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1. Introduction

In 1929, the KKM map was introduced by Knaster et al. [13] and it provides the founda-
tion for many well-known existence results, such as Ky Fan’s minimax inequality the-
orem, Ky Fan-Browder’s fixed point theorem, Nash’s equilibrium theorem, Hartman-
Stampacchia’s variational inequality theorem and many others (see [1, 2, 5-12, 14-17]).
The central idea of applying KKM theory to prove that a family of sets has nonempty
intersection is to find a suitable space and a mapping defined on that space such that this
mapping is a KKM mapping and the original family of sets has finite intersection prop-
erty provided the resulted family of sets by this mapping has finite intersection property.
Based this idea, we first introduce a large class of mappings that can be interpreted as
KKM mappings, then we apply the KKM technique to study fixed point theory, minimax
inequality and coincidence theorem. A new concept on lower (upper) semi-continuous
function is given and some new results on Fan-Browder’s fixed point theorem, Fan’s min-
imax theorem and coincidence theorem are obtained.

2. The KKM maps

In the sequel, let X be a set and 2% be the collection of nonempty subsets of X. To begin
our results, let us first recall the following definition.

Definition 2.1. Let E be a subset of topological vector space X. A map G : E — 2% is called
a KKM map if
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2 Note on KKM maps and applications

n

CO{X1,X2,...,Xn} S UG(xi) (2.1)

i=1

forx;€E,i=1,2,...,n.

Definition 2.2. Let E be a set and X be a topological space. A map G: E — 2% is called
a map with the KKM property if there exists a topological vector space Y such that, for
any {x;:1<i<n} CE, thereexist F={y;:1 <i<n} <Y, a closed (or closed under
appropriate topology) mapping L : X — Y or 2Y, that is, maps closed set to closed set, and
G : F - 2X with G'(y;) < G(x;) fori = 1,2,...,n such that the composition mapping LG’ :
F — 2Y defined by LG'(f) = Uxeq (f)L(x) for f € F isa KKM map and N[L| LG’ (y;) + @
implies that N, G(x;) # @.

Remark 2.3. Definition 2.2 simply says that the map G has the KKM property if G or the
part of G can be mapped onto another space such that the composite map is a KKM map.
One can easily check that the generalized KKM map in [4, 18] is a map with the KKM

property.
In the following, we give some examples of maps with the KKM property.

Example 2.4. Let E = [0,1] be the closed interval of R, X = R, and let G: E — 2X be a
map with G(x) = (1,2 +x) for x € E. For any (x;) C [0,1],i=1,2,...,n, put y; = 3/2 +x;,
F={y1,¥2...,yu}, Y = R,and define G’ : F — 2Y by G'(y;) = [3/2,7/4 + x;]. Take L as the
identity mapping on R. Then the map LG’ = G is a KKM map and so G is a map with
the KKM property.

Example 2.5. Let ¢ : [0,00) — R be the convex function defined by

1 ifx =0,
$x) = {(x ~1)2-1 ifx>0. (22)

Define G: [0,00) — 2R by G(x) = {y : ¢(y) < ¢(x)}. It is easy to see that ¢ is not lower
semi-continuous at 0 and so G(2) = {y: ¢(y) < ¢(2)} is not closed. For {x;:1 <i<
n} C [0,00), if ¢(x;) <0 or ¢(x;) = 1, we set y; = x;, otherwise, set y; = x;/2. Put F =
{y1,92,-->¥n}, X =Y =R, and define G: F — 2X by G'(y;) = {y: ¢(y) < ¢(y:)}. Take L
as the identity mapping on R. Then LG’ = G"isa KKM map on F = {y;: 1 <i < n}, thus
G is a map with the KKM property.

The following results are direct consequences of the KKM theorem.

THEOREM 2.6. Let X be a topological space and E be a set. Suppose that G : E — 2X is a closed
valued map with the KKM property. Then {G(x)} xcr has a finite intersection property.

