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Some results on the existence of solution for certain fuzzy equations are revised and
extended. In this paper, we establish the existence of a solution for the fuzzy equation
Ex?+ Fx+ G = x, where E, F, G, and x are positive fuzzy numbers satisfying certain con-
ditions. To this purpose, we use fixed point theory, applying results such as the well-
known fixed point theorem of Tarski, presenting some results regarding the existence of
extremal solutions to the above equation.

1. Preliminaries

In [1], it is studied the existence of extremal fixed points for a map defined in a subset
of the set E! of fuzzy real numbers, that is, the family of elements x : R — [0, 1] with the
properties:
(i) x is normal: there exists ¢y € R with x(¢y) = 1.
(ii) x is upper semicontinuous.
(iii) x is fuzzy convex,

x(At1+ (1 —=AM)t) = min{x(t;),x(t2)}, Vt,t € R,A[0,1]. (1.1)

(iv) The support of x, supp(x) = cl({t € R: x(t) > 0}) is a bounded subset of R.
In the following, for a fuzzy number x € E!, we denote the a-level set

[x]*={teR:x(t) = a} (1.2)

by the interval [xa,Xar ], for each & € (0,1], and
[x]° = cl (Uaeqo) [x]%) = [x01,%0r ] (1.3)
Note that this notation is possible, since the properties of the fuzzy number x guarantee

that [x]* is a nonempty compact convex subset of R, for each a € [0, 1].
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We consider the partial ordering < in E! given by
Xy EE, X<y Xa=<yar Xar < Yar» Vae(0,1], (1.4)
and the distance that provides E! the structure of complete metric space is given by

dw(x,y) = sup du([x]%[y]%), forx,y€E!, (1.5)

ae(0,1]

being dy the Hausdorff distance between nonempty compact convex subsets of R (that
is, compact intervals).

For each fuzzy number x € E', we define the functions x; : [0,1] — R, xz: [0,1] = R
given by x; () = xo and xr(a) = x4, for each & € [0,1].

TaeoreM 1.1 [1, Theorem 2.3]. Let ug, vo € E', ug < vy. Let
B C [ug,vo] = {x €E' 1 up < x < v} (1.6)

be a closed set of E' such that ug,vy € B. Suppose that A : B — B is an increasing operator
such that

uy < Auy, Avy < v, (17)

and A is condensing, that is, A is continuous, bounded and r(A(S)) < r(S) for any bounded
set S C B with r(S) > 0, where r(S) denotes the measure of noncompactness of S. Then A has
a maximal fixed point x* and a minimal fixed point x,. in B, moreover

x* = lim v, xe = lim u,, (1.8)
n—+oo n—+oo

where v, = Av,_1 and u, = Au,_, n=1,2,... and
UySU < SU, S SV < SV < V. (1.9)

CoroLLARY 1.2 [1, Corollary 2.4]. In the hypotheses of Theorem 1.1, if A has a unique fixed
point X in B, then, for any xo € B, the successive iterates

Xn=Ax,_1, n=12,... (1.10)

converge to X, that is, de (Xn,X) — 0 as n — +oo.

Theorem 1.1 is used in [1] to solve the fuzzy equation
Ex?+Fx+G=x, (1.11)

where E,F,G and x are positive fuzzy numbers satisfying some additional conditions. In
this direction, consider the class of fuzzy numbers x € E! satisfying
(1) x>0, xz(a), xp(«) < 1/6, for each a € [0,1].
(if) Ixp(a) = x(B)] < (M/6)|a — B] and |xr(a) — xr(B)] < (M/6)]a — 3|, for every
a,B € [0,1].
Denote this class by F.
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TaEOREM 1.3 [1, Theorem 2.9]. Let M >0 be a real number. Suppose that E,F,G € %F.
Then (1.11) has a solution in

Bu={x€eE":0<x<1, |xp(a) —x.(B)| < Mla—Bl,

12
k() — xp(B)] < Mlac—Bl, Yo € [0,1]}. (1.12)

Here, 0,1 referred to fuzzy numbers represent, respectively, the characteristic functions
of 0 and 1, that is, y{o; and y{1;.
In the proof of Theorem 1.3, in addition to Theorem 1.1, the following results are used.

