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The purpose of this paper is to study the weak and strong convergence of implicit iter-
ation process with errors to a common fixed point for a finite family of nonexpansive
mappings in Banach spaces. The results presented in this paper extend and improve the
corresponding results of Chang and Cho (2003), Xu and Ori (2001), and Zhou and Chang
(2002).
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1. Introduction and preliminaries

Throughout this paper we assume that E is a real Banach space and T : E→ E is a map-
ping. We denote by F(T) and D(T) the set of fixed points and the domain of T , respec-
tively.

Recall that E is said to satisfy Opial condition [11], if for each sequence {xn} in E, the
condition that the sequence xn→ x weakly implies that

liminf
n→∞

∥
∥xn− x

∥
∥ < liminf

n→∞
∥
∥xn− y

∥
∥ (1.1)

for all y ∈ E with y �= x. It is well known that (see, e.g., Dozo [9]) inequality (1.1) is
equivalent to

limsup
n→∞

∥
∥xn− x

∥
∥ < limsup

n→∞

∥
∥xn− y

∥
∥. (1.2)

Definition 1.1. Let D be a closed subset of E and let T : D→D be a mapping.
(1) T is said to be demiclosed at the origin, if for each sequence {xn} in D, the condi-

tions xn→ x0 weakly and Txn→ 0 strongly imply Tx0 = 0.

Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2006, Article ID 82738, Pages 1–11
DOI 10.1155/FPTA/2006/82738



2 A new composite implicit iterative process

(2) T is said to be semicompact, if for any bounded sequence {xn} in D such that
‖xn −Txn‖ → 0 (n→∞), then there exists a subsequence {xni} ⊂ {xn} such that
xni → x∗ ∈D.

(3) T is said to be nonexpansive, if ‖Tx−Ty‖ ≤ ‖x− y‖, for all n≥ 1 for all x, y ∈D.
Let E be a Hilbet space, let K be a nonempty closed convex subset of E, and let

{T1,T2, . . . ,TN} : K → K be N nonexpansive mappings. In 2001, Xu and Ori [19] intro-
duced the following implicit iteration process {xn} defined by

xn = αnxn−1 + (1−αn)Tn(modN)xn, ∀n≥ 1, (1.3)

where x0 ∈ K is an initial point, {αn}n≥1 is a real sequence in (0,1) and proved the weakly
convergence of the sequence {xn} defined by (1.3) to a common fixed point p ∈ F =
⋂N

i=1F(Ti).
Recently concerning the convergence problems of an implicit (or nonimplicit) itera-

tive process to a common fixed point for a finite family of asymptotically nonexpansive
mappings (or nonexpansive mappings) in Hilbert spaces or uniformly convex Banach
spaces have been considered by several authors (see, e.g., Bauschke [1], Chang and Cho
[3], Chang et al. [4], Chidume et al. [5], Goebel and Kirk [6], Górnicki [7], Halpern [8],
Lions [10], Reich [12], Rhoades [13], Schu [14], Shioji and Takahashi [15], Tan and Xu
[16, 17], Wittmann [18], Xu and Ori [19], and Zhou and Chang [20]).

In this paper, we introduce the following new implicit iterative sequence {xn} with
errors:

x1 = α1x0 +β1T1
(

α̂1x0 + β̂1T1x1 + γ̂1v1
)

+ γ1u1,

x2 = α2x1 +β2T2
(

α̂2x1 + β̂2T2x2 + γ̂2v2
)

+ γ2u2,

...

xN = αNxN−1 +βNTN
(

α̂NxN−1 + β̂NTNxN + γ̂NvN
)

+ γNuN ,

xN+1 = αN+1xN +βN+1T1
(

α̂N+1xN + β̂N+1T1xN+1 + γ̂N+1vN+1
)

+ γN+1uN+1,

...

x2N = α2Nx2N−1 +β2NTN
(

α̂2Nx2N−1 + β̂2NTNx2N + γ̂2Nv2N
)

+ γ2Nu2N ,

x2N+1 = α2N+1x2N +β2N+1T1
(

α̂2N+1x2N + β̂2N+1T1x2N+1 + γ̂2N+1v2N+1
)