TaEOREM 2.7 (Ky Fan’s theorem). Let X be a topological space and E be a subset of X. If
G: E — 2% is a closed valued map with the KKM property and there is a set G(x) such that
G(x) is compact. Then NyepG(x) + .
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3. Fan-Browder’s fixed point theorem without compactness condition

The following result is a generalization of Fan-Browder’s fixed point theorem without
compactness condition.

TaeorEM 3.1 (Fan-Browder’s fixed point theorem). Let E be a convex subset of a vector
space X and G : E — 2F be a map satisfying the following conditions:
(1) there exists {y;: 1 <i <n} CE such that co{y;:1 <i<n} <UL G (y;) and
G l'(yi))ncolyi:1 <i<n}isopenincofy:1<i<n}withco{y;:1<i<n}in-
herited with the Euclidean topology, where G"'(y) = {x €E: y € G(x)};
(2) G(y) is convex for all y € E.
Then G has a fixed point.

Proof. Let F={y;:1<i<n}.DefineamapK :F — 2°F by

K(yi)) =coF\ G ' (y;)( coF (3.1)

for i =1,2,...,n. We may assume that K(y;) # @ for i =1,2,.... (Otherwise, K(y;) = &
for some i and so we have coF C G™!(;). Thus y; is a fixed point of G, and the conclusion
holds.) One can easily see that

n

ﬂK(y,-) =coF\OG*1(y,-)ﬂcoF. (3.2)

i=1 i=1

By assumption (1), we have N K(y;) = &. In view of Theorem 2.6, K cannot be a KKM
map on {y;:1 <i < n}. Hence there exist yi, ¥i,,...,¥i, such that colyi, yi,,..., Vi, } ,@
U?ZIK(y,-j), that is, there exists y € co{yi, yi,>..., i} such that y & K(y;;) for j = 1,2,...,
k. Thus we have

yeG ' (y) j=12...k (3.3)
that is, y;; € G(y) for j = 1,2,...,k and the convexity of G(y) immediately implies that
¥ € G(y). This completes the proof. O

Remark 3.2. Theorem 3.1 only requires the intersection G™'(y) N coF for y € F is rela-
tively open in the convex hull of some finite subset F of E and also E is not compact, which
is different to the result in [3]. See also Theorem 1.2 on page 143 of Granas-Dugundji’s
book [11].

Example 3.3. Let E = (0,1) and a map T : E — 2F be defined by

1 . 1
(x,x+ 5) ifxe (0,5),

1 1 . 13
Tx = (g,X‘f’ Z) ifx e [E,Z:l, (34)

(x-

,x) otherwise.

Do | —
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It is obvious that E is not compact and Tx is convex for all x € E. Put y; = 1/2 and
¥2 = 3/4. Then it follows that

13
co{yi, )= [E’Z] cT 'y JT 'y,
1 ~T13 13
Nl = 15 (3.5)
413 [l i] _ (l i]
T 4ﬂ 2°4] \2’4

are open in [1/2,3/4]. Therefore, the map T satisfies the conditions of Theorem 2.6.

CoROLLARY 3.4. Let C be a nonempty convex subset of a topological vector space E and
V' be an open convex subset with 0 € V. Suppose that a map T : C — E is continuous and
T(C) c UL {yi+ V}, where y; € C for i =1,2,...,n. Then there exists xo € C such that
Txo€xo+ V.

Proof. Letamap G: C — 2€ be defined by
Gx)={yeC:Tx-yec V. (3.6)

Then G(x) is convex for all x € C since V is convex. The continuity of T implies that
G (y;) is open. Moreover, C = U ;G"!(y;) and thus

n
co{yi,y2 oyt < JG (). (3.7)

i=1
Therefore, by Theorem 3.1, we know that there exists xy € C such that xo € G(xp). This
implies that Txy € xo+ V. O

CoROLLARY 3.5. Let C be a nonempty convex subset of a locally convex space E and K be a
convex compact subset of E. Suppose that T : C — E is continuous and T(C) C UL, {y; + K},
where y; € C fori=1,2,...,n. Then there is an xo € C such that Txy € xo + K.

