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The purpose of this paper is to study sufficient and necessary conditions for finite-step
iterative sequences with mean errors for a finite family of asymptotically quasi-nonexpan-
sive and type mappings in Banach spaces to converge to a common fixed point. The re-
sults presented in this paper improve and extend the recent ones announced by Ghost-
Debnath, Liu, Xu and Noor, Chang, Shahzad et al., Shahzad and Udomene, Chidume et
al., and all the others.
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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, F(T), D(T), and N
denote the set of fixed points of T, the domain of T, and the set of positive integers,
respectively.

Definition 1.1. Let T : D(T) = E — E be a mapping.

(1) T is said to be quasi-nonexpansive if F(T) # & and [|Tx — pll < [lx — pll, for all
x € Eand p € F(T).

(2) T is said to be asymptotically nonexpansive if there exists a sequence {k,} of pos-
itive real numbers with k, > 1 and lim,_.,« k, = 1, such that [|T"x — T"y|| <
knllx — yll, forall x,y € Eand n € N.

(3) T is said to be asymprotically quasi-nonexpansive if F(T) # & and there exists a
sequence {k,} of positive real numbers with k, > 1 and lim, ., k, = 1 such that
IT"x — pll < kyllx— pll, forallx € E, p € F(T),and alln € N.

(4) T is said to be asymptotically nonexpansive type if

limsup{ sup [||T”x—T”y||2—||x—y||2]} <0. (1.1)

n—o x,yE€E
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(5) T is said to be asymptotically quasi-nonexpansive type if

limsup{ sup [||T”x—p||2—||x—p||2]} <0. (1.2)

n—oo x€E,yeF(T)

From the above definitions, it follows that if F(T) is nonempty, quasi-nonexpensive
mappings, asymptotically nonexpensive mappings, asymptotically quasi-nonexpensive
mappings, and asymptotically nonexpensive type-mappings are all special cases of as-
ymptotically quasi-nonexpensive-type mappings.

Definition 1.2 (see [2]). Let Ty, T», T3 : E — E be asymptotically quasi-nonexpansive-type
mappings. Let {u,}, {v,}, {w,} be three given sequences in E and let x; be a given point.
Let {atn}, {Bn}> {yu}> {0n}, {nn}, {€4} be sequences in [0,1] satisfying the following con-
ditions:

o t+yn <1, Bnt+d,<1, mt& <1,
o [ =) (13)
Z)’n<°°) Zan<°°> Z£n<°°-
n=1 n=1 n=1
Then the sequence {x,} C E defined by
Xpr1 = (1 —an — yn)xXu + 0n T yn + Ypthy, n=1,
Yn = (l_ﬁn_sn)xn"'ﬁnngn"'(Snvm nx=1, (14)

Zn = (l_ﬂn_fn)xn""’]nTgxn""anm nx1,

is called the three-step iterative sequence with mean errors of Ty, T, Ts.
Let T, T5,..., Tn : E — E be N asymptotically quasi-nonexpansive-type mappings. Let
x1 be a given point. Then the sequence {x,} defined by

Xn+1 = (1 —a,n— bnl)xn +a Ty, +b,u,1,
ya=0-a2-b2)xuta,Tsys+b,u,,
(1.5)
yN-2=0—an-1—-bn-1)xnt+an 1T 1y,N-1+bN_1UN-1,
yN-1=1—an—bN)xn+a,nT{x,+bnu,N,

is called the N-step iterative sequence with mean errors of Ty, T,..., T, where {ui};_1,
i=1,2,...,N, are N sequences in E, {a,i},_;, {bni}n-1,i=1,2,...,N, are N sequences in
[0, 1] satisfying the following conditions:

a,+b;<l, n<l,i=12,...,N,

(1.6)
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Petryshyn and Williamson [9] proved a sufficient and necessary condition for the
Mann iterative sequences to converge to a fixed point for quasi-nonexpansive mappings.
Ghosh and Debnath [5] extended the result of [9] and gave a sufficient and necessary
condition for the Ishikawa iterative sequence to converge to a fixed point for quasi-
nonexpansive mappings. Liu [6-8] extended the above results and proved some sufficient
and necessary conditions for the Ishikawa iterative sequence or the Ishikawa iterative se-
quences with errors for asymptotically quasi-nonexpansive mappings to converge to a
fixed point. Chidume et al. [4] obtained a strong convergence theorem to a fixed point of
a family of nonself nonexpansive mappings in Banach spaces by an algorithm for nonself-
mappings. Shahzad and Udomene [10] established necessary and sufficient conditions
for the convergence of the Ishikawa-type iterative sequences involving two asymptoti-
cally quasi-nonexpansive mappings to a common fixed point of the mappings defined
on a nonempty closed convex subset of a Banach space and a sufficient condition for the
convergence of the Ishikawa-type iterative sequences involving two uniformly continuous
asymptotically quasi-nonexpansive mappings to a common fixed point of the mappings
defined on a nonempty closed convex subset of a uniformly convex Banach space. Al-
ber [1] studied the approximating methods for finding the fixed points of asymptotically
nonexpansive mappings.

Recently, Chang et al. [2] complement, improve, and perfect all the above results and
obtained some necessary and sufficient conditions for the Ishikawa iterative sequence
with mixed errors of asymptotically quasi-nonexpansive-type mappings in Banach spaces
to converge to a fixed point in Banach spaces. And also using the N-step iterative se-
quences (1.5), Chang et al. [3] proved the weak and strong convergence of finite steps
iterative sequences with mean errors to a common fixed point for a finite family of asymp-
totically nonexpansive mappings.

The purpose of this paper is to study sufficient and necessary conditions for finite-
step iterative sequences with mean errors for a finite family of asymptotically quasi-
nonexpansive-type mappings in Banach spaces to converge to a common fixed point.
Our result shows that [2, Condidtion (2.1) in Theorem 2.1] can be removed. The re-
sults present in this paper improve, extend, and perfect the recent ones announced by
Petryshyn and Williamson [9], Ghost and Debnath [5], Liu [6, 7], Xu and Noor [12],
Chang (2, 3], Shahzad et al. [4], Shahzad and Udomene [10], Chidume et al. [1], and all
the others.

In order to prove our main results, we will need the following lemma.

Lemma 1.3 (see [11]). Let {a,}, {b,} be sequences of nonnegative real numbers satisfying
the inequality

aps1 <ap+b,, n=>1 (1.7)
If >0 by < oo, then lim,,—. a,, exists.

2. Main results

THEOREM 2.1. Let E be a Banach space and T; : E — E (i = 1,2,...,N) be N asymptotically
quasi-nonexpansive-type mappings with a nonempty fixed-point set F(T) = (N, F(T;), that
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1s,

limsup{ sup  [||Trx—pl|* - ||x—p||2]} <0, i=1,2,..,N. (2.1)
n—oo x€E, peF(T)

Let {uyi} be a bounded sequence in E. For any given point x; in E, generate the sequence {x, }
defined by (1.5). If 3., &y < o0, then sequence {x,} strongly converges to a common fixed
point of T; (i = 1,2,...,N) if and only if liminf, .. d(x,, F(T)) = 0, where d(y,S) denotes
the distance of y to set S; that is, d(y,S) = infses |l y — sll.

Proof. (1) For the sake of convenience, we prove the conclusion only for the case of N = 3
and then the other cases can be proved by the same way. For the purpose, let a,, = a1,
Brn = a2, Y = a3, Yn = byr, O = by, &, = bys. Then we can consider the sequence {x,}
defined by (1.4) and {u,}, {v,}, {w,} are bounded. For all p € F(T), let

My =sup{[fu,—pll}:n=1,  My=sup{|lva—pll}:n=1,

(2.2)
M =sup{||w,—p||}:n>1, M = max{M;:i=1,2,3}.
It follows from (2.1) that
imsup{ sup (175~ il I pI) (775 +pll - 15~ p1) 1
n—oo X€E, peF(T)
(2.3)
= limsup{ sup [||T,."x—p||2 - ||x—p||2]} <0, i=1,2,3.
n—oo x€E,peF(T)
Therefore we have
limsup{ sup [||T!'x—p|| - ||x—p||]} <0, i=1,2,3. (2.4)
n— oo X€E, peF(T)