+ γ2N+1u2N+1,

...
(1.4)

for a finite family of nonexpansive mappings {Ti}Ni=1 : K → K , where {αn}, {βn}, {γn},
{α̂n}, {β̂n}, and {γ̂n} are six sequences in [0, 1] satisfying αn + βn + γn = α̂n + β̂n + γ̂n = 1
for all n≥ 1, x0 is a given point in K , as well as {un} and {vn} are two bounded sequences
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in K , which can be written in the following compact form:

xn = αnxn−1 +βnTn(modN)yn + γnun,

yn = α̂nxn−1 + β̂nTn(modN)xn + γ̂nvn, ∀n≥ 1.
(1.5)

Especially, if {Ti}Ni=1 : K → K are N nonexpansive mappings, {αn}, {βn}, {γn} are three
sequences in [0, 1], and x0 is a given point in K , then the sequence {xn} defined by

xn = αnxn−1 +βnTn(modN)xn−1 + γnun, ∀n≥ 1 (1.6)

is called the explicit iterative sequence for a finite family of nonexpansive mappings
{Ti}Ni=1.

The purpose of this paper is to study the weak and strong convergence of iterative
sequence {xn} defined by (1.5) and (1.6) to a common fixed point for a finite family
of nonexpansive mappings in Banach spaces. The results presented in this paper not only
generalized and extend the corresponding results of Chang and Cho [3], Xu and Ori [19],

and Zhou and Chang [20], but also in the case of γn = γ̂n = 0 or β̂n = γ̂n = 0 are also new.

In order to prove the main results of this paper, we need the following lemmas.

Lemma 1.2 [2]. Let E be a uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let T : K → K be a nonexpansive mapping with F(T) �= ∅. Then
I −T is semiclosed at zero, that is, for each sequence {xn} in K , if {xn} converges weakly to
q ∈ K and {(I −T)xn} converges strongly to 0, then (I −T)q = 0.

Lemma 1.3 [17]. Let {an} and {bn} be two nonnegative real sequences satisfying the fol-
lowing condition: an+1 ≤ an + bn for all n ≥ n0, where n0 is some nonnegative integer. If
∑∞

n=0 bn <∞, then limn→∞ an exists. If in addition {an} has a subsequence which converges
strongly to zero, then limn→∞ an = 0.

Lemma 1.4 [14]. Let E be a uniformly convex Banach space, let b and c be two constants with
0 < b < c < 1. Suppose that {tn} is a sequence in [b,c] and {xn} and {yn} are two sequence in
E such that limn→∞‖tnxn + (1− tn)yn‖ = d, limsupn→∞‖xn‖ ≤ d, and limsupn→∞‖yn‖ ≤
d hold for some d ≥ 0, then limn→∞‖xn− yn‖ = 0.

Lemma 1.5. Let E be a real Banach space, let K be a nonempty closed convex subset of E,
and let {T1,T2, . . . ,TN} : K → K be N nonexpansive mappings with F =⋂N

i=1F(Ti) �= ∅.

Let {un} and {vn} be two bounded sequences in K , and let {αn}, {βn}, {γn}, {α̂n}, {β̂n},
and {γ̂n} be six sequences in [0,1] satisfying the following conditions:

(i) αn +βn + γn = α̂n + β̂n + γ̂n = 1, for all n≥ 1;
(ii) τ = sup{βn : n≥ 1} < 1;

(iii)
∑∞

n=1 γn <∞,
∑∞

n=1 γ̂n <∞.
If {xn} is the implicit iterative sequence defined by (1.5), then for each p ∈ F =⋂N

i=1F(Ti)
the limit limn→∞‖xn− p‖ exists.
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Proof. Since F =⋂N
n=1F(Ti) �= ∅, for any given p ∈ F, it follows from (1.5) that

∥
∥xn− p

∥
∥= ∥∥(1−βn− γn

)

xn−1 +βnTn(modN)yn + γnun− p
∥
∥

≤ (1−βn− γn
)∥
∥xn−1− p

∥
∥+βn

∥
∥Tn(modN)yn− p

∥
∥+ γn

∥
∥un− p

∥
∥

= (1−βn− γn
)∥
∥xn−1− p

∥
∥+βn

∥
∥Tn(modN)yn−Tn(modN)p

∥
∥+ γn

∥
∥un− p

∥
∥

≤ (1−βn
)∥
∥xn−1− p

∥
∥+βn

∥
∥yn− p

∥
∥+ γn

∥
∥un− p

∥
∥.

