use PC to denote the metric projection from H onto C; that is,
for each x ∈H , PC is the only point in C with the property

∥
∥x−PCx

∥
∥=min

u∈C
‖u− x‖. (2.3)

It is known that PC is nonexpansive and characterized by the following inequality: given
x ∈H and v ∈H , then v = PCx if and only if

〈x− v,v− y〉 ≥ 0, y ∈ C. (2.4)

Now, we introduce several lemmas for our main result in this paper. The first lemma
can be found in [4, 5, 10].

Lemma 2.1. Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− γn

)
an + δn, (2.5)

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn =∞;

(2) limsupn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then limn→∞ an = 0.

Lemma 2.2. Let C be a nonempty bounded closed convex subset of a Hilbert H , and let S,T
be nonexpansive mappings of C into itself. For x ∈ C and n∈N∪{0}, put

Gn(x)= 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
SiT jx,

Gn(x)= 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
TiSjx.

(2.6)

Then

lim
n→∞

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥= 0,

lim
n→∞

sup
x∈C

∥
∥Gn(x)−TGn(x)

∥
∥= 0.

(2.7)
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Proof. We first prove limn→∞ supx∈C ‖Gn(x)− SGn(x)‖ = 0.
By an idea in [2], for {xi, j}∞i, j=0, {xi, j}∞i, j=0 ⊆ C and zn = (1/ln)

∑n
k=0

∑
i+ j=k xi, j , zn =

(1/ln)
∑n

k=0

∑
i+ j=k xi, j ∈ C, with ln = (n+ 1)(n+ 2)/2, we have

∥
∥zn− v

∥
∥2 = 1

ln

n∑

k=0

∑

i+ j=k

∥
∥xi, j − v

∥
∥2− 1

ln

n∑

k=0

∑

i+ j=k

∥
∥xi, j − zn

∥
∥2

(2.8)

for each v ∈ H . For x ∈ C, put xi, j = SiT jx,xi, j = TiSjx and v = Szn,v = Tzn. Then, we
have

∥
∥Gn(x)− SGn(x)

∥
∥2 = 1

ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− Szn

∥
∥2− 1

ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2

+
1
ln

n∑

k=1

∑

i+ j=k, i≥1

∥
∥SiT jx− Szn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

≤ 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2

+
1
ln

n∑

k=1

∑

i+ j=k, i≥1

∥
∥Si−1T jx− zn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2

+
1
ln

n−1∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

− 1
ln

n∑

k=0

∑

i+ j=k

∥
∥SiT jx− zn

∥
∥2

= 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2− 1

ln

∑

i+ j=n

∥
∥SiT jx− zn

∥
∥2

≤ 1
ln

n∑

k=0

∥
∥Tkx− Szn

∥
∥2 ≤ 2

n+ 2

{
diam(C)

}2
,

(2.9)

where diam(C) is the diameter of C. So, we have, for each n∈N∪{0},

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥2 ≤ 2

n+ 2

{
diam(C)

}2
, (2.10)

and hence

lim
n→∞

sup
x∈C

∥
∥Gn(x)− SGn(x)

∥
∥= 0. (2.11)
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Similarly, we have

lim
n→∞

sup
x∈C

∥
∥Gn(x)−TGn(x)

∥
∥= 0. (2.12)

�

3. Convergence theorem

Now we can prove a strong convergence theorem in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space, and let C be a nonempty closed convex subset of H .
Let S and T be nonexpansive mappings of C into itself such that F(S)

⋂
F(T) is nonempty.

Suppose that {αn}∞n=0 and {βn}∞n=1 are two sequences in [0,1] satisfying the following condi-
tions:

(i) limn→∞αn = 0, and

(ii)
∑∞

n=0αn =∞.
For an arbitrary x ∈ C, the sequence {xn}∞n=0 is generated by x0 = x and

xn+1 = αnx+
(
1−αn

) 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
SiT j yn,

yn = βnxn +
(
1−βn

) 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
TiSjxn, n≥ 0.

(3.1)

Let

zn = 2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
SiT j yn, zn = 2

(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k
TiSjxn, (3.2)

for each n∈N∪{0}. If there exist subsequences {zni}∞i=0 of {zn}∞n=0 and {znj}∞j=0 of {zn}∞n=0,
respectively, which converge weakly to some common point z in some bounded subset D of C,
then the sequence {xn}∞n=0 defined by (3.1) converges strongly to PF(S)∩F(T)x.