THEOREM 1.4 [1, Theorem 2.6]. For each fuzzy number x, functions
xr:[0,1] — R, xg:[0,1] — R (1.13)
are continuous.

TaeorEM 1.5 [1, Theorem 2.7]. Suppose that x and y are fuzzy numbers, then

doo (2, y) = max {|lx; — y1llee lxr = YRl }. (1.14)
TueOREM 1.6 [1, Theorem 2.8]. By is a closed subset of E'.

Lemma 1.7 [1, Lemma 2.10]. Suppose that B C E. If
By ={x;:x€B}, Br={xz:x€B} (1.15)
are compact in (C[0,1], || - |lw), then B is a compact set in E'.

In Section 2, we point out some considerations about the previous results and justify
the validity of the proof of Theorem 1.3 given in [1], presenting a more general existence
result. Then, in Section 3, we study the existence of solution to (1.11) by using some fixed
point theorems such as Tarski’s fixed point theorem, proving the existence of extremal
solutions to (1.11) under less restrictive hypotheses.

2. Revision and extension of results in [1]

First of all, Theorem 1.4 [1, Theorem 2.6] is not valid. Indeed, take for example, x: R —
[0,1] defined as

1
Ey te [_I)O)U(O)l]a
oo, (2.1)

teR — X(t) =11
0, otherwise,

which represents [2, Proposition 6.1.7] and [3, Theorem 1.5.1] a fuzzy real number since
the level sets of x are the nonempty compact convex sets

[-1,1], if0<a=<-=,
[x]* = . (22)
{0}, if5<06$1.

N | —
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Then, x : [0,1] — R is given by

. 1
-1, f0<acx< 2
xr () = 1 (2.3)
0, if-<a<l,
2
and xg: [0,1] — R is
. 1
1, if0<acx< >
xr(a) = 1 (2.4)
0, le <a=<l,

which are clearly discontinuous. Note that x; and xg are left-continuous see [3, Theo-
rem 1.5.1] and [2, Propositions 6.1.6 and 6.1.7]. In the proof of Theorem 1.4 [1, The-
orem 2.6], it is considered a sequence a, > « with a0, — a as n — +co. Then x1(a,) is a
nonincreasing and bounded sequence, hence, x;(a,) converges to a number L. At this
point, one cannot affirm that x(L) < «,,. For example, in the previous case, taking o = 1/2
and a, = 1/2 + 1/n, with n > 2, then x1(«,) = 0. Hence x1(«,) converges to L = 0, but
x(L)=x(0)=1>a,=1/2+1/nforall n > 2.

A fuzzy number is not necessarily a continuous function, just upper semicontinuous,
thus Theorem 1.4 [1, Theorem 2.6] is not valid in the general context of fuzzy real num-
bers. However, it is valid for continuous fuzzy numbers, that is, fuzzy numbers continu-
ous in its membership grade, as we state below. Here #{. denotes the space of nonempty
compact convex subsets of R furnished with the Hausdorff metric dy.

Definition 2.1. We say that a fuzzy number x : R — [0, 1] is continuous if the function

[x]:[0,1] — HE (2.5)

given by « — [x]* is continuous on (0, 1], that is, for every &« € (0,1], and € > 0, there exists
a number (€, ) > 0 such that dy ([x]% [x]?) <€, for every f € (a — 8,a+ ) N [0,1].

THEOREM 2.2. Let x be a fuzzy number, then x is continuous if and only if functions

xr:[0,1] — R, xg:[0,1] — R (2.6)

are continuous.

Proof. Suppose that x € E! is continuous and let & € (0,1] and € > 0. Since x is continu-
ous at a, then there exists §(€,«) > 0 such that for every f € (« — §,a+3J) N [0,1],

dH([x]a> [x]ﬁ) = max{'-xocl _xﬁlla |xocr _Xﬁr”

(2.7)
= max {|xz(a) — x.(B)|, [xr() — xr(B)|} <€,

which implies that

|x0(a) —x0(B) | <€, | xr(a) —xr(B) | <€, (2.8)
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for every § € (« — 8,0+ &) N [0, 1], proving the continuity of x;, and xx at a. Reciprocally,
continuity of x;, and x trivially implies the continuity of x. O