4. Coincidence theorem and minimax theorem

TaEOREM 4.1 (Ky Fan’s coincidence theorem). Let X and Y be nonempty convex subsets of
topological vector spaces E and F, respectively. Let A,B: X — 2Y be two maps satisfying the
following conditions:
(1) there exists x; € X such that Ax; is open fori=1,2,...,n, Y = UL Ax; andA‘ly isa
convex set for each y € Y;
(2) there exists y; € y such that B~y is open for j = 1,2,...,m, X = UTL B~ y; and Bx
is a convex set for eachx € Y.
Then there exists xg € X such that Axy N\ Bxg # &.

Proof. Letamap K : X X Y — 2X%¥ be defined by

K(x,y)=X XY\ (B 'y X Ax) (4.1)
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for all (x, y) € X X Y. By the assumptions, we have

XxY=JU By xAx). (4.2)
i=1j=1
Therefore, we have
ﬂ ﬂ (xioy)) = @. (4.3)

In view of Theorem 2.6, we know that K cannot bea KKM map on {x;: 1 <i<n} x {y;:
1 < j <m}. So there exist Xo,X;,,Xi,>...,Xi; and Yo, ¥ji> Vij,»--->¥j, such that xy € co{x;,,x;,,
<Xt Yo € colyjs Yipse--» Yt and

Ik

(x0,y0) ¢ (UK (xi, 7)), (4.4)

s=1t=1

which implies that
(Xo,yo) S (Bilyjt XAX,'S) (4.5)

fors=1,...,land t = 1,2,..., k. By the convexities of A~'x and By, we have y) € Axy and
¥o € Bxg. This completes the proof. O

Remark 4.2. The classical Ky Fan’s coincidence theorem assume that both X and Y are
compact. See Theorem 3.12 in Singh-Watson-Srivastava’s book [15]. We do not require
this condition in Theorem 4.1.

Definition 4.3. Let X be a topological space. A function f : X — Ris said to be lower semi-
continuous from above at x, if, for any net (x;);er With x; — xo, f(x¢) < f(x¢) for t' > ¢
implies that f(xo) < lim, f(x;). Similarly, f is said to upper semi-continuous from below
at xp if, for any net (x;)er with x — x0, f(x:) < f(xp) for t <t implies that f(xo) <
limtf(xt).

One can easily see that a lower (resp., upper) semi-continuous function is also a lower
(resp., upper) semi-continuous from above (resp., below) function.
The following example shows that the converse is not true.

Example 4.4. Let a function f : R — R be defined by

Flx) = {x+1 %fx >0, (4.6)

X if x <0.

Since R is a metric space, we consider a sequence {x,} such that x, — 0 with f(x) =
f(x2) = -+ = f(x,) = - - - . Then, by the definition of f(x), we know that x, > 0 for all
n > 1. Therefore, it follows that

lim f(x,) =1= f(0) (4.7)

n— 00
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and so f is lower semi-continuous from above at 0. If we take x,, = —1/#n, then we have
lim f (x,) =0< f(0) (4.8)
n— oo

and so f cannot be lower semi-continuous at 0.

LEmMa 4.5. Let X be a compact topological space and f : X — R be a real valued function.
If f is lower semi-continuous from above (resp., upper semi-continuous from below), then
there exists xo € X such that f(xy) = mingex f(x) (resp., f(x0) = maxyex f(x)).