(1.7)

Again it follows from (1.5) that

∥
∥yn− p

∥
∥= ∥∥(1− β̂n− γ̂n

)

xn−1 + β̂nTn(modN)xn + γ̂nvn− p
∥
∥

≤ (1− β̂n− γ̂n
)∥
∥xn−1− p

∥
∥+ β̂n

∥
∥Tn(modN)xn− p

∥
∥+ γ̂n

∥
∥vn− p

∥
∥

= (1− β̂n− γ̂n
)∥
∥xn−1− p

∥
∥+ β̂n

∥
∥Tn(modN)xn−Tn(modN)p

∥
∥+ γ̂n

∥
∥vn− p

∥
∥

≤ (1− β̂n
)∥
∥xn−1− p

∥
∥+ β̂n

∥
∥xn− p

∥
∥+ γ̂n

∥
∥vn− p

∥
∥.

(1.8)

Substituting (1.8) into (1.7), we obtain that

∥
∥xn− p

∥
∥≤ (1−βnβ̂n

)∥
∥xn−1− p

∥
∥+βnβ̂n

∥
∥xn− p

∥
∥

+βnγ̂n
∥
∥vn− p

∥
∥+ γn

∥
∥un− p

∥
∥.

(1.9)

Simplifying we have

(

1−βnβ̂n
)∥
∥xn− p

∥
∥≤ (1−βnβ̂n

)∥
∥xn−1− p

∥
∥+ σn, (1.10)

where σn = βnγ̂n‖vn − p‖ + γn‖un − p‖. By condition (iii) and the boundedness of the
sequences {βn}, {‖un− p‖}, and {‖vn− p‖}, we have

∑∞
n=1 σn <∞. From condition (ii)

we know that

βnβ̂n ≤ βn ≤ τ < 1 and so 1−βnβ̂n ≥ 1− τ > 0; (1.11)

hence, from (1.10) we have

∥
∥xn− p

∥
∥≤ ∥∥xn−1− p

∥
∥+

σn
1− τ

= ∥∥xn−1− p
∥
∥+ bn, (1.12)

where bn = σn/(1− τ) with
∑∞

i=1 bn <∞.
Taking an = ‖xn−1− p‖ in inequality (1.12), we have an+1 ≤ an + bn, for all n≥ 1, and

satisfied all conditions in Lemma 1.3. Therefore the limit limn→∞‖xn − p‖ exists. This
completes the proof of Lemma 1.5. �

2. Main results

We are now in a position to prove our main results in this paper.
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Theorem 2.1. Let E be a real Banach space, let K be a nonempty closed convex subset of
E, and let {T1,T2, . . . ,TN} : K → K be N nonexpansive mappings with F =⋂N

i=1F(Ti) �= ∅
(the set of common fixed points of {T1,T2, . . . ,TN}). Let {un} and {vn} be two bounded

sequences in K , and let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, and {γ̂n} be six sequences in [0,1]
satisfying the following conditions:

(i) αn +βn + γn = α̂n + β̂n + γ̂n = 1, for all n≥ 1;
(ii) τ = sup{βn : n≥ 1} < 1;

(iii)
∑∞

n=1 γn <∞,
∑∞

n=1 γ̂n <∞.
Then the implicit iterative sequence {xn} defined by (1.5) converges strongly to a common

fixed point p ∈ F =⋂N
i=1F(Ti) if and only if

liminf
n→∞ d(xn,F)= 0. (2.1)

Proof. The necessity of condition (2.1) is obvious.
Next we prove the sufficiency of Theorem 2.1. For any given p ∈ F, it follows from

(1.12) in Lemma 1.5 that

∥
∥xn− p

∥
∥≤ ∥∥xn−1− p

∥
∥+ bn ∀n≥ 1, (2.2)

where bn = σn/(1− τ) with
∑∞

n=1 bn <∞. Hence, we have

d
(

xn,F
)≤ d

(

xn−1,F
)

+ bn ∀n≥ 1. (2.3)

It follows from (2.3) and Lemma 1.3 that the limit limn→∞d(xn,F) exists. By condition
(2.1), we have limn→∞d(xn,F)= 0.