Remark 2.3. Foragivenx € E', x, [x], x, and xp are trivially continuous at & = 0. Indeed,
let € > 0. The 0-level set of x (support of x) is the closure of the union of all of the level
sets, that is,

[x]° = el (Upe [xL(B),xr(B)]). (2.9)

Since x; () is nondecreasing in 3 and xz(f3) is nonincreasing in 8 and those values are
bounded, then

x.(0) = inf xz(f), xr(0) = sup xr(f). (2.10)
Be(0.1] Be(0,1]

For € > 0, there exist 1,¢,2,c € (0,1], such that

x2(0) < x1(Bie) <x2(0) +¢€,

(2.11)
xr(0) — € <xr(Bre) < xr(0).
By monotonicity,
x0(0) < xp(B) < xL(Bre) <x.(0)+€, for0<pf <pPie,
(2.12)
xr(0) — € <xr(Bae) < xr(B) < xr(0), for0<pf <pfse.
Hence, taking § = min{f; ¢, 2} >0, we obtain
x0(0) < x.(B) < x.(0) +¢€, xr(0) — € < xr(B) < xr(0), (2.13)

for every 0 < f < §, and
dr ([x]%, [x]#) = max { | x(0) — x2.(B) |, | xr(0) — xr(B)|} <€, VBe[0,6]. (2.14)

As a particular case of continuous fuzzy numbers, we present Lipschitzian fuzzy num-
bers.

Definition 2.4. We say that x € E! is a Lipschitzian fuzzy number if it is a Lipschitz func-
tion of its membership grade, in the sense that

du ([x]%, [x]F) < Kla— B, (2.15)

for every a, 8 € [0,1] and some fixed, finite constant K = 0.
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This property of fuzzy numbers is equivalent (see [2, page 43]) to the Lipschitzian
character of the support function s,(+, p) uniformly in p € S°, where

se(a, p) =s(p, [x]%) =sup{(p,a):a € [x]*}, (a,p)€[0,1]xS, (2.16)

and S° is the unit sphere in R, that is, the set {—1,+1}.

If we consider a Lipschitzian fuzzy number x, then x is continuous and, in conse-
quence, x; and xg are continuous functions. Moreover, we prove that these are Lips-
chitzian functions.

THEOREM 2.5. Let x € E'. Then x is a Lipschitzian fuzzy number, with Lipschitz constant
K =0, ifand only if x; : [0,1] — R and xg : [0,1] — R are K-Lipschitzian functions.

Proof. It is deduced from the identity

du ([x]%, [x]P) = max {|xu — xg1l, | xar — x5, |}

= max { |xz(«) — x.(B)|, |xr() —xr(B)|}, for every o, € [0,1].
(2.17)
O

Note that Theorem 1.5 [1, Theorem 2.7] is valid for || - | considered in the space
L*[0,1], but not in C[0,1], since for an arbitrary fuzzy number x, x; and xz are not
necessarily continuous. Nevertheless, from Theorem 2.2, we deduce that the distance d«
can be characterized for continuous fuzzy numbers in terms of the sup norm in C[0,1],
and also for Lipschitzian fuzzy numbers.

THEOREM 2.6. Suppose that x and y are continuous fuzzy numbers (in the sense of Definition
2.1), then

do (%, ) = max {lIx; — ¥rlleo> Ixr — YRl }. (2.18)

Proof. Indeed,

de(x,y) = sup du([x]%[y]9)

ac(0,1]

sup max {|x.(a) — yr(a)|, [xr(a) — yr(a)|}

ac(0,1]
(2.19)
=max{ sup [xz(a) — yr(a)|, sup |xR(0€)—)/R(06)|}
ac[0,1] ac[0,1]
=max {|lx; — yLll e l1xr — YRl }.
{llxr — yr R— YR} 0

For M > 0 fixed, consider the set

By = {x € E' : y10y < x < yy1}, x is M-Lipschitzian}. (2.20)
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Note that By coincides with the set with the same name defined in Theorem 1.3 [1, Theo-
rem 2.9] and that By is a closed set in E!. For the sake of completeness, we give here

another proof. Let x, a sequence in By such that lim, e x, = x € E' in E'. We prove
that x € By;. Given € > 0, there exists ny € N such that

des (xp,x) = sup dy([x,]% [x]*) <€, forn > ny. (2.21)
ae(0,1]

Then, for n = ny,

dy ([x]% [x]) < du ([x]%, [xa]%) + di (%1%, [x0]) + dir ([, [x]F)

(2.22)
<2€+Ml|a-pB|, foreverya,pe[0,1].
Since € > 0 is arbitrary, this means that
dy ([x]%, [x]P) < Mla—pBl, forevery a3 € [0,1], (2.23)

and x is M-Lipschitzian. We can easily prove that y(o; < x, < x{13, for all n implies that
Xi0y < x < xq13. Therefore, x € By.