Proof. Let x ∈ C and w ∈ F(S)
⋂
F(T). Putting r = ‖x−w‖, then the set

D = {y ∈H : ‖y−w‖ ≤ r
}∩C (3.3)

is a nonempty bounded closed convex subset of C which is S- and T-invariant and con-
tains x0 = x. So we may assume, without loss of generality, that S and T are the mappings
of D into itself. Since P is the metric projection of H onto F(S)∩F(T), we have

〈y−Px,x−Px〉 ≤ 0 (3.4)

for each y ∈ F(S)
⋂
F(T).
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From (3.4), we have

limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0, limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0. (3.5)

In fact, assume that, there exist two positive real numbers r0 and r1 such that

limsup
n→∞

〈
zn−Px,x−Px

〉
> r0, limsup

n→∞

〈
zn−Px,x−Px

〉
> r1. (3.6)

Since {zn}∞n=0 and {zn}∞n=0 ⊆ D are bounded, from (3.6), there exist subsequences
{zni}∞i=0 of {zn}∞n=0 and {znj}∞j=0 of {zn}∞n=0, respectively, such that

limsup
n→∞

〈
zn−Px,x−Px

〉= lim
i→∞

〈
zni −Px,x−Px

〉
> r0,

limsup
n→∞

〈
zn−Px,x−Px

〉= lim
j→∞

〈
znj −Px,x−Px

〉
> r1.

(3.7)

By the assumption, we know that {zni}∞i=0 and {znj}∞j=0 converge weakly to some com-
mon point z ∈D. Thus from Lemma 2.2 and Opial’s condition, we have z ∈ F(S)

⋂
F(T).

In fact, if z 	= Sz, we have

liminf
i→∞

∥
∥zni − z

∥
∥ < liminf

i→∞
∥
∥zni − Sz

∥
∥

≤ liminf
i→∞

(∥
∥zni − Szni

∥
∥+

∥
∥Szni − Sz

∥
∥
)

≤ liminf
i→∞

∥
∥zni − z

∥
∥.

(3.8)

This is a contradiction. Therefore, we have z = Sz.
Similarly, we have z = Tz. So, we have

〈z−Px,x−Px〉 ≤ 0. (3.9)

On the other hand, since {zni} converges weakly to z, we obtain

〈z−Px,x−Px〉 ≥ r0. (3.10)

This is a contradiction. Hence, we have

limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0, limsup
n→∞

〈
zn−Px,x−Px

〉≤ 0. (3.11)
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Since

∥
∥zn−Px

∥
∥≤

{
2

(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k

∥
∥TiSjxn−Px

∥
∥

}2

≤
{

2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k

∥
∥xn−Px

∥
∥

}2

= ∥∥xn−Px
∥
∥2

,

∥
∥yn−Px

∥
∥2 = ∥∥βnxn +

(
1−βn

)
zn−Px

∥
∥2

= ∥∥βn
(
xn−Px

)
+
(
1−βn

)(
zn−Px

)∥
∥2

= β2
n

∥
∥xn−Px

∥
∥2

+ 2βn
(
1−βn

)(
xn−Px,zn−Px

)
+
(
1−βn

)2∥∥zn−Px
∥
∥2

≤ β2
n

∥
∥xn−Px

∥
∥2

+ 2βn
(
1−βn

)
∥
∥xn−Px

∥
∥2

+
∥
∥zn−Px

∥
∥2

2

+
(
1−βn

)2∥∥zn−Px
∥
∥2 ≤ ∥∥xn−Px

∥
∥2
.

(3.12)

Then, we have

∥
∥xn+1−Px

∥
∥2 = ∥∥αnx+

(
1−αn

)
zn−Px

∥
∥2

= α2
n‖x−Px‖2 +

(
1−αn

)2∥∥zn−Px
∥
∥2

+ 2αn
(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)2
{

2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k

∥
∥SiT j yn−Px

∥
∥

}2

+α2
n‖x−Px‖2 + 2αn

(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)2
{

2
(n+ 1)(n+ 2)

n∑

k=0

∑

i+ j=k

∥
∥yn−Px

∥
∥

}2

+α2
n‖x−Px‖2 + 2αn

(
1−αn

)〈
zn−Px,x−Px

〉

= (1−αn
)2∥∥yn−Px

∥
∥2

+α2
n‖x−Px‖2 + 2αn

(
1−αn

)〈
zn−Px,x−Px

〉

≤ (1−αn
)∥
∥xn−Px

∥
∥2

+αn
{
αn‖x−Px‖2 + 2

(
1−αn

)〈
zn−Px,x−Px

〉}
.

(3.13)

Putting an = ‖xn−Px‖2, from (3.13), we have

an+1 ≤
(
1−αn

)
an + δn, (3.14)

where δn = αn{αn‖x−Px‖2 + 2(1−αn)〈zn−Px, x−Px〉}.
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It is easily seen that

limsup
n→∞

δn/αn = limsup
n→∞

{
αn‖x−Px‖2 + 2

(
1−αn

)〈
zn−Px, x−Px

〉}≤ 0. (3.15)

Now applying Lemma 2.1 with (3.15) to (3.14) concludes that ‖xn−Px‖→ 0 as n→∞.
This completes the proof. �
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