Next we prove that the sequence {xn} is a Cauchy sequence in K . In fact, for any posi-
tive integers m and n, from (2.2), it follows that

∥
∥xn+m− p

∥
∥≤ ∥∥xn+m−1− p

∥
∥+ bn+m ≤

∥
∥xn+m−2− p

∥
∥+ bn+m−1 + bn+m

≤ ··· ≤ ∥∥xn− p
∥
∥+

n+m
∑

i=n+1

bi ≤
∥
∥xn− p

∥
∥+

∞
∑

i=n+1

bi.
(2.4)

Since limn→∞d(xn,F) = 0 and
∑∞

n=1 bn <∞, for any given ε > 0, there exists a positive
integer n0 such that d(xn,F) < ε/8,

∑∞
i=n+1 bi < ε/2, for all n ≥ n0. Therefore there exists

p1 ∈ F such that ‖xn− p1‖ < ε/4, for all n≥ n0. Consequently, for any n≥ n0 and for all
m≥ 1, from (2.4), we have

∥
∥xn+m− xn

∥
∥≤ ∥∥xn+m− p1

∥
∥+

∥
∥xn− p1

∥
∥

≤ 2
∥
∥xn− p1

∥
∥+

∞
∑

i=n+1

bi < 2 · ε
4

+
ε
2
= ε. (2.5)

This implies that {xn} is a Cauchy sequence in K . By the completeness of K , we can
assume that limn→∞ xn = x∗ ∈ K . Moreover, since the set of fixed points of a nonexpansive
mapping is closed, so is F; thus x∗ ∈ F from limn→∞d(xn,F)= 0, that is, x∗ is a common
fixed point of T1,T2, . . . ,TN . This completes the proof of Theorem 2.1. �
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Theorem 2.2. Let E be a real Banach space, let K be a nonempty closed convex subset of
E, and let {T1,T2, . . . ,TN} : K → K be N nonexpansive mappings with F =⋂N

i=1F(Ti) �= ∅
(the set of common fixed points of {T1,T2, . . . ,TN}). Let {un} be a bounded sequence in K ,
and let {αn}, {βn}, and {γn} be three sequences in [0,1] satisfying the following conditions:

(i) αn +βn + γn = 1, for all n≥ 1;
(ii) τ = sup{βn : n≥ 1} < 1;

(iii)
∑∞

n=1 γn <∞.
Then the explicit iterative sequence {xn} defined by (1.6) converges strongly to a common

fixed point p ∈ F =⋂N
i=1F(Ti) if and only if liminfn→∞d(xn,F)= 0.

Proof. Taking β̂n = γ̂n = 0, for all n ≥ 1 in Theorem 2.1, then the conclusion of
Theorem 2.2 can be obtained from Theorem 2.1 immediately. This completes the proof
of Theorem 2.2. �

Theorem 2.3. Let E be a real uniformly convex Banach space satisfying Opial condition, let
K be a nonempty closed convex subset of E, and let {T1,T2, . . . ,TN} : K → K be N nonex-
pansive mappings with F =⋂N

i=1F(Ti) �= ∅. Let {un} and {vn} be two bounded sequences

in K , and let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, and {γ̂n} be six sequences in [0,1] satisfying the
following conditions:

(i) αn +βn + γn = α̂n + β̂n + γ̂n = 1, for all n≥ 1;
(ii) 0 < τ1 = inf{βn : n≥ 1} ≤ sup{βn : n≥ 1} = τ2 < 1;

(iii) β̂n→ 0 (n→∞);
(iv)

∑∞
n=1 γn <∞,

∑∞
n=1 γ̂n <∞.