Concerning Lemma 1.7 [1, Lemma 2.10] we have to restrict our attention to relatively
compact sets, since we are not considering closed sets. On the other hand, if B contains
noncontinuous fuzzy numbers, By and By are not subsets of C[0,1]. We prove the corre-
sponding result.

LemMa 2.7. Suppose that B C E! consists of continuous fuzzy numbers, hence
BLZ{XL2XEB}, BR={xR:x€B} (224)
are subsets of C[0,1]. If By and Bg are relatively compact in (C[0,1],1 - ll«), then B is a

relatively compact set in E'.

Proof. Let {x,}, < B a sequence in B and I = [0,1]. Since By is relatively compact in
(C), I - llw), then {(x,)1}» has a subsequence {(xy, )1}k converging in C(I) to f; € C(I).
Using that By is relatively compact in (C(I), | - ll«), then {(x,, )r}r has a subsequence
{(xn)r}1 converging in C(I) to f, € C(I). We have to prove that {[fi(«), /L(a)] 1 €
[0,1]} is the family of level sets of some fuzzy number x € E! and, hence, x; = fi, xg = f>.
Indeed, intervals [ fi (@), f>(«)] are nonempty compact convex subsets of R, since

(%) (@) < (x4) (@), Vae[0,1],l€N, (2.25)
and, thus, passing to the limit as [ — +oo,

fila) < fole), Vae][0,1]. (2.26)
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Moreover, if 0 <) <ap < 1,

() (1) = (o) (@2),  (n) (1) = () g(e2), VI, (2.27)
s that
filw) < filw),  fola) = fo(a), (2.28)
then
[fila2), fola)] € [ filar), folar)]. (2.29)

Finally, let @ > 0 and {a;} 1 a, then {[ fi(a;), f2(«i)]} is a contractive sequence of compact
intervals, and, by continuity of f; and f,,

Nizil fila), folan)] = [ lim_fia), lim fola) | = [fi(a), fol)] (2.30)

Applying [2, Proposition 6.1.7] or also [3, Theorem 1.5.1], there exists x € E! such that
[x]* = [fi(a), Lo(a)], Vae(0,1], (2.31)
and

[31° = ol (Voeast L@, o(@)]) = [ lim fil), lim fo(@)] = [f1(0), s(0)]  (2.32)

again by continuity of fi, f,. Note that x; = f; and xg = f, are continuous, thus x is a
continuous fuzzy number and also x,, is, for every [. Then, by Theorem 2.6,

|—+0c0

doo(xnz)x) = maX{”(xm)L - fl ||00) ||(xn1)R - _fZ”oo} - 0) (2'33)

and {x,,}; — x in E!, completing the proof. O
Recall equation (1.11)

Ex’?+Fx+G=x. (2.34)

Here, the product x - y of two fuzzy numbers x and y is given by the Zadeh’s extension
principle:

x-y:R—[0,1]
(x - y)(t) = sup min {x(s), y(s")}. (2.35)

s-s'=t

Note that [x - y]* = [x]* - [y]%, for every a € [0,1]. See [2, page 4] and [3, page 3].
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In the following, we make reference to the canonical partial ordering < on E! as well
as the order < defined by

xy€EE, x<y=[x]"c[y]*, Vae(01], (2.36)
that is,
Xal = Yaly  Xar = Yar» Vae(0,1]. (2.37)

Remark 2.8. Note that, for a given x € E!, it is not true in general that

x* = yiop x* = xi0}- (2.38)
Indeed, for x = x[-33,
(X1-331)" = Xi-991 # xio1» (2.39)
and, for y = y[1,2], we obtain
(xin2)” = Xl # Xior- (2.40)

The proof of Theorem 1.3 [1, Theorem 2.9] can be completed using the revised results.
In fact, the same proof is valid for a more general situation. Note that, if G = y{o;, then
X = y{o3 1s a solution to (1.11).