Proof. Assume that f is lower semi-continuous from above on X. There exists a net (y;) C
Csuch that f(yy) < f(y:)ift’ = tand f(y;) — inf,cc f(y). Since C is compact, without
loss of generality, we may assume that y; — yo. By the lower semi-continuity from above
of f(y), wehave f(yo) <lim; f(y:) andso f(yo) = inf,ec f(y). The proof of upper semi-
continuous from below case is similar and hence we omit the detail. This completes the
proof. O

THEOREM 4.6 (von Neuman’s minimax principle). Let X and Y be two nonempty compact
convex subsets of topological vector spaces E and F, respectively. Suppose that f : X XY — R
is a real valued function satisfying the following conditions:
(1) y = f(x,y) is lower semi-continuous from above and quasi convex for each fixed
x € X, thatis, {y: f(x,y) <r} is convex for each x € X;
(2) x = f(x,y) is upper semi-continuous from below and quasi concave for each fixed
yeY,thatis, {x: f(x,y) >r} is convex for each y € Y;
3) for each r € R, there exist x;, i = 1,2,...,n, such that A; = {y: f(x;,y) >} is open
and Y = UL | A
4) for each r € R, there exist y;, j = 1,2,...,m, such that B; = {x: f(x,y;) <r} is open
and X = U;"lej.
Then max,cx min ey f(x, y) = minyey maxyex f (%, y).

Proof. By the assumptions (1), (2) and Lemma 4.5, we know that max,ecx minyey fxy)
and min,cy max,ex f (x, y) both exist. It is obviously that

4,
216%?<1;1611r(1f(x ) < mllrflmaxf X ). (4.9)
Now we show that
r){lea)?(rynemf(x ,Y) = rynelir]lglga}?(f(x,y). (4.10)

If this is not true, then there would be a number r € R such that

<r< 8 4.11
rileag(rynemf(x W y)<r rym{/lmaxf X 9). ( )

Define two maps A,B: X — 2Y by Ax = {y: f(x,y) >r} and Bx = {y: f(x,y) <r} for
x € X. It is obvious that

n m
Y={Ax, X=UBy; (4.12)
i=1 j=1
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It is direct to check that A~!y is convex for y € Y and Bx is convex for each x € X and,
by Theorem 4.1, there exists xo € X and yo € Y such that yy € Axo N Bxg # &. Hence we
have f(xo, y0) <t < f(x0, y0), which is a contradiction. This completes the proof. O

TueoreM 4.7 (Ky Fan’s minimax inequality). Let C be a compact convex subset of a topo-
logical vector space X. Let f : C X C — R be a real valued function satisfying the following
conditions:

(1) sup,cc f(x,y) is lower semi-continuous from above on C;

(2) {y: f(x,y) <sup,ce f(x,x)} is closed for each x € C;

(3) x = f(x,y) is quasi-concave on C for each y € C.
Then minyecsup,.c f (%, y) < sup,.c f(x,%).

Proof. By Lemma 4.5, we know that sup, . f (x, y) obtains its minimum on C.
Now, we may assume that sup, f(x,x) = g < 0. Define a map G: C — 2¢ by

Glx)={yeC: f(xy) =<u} (4.13)

for all x € C. The quasi-concavity of x — f(x, y) on C for each y € C implies that Gis a
KKM map. By the assumption (2), we know that G(x) is compact. Therefore, it follows
from Theorem 2.7 that NyecG(x) # @, thus there exists yy € C such that y, € G(x) for
all x € C, that is, f(x,y¢) < u for all x € C. This immediately implies that

minsup f(x,y) < sup f(x,x). (4.14)
yeC xeC xeC 0

To end this paper, we give a function f which satisfies all the conditions of Theorem
4.6.

Example 4.8. Let a function f : [0,1] X [0,1] — R be defined by

x+y ifye[0,1),
y) = 4.15
flzy) {x+2 ify=1. (4.15)
Then we have
1+ if y € [0,1),
sup f(x,y) = o (4.16)
x€[0,1] 3 ify=1

Thus it follows that sup,.g; f(x,y) is not lower semi-continuous, but lower semi-
continuous from above. It is obvious that the set

{y:f(x,y) < sup]f(x,x) = 3} =[0,1] (4.17)

x€[0,1
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is closed and

x: fx,1)>r}={x:x>r-2}, {x: f,y)>r}={x:x>r—y} (4.18)

forall y € [0,1) are convex sets, that is, x — f(x, y) is quasi-concave on C for each y € C.
Therefore, the function f satisfies all the conditions of Theorem 4.6.
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