Then the implicit iterative sequence {xn} defined by (1.5) converges weakly to a common
fixed point of {T1,T2, . . . ,TN}.
Proof. First, we prove that

lim
n→∞

∥
∥xn−Tn(modN)+ jxn

∥
∥= 0, ∀ j = 1,2, . . . ,N. (2.6)

Let p ∈ F. Put d = limn→∞‖xn− p‖. It follows from (1.5) that

∥
∥xn− p

∥
∥= ∥∥(1−βn

)[

xn−1− p+ γn
(

un− xn−1
)]

+βn
[

Tn(modN)yn− p+ γn
(

un− xn−1
)]∥
∥−→ d, n−→∞.

(2.7)

Again since limn→∞‖xn − p‖ exists, so {xn} is a bounded sequence in K . By virtue of
condition (iv) and the boundedness of sequences {xn} and {un} we have

limsup
n→∞

∥
∥xn−1− p+ γn

(

un− xn−1
)∥
∥

≤ limsup
n→∞

∥
∥xn−1− p

∥
∥+ limsup

n→∞
γn
∥
∥un− xn−1

∥
∥= d, p ∈ F.

(2.8)
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It follows from (1.8) and condition (iii) that

limsup
n→∞

∥
∥Tn(modN)yn− p+ γn

(

un− xn−1
)∥
∥

≤ limsup
n→∞

∥
∥yn− p

∥
∥+ limsup

n→∞
γn
∥
∥un− xn−1

∥
∥

= limsup
n→∞

∥
∥yn− p

∥
∥

≤ limsup
n→∞

{(

1− β̂n
)∥
∥xn−1− p

∥
∥+ β̂n

∥
∥xn− p

∥
∥+ γ̂n

∥
∥vn− p

∥
∥
}

≤ limsup
n→∞

(

1− β̂n
)∥
∥xn−1− p

∥
∥+ limsup

n→∞
β̂n
∥
∥xn− p

∥
∥+ limsup

n→∞
γ̂n
∥
∥vn− p

∥
∥

= d, p ∈ F.

(2.9)

Therefore, from condition (ii), (2.7)–(2.9), and Lemma 1.4 we know that

lim
n→∞

∥
∥Tn(modN)yn− xn−1

∥
∥= 0. (2.10)

From (1.5) and (2.10) we have
∥
∥xn− xn−1

∥
∥= ∥∥βn

[

Tn(modN)yn− xn−1
]

+ γn
(

un− xn−1
)∥
∥

≤ βn
∥
∥Tn(modN)yn− xn−1

∥
∥+ γn

∥
∥un− xn−1

∥
∥−→ 0, n−→∞,

(2.11)

which implies that

lim
n−→∞

∥
∥xn− xn−1

∥
∥= 0 (2.12)

and so

lim
n→∞

∥
∥xn− xn+ j

∥
∥= 0 ∀ j = 1,2, . . . ,N. (2.13)

On the other hand, we have
∥
∥xn−Tn(modN)xn

∥
∥≤ ∥∥xn− xn−1

∥
∥+

∥
∥xn−1−Tn(modN)yn

∥
∥

+
∥
∥Tn(modN)yn−Tn(modN)xn

∥
∥.

(2.14)

Now, we consider the third term on the right-hand side of (2.14). From (1.5) we have

∥
∥Tn(modN)yn−Tn(modN)xn

∥
∥

≤ ∥∥yn− xn
∥
∥= ∥∥α̂n

(

xn−1− xn
)

+ β̂n
(

Tn(modN)xn− xn
)

+ γ̂n
(

vn− xn
)∥
∥

≤ α̂n
∥
∥xn−1− xn

∥
∥+ β̂n

∥
∥Tn(modN)xn− xn

∥
∥+ γ̂n

∥
∥vn− xn

∥
∥.

(2.15)

Substituting (2.15) into (2.14), we obtain that

∥
∥xn−Tn(modN)xn

∥
∥≤ (1 + α̂n

)∥
∥xn− xn−1

∥
∥+

∥
∥xn−1−Tn(modN)yn

∥
∥

+ β̂n
∥
∥Tn(modN)xn− xn

∥
∥+ γ̂n

∥
∥vn− xn

∥
∥.