THEOREM 2.9. Let M > 0 be a real number, and E,F, G fuzzy numbers such that
(i) E,F,G = x103> de(E, x101) < 1/6, de (F, x101) < 1/6, de (G, x101) < 4/6.
(ii) E, F, G are (M/6)-Lipschitzian.

Then (1.11) has a solution in By;.

Proof. We define the mapping
A : By — By, (2.41)
by Ax = Ex? + Fx + G. To check that A is well-defined, let x € By, and then
| (Ax)1(a) — (Ax)L(B) |
= | Er(a)xt (&) + Fr(at)xp (&) + GL(e) — EL(B)x7 (B) — FL(B)x(B) — GL(B) |
< |Er(a) = EL(B) | xi (@) + EL(B) | xr(at) + . (B) | - | x0() — x(B) |
+ | Fr(a) = FL(B) | xp(a) + FL(B) | x1(&) = xr(B) | + [ Gr(a) — GL(B) |
<Mlapl+ B a-pl+Za-pl+ B la-pl+ X |ap]

=M|a-p|, Vapfel[0,1],
(2.42)



330 Existence of extremal solutions for quadratic fuzzy equations

and, analogously,
| (Ax)r(a) = (Ax)r(B)| < M|a— |, foreverya,B € [0,1], (2.43)

therefore, by Theorem 2.5, Ax € E! is M-Lipschitzian and, using the hypotheses and
Xi0} < x < x113, we obtain

0 < Er(a)xj (a) + Fr(a)xi (@) + Gr(a) = (Ax)r(a)
< (Ax)r(a) = Eg(a)xg(e) + Fr(a@)xr(a) + Gr() (2.44)

<

=1,

[o N

L
6

AN

for a € [0,1], achieving Ax € By. Moreover, A is a nondecreasing and continuous map-
ping (use Theorem 2.6). A is bounded, since

de (Ax, x10) = doo (Ex* + Fx+ G,x10) <1, forx € By. (2.45)

Let S C By a bounded set (consisting of continuous fuzzy numbers) with r(S) > 0, and
prove that A(S) is relatively compact. In that case,

r(A(S)) =0<r(S) (2.46)

and the proof is complete by application of Theorem 1.1 [1, Theorem 2.3]. Let A(S) C E!
and prove that A(S). and A(S)g are relatively compact in C[0,1]. Indeed, using that for
y € A(S), xi0y <y < xu3, we obtain that A(S); is a bounded set in C[0, 1],

yelle <ds(poxi03) <1,y € A(S). (2.47)

Let f € A(S);, then f is M-Lipschitzian, and A(S); is equicontinuous. This proves that
A(S)y is relatively compact by Arzela-Ascoli theorem, and the same for A(S)g. Lemma 2.7
guarantees that A(S) is relatively compact and, therefore, A is condensing. Besides, o}
and y{1; are elements in Bys and yj0; < Axioy> Ax(1y < xi13- This completes the proof. In
fact, there exist extremal solutions between yo; and y1;. O

Remark 2.10. Note that our Theorem 2.9 do not impose Gr(«) < 1/6 for all « € [0,1]
and, therefore, improves the results of [1].

TaeoreM 2.11. Let E,F,G be Lipschitzian fuzzy numbers with E,F,G = xo;. Moreover,
suppose that there exist k >0, S > 0 such that

Er(0)k* + Fr(0)k + Gr(0) < k, (2.48)

MEkz+ER(0)2kS+MFk+FR(O)S+MG <S (2.49)
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where Mg, Mg, Mg are, respectively, the Lipschitz constants of E, F and G. Then (1.11) has a
solution in

Bis = {x € E': y(0y < x < y(ky, X is S-Lipschitzian}. (2.50)
Proof. Define
A:Bys — E', (2.51)

by Ax = Ex? + Fx + G. We show that A(Bys) < Bs. Indeed, for x € Bi, and every a €
(0,1],