This implies that for any given € > 0, there exists a positive integer ny such that for n = n,
we have

sup  {IITrx—pll = lIx—pl} <€, i=1,23. (2.5)
x€E, peF(T)

Since {x,},{yu}, {24} C E, we have

T yn—pll=llyn—pll <€, VpeF(T),Vn=ny, (2.6)
[|T4zn = pll = |lza — pl| <€, Vp€EF(T), Vn=n, (2.7)
[| 4% — pl| = ||xn — pll <€, Vp€FE(T), Vn= ny. (2.8)
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Thus for any p € F(T), using (1.4) and (2.6), we have
[Fener = pll = 11(1 = @ = yn) (%0 = p) + @ (T7 yn = p) + yn (un = p) |
< (1= an = )|l = pll+ @ ([ T7 0 = pll = llyn = p1I)

+tnllyn = pll + yallun = pll
< (1 — Ky —ln)||xn—P||+0¢n€+0¢nH)’n_P||+YnM-

(2.9)

Consider the third term in the right-hand side of (2.9), using (1.4) and (2.7), we have that
llyn = pll = 1(1 = Bu = 8x) (e = p) + Bu(T520 = p) + 8 (v = p)
< (1= Bu = 8)lxn = pll +Bu ([ T320 = pl = |lzn = p])
+ Bullza = pll+ ul[ve = pl|
< (1= Bu=8u)lxn = pll+ Bue + Bullzn = pl| + 6uM.

(2.10)

Consider the third term in the right-hand side of (2.10), using (1.4) and (2.8), we have
that

l1zo = pll = 11(1 = 170 = &) (xn = p) + 1 (T5 20 — p) + & (wn — p)||
< (1= 1a = &) lJxn = pll + 12 ([ T5 %0 — pl| = []n = pII)

(2.11)
+ ullon = pl| + &ul[wa — p|
= (1 _fn)”xn —P|| +’1n€+an-
Substituting (2.11) into (2.10) and simplifying, we have
yn = pll < (1= Bun — 8u) 1% — pl| + Bu€ (1 +170) + Bn&uM + 8, M. (2.12)
Substituting (2.12) into (2.9) and simplifying, we have
|1 — Pl < (1 = yn — @nPun — @nbn) ||xn — pl| + an€ + an € (1 + 1)
+ 0,6y M + apfué M + y M
(2.13)

= ||xn_P||+0‘n(1+/3n+ﬁn77n)€+ (yn+8n+fn)M
< ||xn = pl| +30n€ + (y + 8n +&4) M.

Let A, = 3a,€ + (yn + 8, +&)M. Then A, > 0. It follows from (1.3) and >, | @y < %
that >° | A, < co. Then by (2.13), we have

vt — 1 = b pll + A an
It follows from (2.14) and >_, A, < oo that

d(xps1, F(T)) < d (0, F(T)) + Ap. (2.15)
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By Lemma 1.3, we know that lim,— « d(x,, F(T)) exists. Because liminf, .. d(x,, F(T)) =
0, then we have

lim d(x,,F(T)) = 0. (2.16)

n—oo

Next we prove that {x,} is a Cauchy sequence in E.
It follows from (2.14) that for any m > 1, for all n = ny, for all p € F(T),

||xn+m 7P|| = ||xn+m71 7P|| + Aprm-1

= ||xn+m—2 - P|| + (An+m—1 +An+m—2)

(2.17)

n+m—1

< =l-pll+ D Ak
k=n
So by (2.17), we have
[%nm = xul| < [|%nsm = pll + |20 = pl| < 2/ = pl| + ZAk- (2.18)
k=n

By the arbitrariness of p € F(T) and (2.18), we know that

[1%0+m — Xul| de(xn,F(T))+ZAk, V1= n. (2.19)
k=n

For any given € > 0, there exists a positive integer n; > ny such that for any n > n,,
d(x,, F(T)) < €/4 and 3., Ax < €/2. Thus when n > ny, ||Xyem — xu|l < €. So we have
that

%i_r})lo [|1%n4m — xa|| = 0. (2.20)

This implies that {x,} is a Cauchy sequence in E. Since E is complete, there exists a p* € E
such that x, — p* asn — .