(2.16)
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Hence, by virtue of conditions (iii), (iv), (2.10), (2.12) and the boundedness of sequences
{‖Tn(modN)xn− xn‖} and {‖vn− xn‖} we have

lim
n→∞

∥
∥xn−Tn(modN)xn

∥
∥= 0. (2.17)

Therefore, from (2.13) and (2.17), for any j = 1,2, . . . ,N , we have

∥
∥xn−Tn(modN)+ jxn

∥
∥≤ ∥∥xn− xn+ j

∥
∥+

∥
∥xn+ j −Tn(modN)+ jxn+ j

∥
∥

+
∥
∥Tn(modN)+ jxn+ j −Tn(modN)+ jxn

∥
∥

≤ 2
∥
∥xn− xn+ j

∥
∥+

∥
∥xn+ j −Tn(modN)+ jxn+ j

∥
∥−→ 0, n−→∞.

(2.18)

That is, (2.6) holds.
Since E is uniformly convex, every bounded subset of E is weakly compact. Again since

{xn} is a bounded sequence in K , there exists a subsequence {xnk} ⊂ {xn} such that {xnk}
converges weakly to q ∈ K .

Without loss of generality, we can assume that nk = i(modN), where i is some positive
integer in {1,2, . . . ,N}. Otherwise, we can take a subsequence {xnkj } ⊂ {xnk} such that
nkj = i(modN). For any l ∈ {1,2, . . . ,N}, there exists an integer j ∈ {1,2, . . . ,N} such that
nk + j = l(modN). Hence, from (2.18) we have

lim
k→∞

∥
∥xnk −Tlxnk

∥
∥= 0, l = 1,2, . . . ,N. (2.19)

By Lemma 1.2, we know that q ∈ F(Tl). By the arbitrariness of l ∈ {1,2, . . . ,N}, we know
that q ∈ F =⋂N

j=1F(Tj).
Finally, we prove that {xn} converges weakly to q. In fact, suppose the contrary, then

there exists some subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly to q1 ∈ K
and q1 �= q. Then by the same method as given above, we can also prove that q1 ∈ F =
⋂N

j=1F(Tj).
Taking p = q and p = q1 and by using the same method given in the proof of

Lemma 1.5, we can prove that the following two limits exist and limn→∞‖xn − q‖ = d1

and limn→∞‖xn− q1‖ = d2, where d1 and d2 are two nonnegative numbers. By virtue of
the Opial condition of E, we have

d1 = limsup
nk−→∞

∥
∥xnk − q

∥
∥ < limsup

nk→∞

∥
∥xnk − q1

∥
∥= d2

= limsup
nj→∞

∥
∥xnj − q1

∥
∥ < limsup

nj→∞

∥
∥xnj − q

∥
∥= d1.

(2.20)

This is a contradiction. Hence q1 = q. This implies that {xn} converges weakly to q. This
completes the proof of Theorem 2.3. �

Theorem 2.4. Let E be a real uniformly convex Banach space satisfying Opial condition, let
K be a nonempty closed convex subset of E, and let {T1,T2, . . . ,TN} : K → K be N nonex-
pansive mappings with F =⋂N

i=1F(Ti) �= ∅. Let {un} be a bounded sequence in K , and let
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{αn}, {βn}, and {γn} be three sequences in [0,1] satisfying the following conditions:
(i) αn +βn + γn = 1,∀n≥ 1;

(ii) 0 < τ1 = inf{βn : n≥ 1} ≤ sup{βn : n≥ 1} = τ2 < 1;
(iii)

∑∞
n=1 γn <∞.