0 < Er(a)xi(a) + Fr(a)xp(a) + Gr(a) = (Ax)p(a)
< (Ax)r(a) = Er(a)xg(a) + Fr(a)xr(e) + Gr(a) 52)
2.52
< Eg(a)k? + Fr(a)k + Gr(a) < Er(0)k? + Fr(0)k + Gr(0)

<k,
which proves that y{o; < Ax < yyk;. Besides, for x € Big, and o, 8 € [0,1],
| (Ax)L(a) = (Ax)L(B) |
< |Er(a) — Er(B) [xi () + EL(B) [x1(e) + x.(B) | - | x1() —x1(B) |
+ | Fr(a) = FL(B) | x1(@) + FL(B) [x1(@) = xr(B)[ + [ GL(e) = GL(B)|  (2.53)
< (Mgk? + EL(B)2kS + Mgk + FL(B)S + Mg) la — Bl
< (Mgk?* + Er(0)2kS + Mrk + Fr(0)S+ Mg) la — B| < Sla— I,

and, similarly,

| (Ax)r(ar) — (Ax)r(B) | < Sla— B, (2.54)

proving Ax € By s. The proof is completed in the same way of Theorem 2.9. O

Remark 2.12. Inequalities (2.48) and (2.49) in Theorem 2.11 are equivalent to

dw (E,x10} Vk* +do (Foxi01)k+de (Gxioy) <k, (2.55)

Mgk* +do (E>X{0} )st + Mrk +ds (F’X{O} )S +Mg < S, (2.56)
since, for x € E', x > 03,

de (%, x10y) = sup max{|xp(a)],|xr(a)]} = xr(0). (2.57)

ac(0,1]
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COROLLARY 2.13. In Theorem 2.11, take ER(0) < 1/6, Fr(0) < 1/6, Gr(0) < 4/6, and My =
Mp = Mg = M/6, with M > 0, to obtain Theorem 2.9.

Proof. Conditions in Theorem 2.11 are valid for k = 1 and S = M. Indeed,

Er(0)k* + Fr(0)k + Gr(0) < 1 =k,
MEk2+ER(O)2kS+Mpk+FR(O)S+MG (2.58)

M M M
=% + ER(0)2M + o + Fr(0)M + 5 <M.

3. Other existence results

Now, we present some results on the existence of extremal solutions to (1.11), based on
Tarski’s fixed point Theorem [6]. For the sake of completeness, we present it here, and
note that the proof is not constructive.

THEOREM 3.1. Let X be a complete lattice and
F: X —X (3.1)

a nondecreasing function, that is, F(x) < F(y) whenever x < y. Suppose that there exists
X0 € X such that F(xy) = xo. Then F has at least one fixed point in X.

Proof. Consider the set Y = {x € X : F(x) > x}, which is a nonempty set since xy € Y.
Let z=supY (xo < z). Note that, for every x € Y, F(x) = x, so that F(F(x)) = F(x) > x
and F(x) € Y. Let x € Y, then x < z, and x < F(x) < F(z), which implies that z < F(z).
On the other hand, z € Y, so that F(z) € Y, then F(z) < z and z is a fixed point for F in
X. Note that z is thus the maximal fixed point in X. O

Remark 3.2. In the hypotheses of the previous result, if there exists x; € X such that
F(x1) < x1, we obtain the minimal fixed point as the infimum of the set Z = {x € X :
F(x) < x}. If, at the same time, there exist xg and x; such that F(xy) > xo and F(x;) < x1,
then

z=supY =sup{x € X : F(x) = x},

(3.2)
z=infZ =inf{x € X : F(x) < x}

are, respectively, the maximal and minimal fixed points of F in X. Indeed, since there
exists at least one fixed point for F, then Z < z, and any fixed point for F is between 2
and z.