Now we have to prove that p* is a common fixed point of T}, i = 1,2,...,N, that is,
p* € F(T).

By contradiction, we assume that p* is not in F(T). Since F(T) is closed in Banach
spaces, d(p*,F(T)) >0. So for all p € F(T), we have

lp* = pll = [lp* = xul| + [lx — pl|- (2.21)
By the arbitrary of p € F(T), we know that
d(p*, F(T)) < |[p* = x|+ d (x, F(T)). (2.22)
By (2.16), above inequality and x,, — p* as n — oo, we have
d(p*,F(T)) =0, (2.23)

which contracts d(p*, F(T)) > 0. This completes the proof of Theorem 2.1. O
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CoROLLARY 2.2. Suppose the conditions in Theorem 2.1 are satisfied. Then the N-step iter-
ative sequence {x,} generated by (1.5) converges to a common fixed point p € E if and only
if there exists a subsequence {xy,} of {x,} which converges to p.

THEOREM 2.3. Let E be a Banach space and let T; : E — E (i = 1,2,...,N) be N asymptoti-
cally quasi-nonexpansive mappings with a nonempty fixed-point set F(T) = (., F(T;). Let
{uni} be a bounded sequence in E. For any given point x, in E, generate the sequence {x,} by
(1.5). If 351 atyi < o0, then sequence {x,} strongly converges to a common fixed point of T;
(i=1,2,...,N) ifand only if liminf, . d(x,,F(T)) = 0, where d(y,S) denotes the distance
of y to set S.

Proof. Since T; are asymptotically quasi-nonexpansive mappings with a nonempty fixed-
point set F(T) = ﬂfil F(T;), by [3, Proposition 1] or [13], we know that there must exist
a sequence {k,} C [1,0) with k, — 1 as n — oo such that

|| T'x - p|| < kullx—pll, Vpe€F(T),VxEEn=>1. (2.24)
This implies that
ITrx = pl|” = (kn)*lx = plI> <0, VpeF(T),VxeE n=1. (2.25)
Therefore we have
limsup{ sup [||T,-”x—p||2 - ||x—p||2]} <0, i=12,...,N. (2.26)
n—e ( xeD,peF(T)

This implies that T;, i = 1,2,...,N, are N asymptotically quasi-nonexpansive-type map-
pings with a nonempty fixed-point set F(T) = ﬂf\il F(T;). Theorem 2.3 can be proved by
Theorem 2.1 immediately. U

THEOREM 2.4. Let E be a Banach space and let T; : E — E (i = 1,2,...,N) be N asymptoti-
cally nonexpansive mappings with a nonempty fixed-point set F(T) = (X, F(T}). Let {u,}
be a bounded sequence in E. For any given point x) in E, generate the sequence {x,} by
(1.5). If X771 oty < o0, then sequence {x,} strongly converges to a common fixed point of T;
(i=1,2,...,N) ifand only if liminf, .« d(x,, F(T)) = 0.

Remarks 2.5. We would like to point out that Theorems 2.1, 2.3, and 2.4 generalize and
improve the corresponding results of Petryshyn and Williamson [9], Ghost and Debnath
[5], Liu [6, 7], and Xu and Noor [12]. These theorems especially improve Chang’s results
[2] in the following aspects.
(1) We removed the condition (2.1) “there exists constant L >0 and a > 0 such that
ITx - pll <Lllx—pll*, Vx€E, Vp e F(T)” in [2].
(2) “The Ishikawa iterative sequence with mixed errors” is extended to N-step iterative
sequence with mean errors, and so we obtain the common fixed point of N asymp-
totically nonexpansive-type mappings.
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