Then the explicit iterative sequence {xn} defined by (1.6) converges weakly to a common
fixed point of {T1,T2, . . . ,TN}.
Proof. Taking β̂n = γ̂n = 0, for all n ≥ 1 in Theorem 2.3, then the conclusion of
Theorem 2.4 can be obtained from Theorem 2.3 immediately. This completes the proof
of Theorem 2.4. �

Theorem 2.5. Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T1,T2, . . . ,TN} : K → K be N nonexpansive mappings with F =
⋂N

i=1F(Ti) �= ∅ and there exists an Tj , 1 ≤ j ≤ N , which is semicompact (without loss of
generality, assume that T1 is semicompact). Let{un} and {vn} be two bounded sequences in

K , and let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, and {γ̂n} be six sequences in [0,1] satisfying the
following conditions:

(i) αn +βn + γn = α̂n + β̂n + γ̂n = 1, for all n≥ 1;
(ii) 0 < τ1 = inf{βn : n≥ 1} ≤ sup{βn : n≥ 1} = τ2 < 1;

(iii) β̂n→ 0 (n→∞);
(iv)

∑∞
n=1 γn <∞,

∑∞
n=1 γ̂n <∞.

Then the implicit iterative sequence {xn} defined by (1.5) converges strongly to a common
fixed point of {T1,T2, . . . ,TN} in K .

Proof. For any given p ∈ F =⋂N
i=1F(Ti), by the same method as given in proving Lemma

1.5 and (2.19), we can prove that

lim
n→∞

∥
∥xn− p

∥
∥= d, (2.21)

where d ≥ 0 is some nonnegative number, and

lim
k→∞

∥
∥xnk −Tlxnk

∥
∥= 0, l = 1,2, . . . ,N. (2.22)

Especially, we have

lim
k→∞

∥
∥xnk −T1xnk

∥
∥= 0. (2.23)

By the assumption, T1 is semicompact; therefore it follows from (2.23) that there exists a
subsequence {xnki } ⊂ {xnk} such that xnki → x∗ ∈ K . Hence from (2.22) we have that

∥
∥x∗ −Tlx

∗∥∥= lim
ki→∞

∥
∥xnki −Tlxnki

∥
∥= 0 ∀l = 1,2, . . . ,N , (2.24)

which implies that x∗ ∈ F = ⋂N
i=1F(Ti). Take p = x∗ in (2.21), similarly we can prove

that limn→∞‖xn − x∗‖ = d1, where d1 ≥ 0 is some nonnegative number. From xnki → x∗

we know that d1 = 0, that is, xn→ x∗. This completes the proof of Theorem 2.5. �
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Theorem 2.6. Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let {T1,T2, . . . ,TN} : K → K be N nonexpansive mappings with
F =⋂N

i=1F(Ti) �= ∅ and there exists an Tj , 1≤ j ≤N , which is semicompact (without loss
of generality, assume that T1 is semicompact). Let {un} be a bounded sequence in K , and let
{αn}, {βn}, and {γn} be three sequences in [0,1] satisfying the following conditions:

(i) αn +βn + γn = 1, for all n≥ 1;
(ii) 0 < τ1 = inf{βn : n≥ 1} ≤ sup{βn : n≥ 1} = τ2 < 1;

(iii)
∑∞

n=1 γn <∞.
Then the explicit iterative sequence {xn} defined by (1.6) converges strongly to a common

fixed point of {T1,T2, . . . ,TN} in K .

Proof. Taking β̂n = γ̂n = 0, for all n ≥ 1 in Theorem 2.5, then the conclusion of
Theorem 2.6 can be obtained from Theorem 2.5 immediately. This completes the proof
of Theorem 2.6. �

Remark 2.7. Theorems 2.3–2.6 improve and extend the corresponding results in Chang
and Cho [3, Theorem 3.1] and Zhou and Chang [20, Theorem 3], and the implicit it-
erative process {xn} defined by (1.3) is replaced by the more general implicit or explicit
iterative process {xn} defined by (1.5) or (1.6).

Remark 2.8. Theorems 2.3–2.6 generalize and improve the main results of Xu and Ori
[19] in the following aspects.

(1) The class of Hilbert spaces is extended to that of Banach spaces satisfying Opial’s
or semicompactness condition.

(2) The implicit iterative process {xn} defined by (1.3) is replaced by the more general
implicit or explicit iterative process {xn} defined by (1.5) or (1.6).

Remark 2.9. The iterative algorithm used in this paper is different from those in [1, 8, 10,
14, 18].
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