LemMA 3.3. IfE,x,y € E! are such that E > yo; and yj0; < x < y, then yj0; < Ex < Ey.
Proof. By hypotheses,
0=<xi(a) <yw(a), 0=<xg(a)=<yra), Vacl01],

(3.3)
0 <E;(a), 0<Eg(a), Vae]0,1],
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so that, for a € [0,1],
[Ex]* = [Ep(a)xi(a), Er(a)xr(a)], [Ey)® = [EL(a)y(a),Er(a)yr(a)],  (3.4)
where
0 < Er(a)xr(a) < Er(a)yr(a), O0<Egr(a)xr(a)<Egr(a)yr(a), Vaec]|0,1], (3.5)
hence

X0y <Ex<Ey. (3.6)

THEOREM 3.4. Let E,F, G be fuzzy numbers such that
E,F,G > y0, (3.7)
and suppose that there exists p > 0 such that
ER(0)p* + Fr(0)p + Gr(0) < p. (3.8)
Then (1.11) has extremal solutions in the interval
[xonxip ] o= {x € E' s o) <x < xip }- (3.9)
Proof. Since p >0, x10} < xip}. Define
A [xiopxip ]| — E (3.10)
by Ax = Ex* + Fx+ G. We show that A([ x103,x1p1])  [x101-X(ps |- Indeed,

Axoy = E(x10)* + Fxq0; + G = X101 + X101 + G = G = xq05

(3.11)
Axipy = E(x1p1)* + Exipy + G,
so that, using the conditions, for every a € [0, 1], we have
[Axip1]” = [E(a),Er(@)[{p*} + [FL(a),Fr(a)]{p} + [GL(a),Gr(a)] 62)
3.12

= [Er(a)p? + Fr(a)p+ Gi(a),Er(a)p* + Fr(a)p + Gr(a)].

By hypotheses and using the properties of Ej,Eg,Fy,Fr,Gr,Gr, we obtain, for all a €
(0,1],

Er(a)p® +Fi(a)p+ Gr(a) < Er(a)p* + Fr(a)p + Gr(a)
(3.13)
< Er(0)p? + Fr(0)p + Gr(0) < p.
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This proves that Ay;; < x{p}. Moreover, A is a nondecreasing operator. Indeed, for y;o; <
x < y, we have

0<xi(a) <yla), 0<xgp(a)<yr(a), Vaclo,1], (3.14)
and thus
0= (x(a)” = (yu(a)’, 0= (x(@)” = (yr(@)’, Vae(o,1]. (3.15)
Hence
Yooy <x* < yh (3.16)

This fact could have also been deduced from application of Lemma 3.3. Using that E,F >
Xi0y and applying Lemma 3.3, we obtain

Ax=Ex*+Fx+G<Ey*+Fy+G=Ay. (3.17)
Therefore, A : [ 101> Xip1] = [ x10}>X1p} ] is nondecreasing and [ x{o,x1p} | is a complete lat-

tice. Tarski’s fixed point theorem provides the existence of extremal fixed points for A in
[xi01>Xip1 ], that is, extremal solutions to (1.11) in the same interval. O

Remark 3.5. Suppose that Ex(0) > 0. To find an appropriate p > 0, we can solve the in-
equality

Er(0)p* + (Fr(0) — 1) p+ Ggr(0) <0, (3.18)
and, of course, study the discriminant
(Fr(0) = 1)* = 4Er(0)Gr(0). (3.19)
For instance, if it is equal to zero, the function
¢(p) = Er(0)p* + (Fr(0) — 1) p + Gg(0) (3.20)

is nonnegative and has a unique zero (1 — Fr(0))/(2Er(0)). Then, if Fr(0) < 1, we can
take p = (1 — Fr(0))/(2Er(0)) > 0. If the discriminant is negative, then Gg(0) >0 and ¢
is positive (¢ has no zeros). Hence hypothesis (3.8) is not verified. If the discriminant is
positive, there exist two zeros for ¢ and, if Fr(0) < 1, we can take

(1= Fr(0)) +/(Fr(0) — 1)° — 4E(0)Gr(0)
p= 2Ex(0) > 0. (3.21)
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In the case Er(0) = 0 (E = x{0; ), we have to calculate p > 0 satisfying
(Fr(0) = 1) p+ Gg(0) < 0. (3.22)

If Fr(0) > 1, there is no such value of p; if Fr(0) = 1, the unique possibility is that G = y;},
and any p > 0 is valid; and for Fr(0) < 1, we can take p >0, p = Gr(0)/(1 — Fr(0)).

Remark 3.6. 1f 0 < Ex(0) + Fr(0) < 1, Ex(0) >0 and

Gr(0)

T2E(0) - Fa0) = 1, (3.23)
then we can take 0 < p < 1 such that
p= %. (3.24)
In this case,
Er(0)p* < Er(0)p,
(3.25)
p(1—Er(0) = Fr(0)) = Gr(0),
hence
Er(0)p* + Fr(0)p + Gr(0) < Eg(0)p + Fr(0)p + Gr(0) < p. (3.26)

Remark 3.7. Note that condition (3.8) in Theorem 3.4 coincides with estimate (2.48) for
k = p. Hence, similarly to the statement in Remark 2.12, condition (3.8) can be written
equivalently, using the hypotheses on E, F, G, as

deo (B, x101) P* + deo (Fs x103) p + doo (G 10}) < . (3.27)

In particular, for p = 1, we obtain
deo (E,X{o}) +de (F,X{()}) +doo(G,)({()}) <1, (3.28)

and we can take, for instance,

[

de (G, x101) < -, (3.29)

IA

1
> doo(F)X{()}) < 8)

[N

des (E, x103) <

to generalize Theorem 2.9.
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TueoreM 3.8. Let E, F, G be fuzzy numbers such that
E,F,G = y0, (3.30)
and suppose that there exists uy € E' such that uy > 10y and
Eu+ Fuy+ G < uy, (3.31)

that is, for all a € [0,1],

Er(a)((u0) (@) + Fr(a) (uo) () + Gr(a) < (uo) (a),

(3.32)
E(a)((u) (@) + Fr(a) (uo) (@) + Gr(a) < (o) (a).
Then (1.11) has extremal solutions in
[xi01>to] == {x € E' : yj0y < x < up}. (3.33)
Proof. Define
A [xopu0] — E, (3.34)

by Ax = Ex? + Fx + G. Again Ay} > 10}, and, by hypothesis, Auy < uy. Moreover, A is
nondecreasing and A : [ y(0},40] — [ x{0},uo]. Using that [ y;03, 0] is a complete lattice, we
obtain the existence of extremal fixed points for A in [ y{03,uo], using again Tarski’s fixed
point theorem. O

Remark 3.9. Taking p >0 and ug = x{p} > xi0} in Theorem 3.8, we obtain Theorem 3.4.

Now, we present analogous results for the partial ordering < in E!. In this case, the
intervals of the type [ y{o1,X(-p.,p1]> with p >0, or [0}, uo], with uy > x;0}, are complete
lattices.

LemMA 3.10. IfE,x, y € E! are such that E > xyoy and x0y < x < y, then yyo; < Ex < Ey.
Proof. By hypotheses,

Ei(a) <0, Eg(a)=0, Vaec]|0,1],

(3.35)
yr(a) <xp(a) <0 <xg(a) < yr(a), Vac]|0,1],

so that

Er(a)yi(a) < Eg(a)x;(a) <0, 0=Er(a)xr(a)=Er(a)yr(a), Va,
(3.36)
Er(a)yr(a) = Er(a)xr(a) =0, 0 < Er(a)xg(a) <Er(a)yr(a), Va,
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which imply, for all a € [0, 1], that

min {E;(a)yr(a),Er(a)yr(a)} < min{E;(a)xr(a),Er(a)x.(a)} <0,

0 < max{Ey(a)x;(a),Er(a)xr(a)} < max{EL(a)yr(a),Er(a)yr(a)}. (3:37)
In consequence, for every a € [0,1],
{0} = [Ex]*
= [min {Er(a)xr(a), Er(a)x.(a)}, max {Er(a)xi(a), Er(a)xr(a)}]
< [min {E;(a)yr(a), Er(a)y(a)}, max {EL(a) yL(a), Er(a) yr(a)}] o
= [Ey),
hence
Xioy S Ex < Ey. (3.39)
(]
TueoreM 3.11. Let E, F, G be fuzzy numbers such that
E,F,G > yi0} (3.40)
and suppose that there exists p > 0 satisfying
—p = min {EL(0),~Ex(0)} p? + min {F;(0),~Fr(0)} p+ GL(0),  (3.41)
max { — E£(0),Er(0)} p? + max { — F(0), Fr(0)} p + Gr(0) < p. (3.42)
Then (1.11) has extremal solutions in
[Xi0pX1-pp1] := {x €E": x10y S x X x1-ppr - (3.43)
Proof. Since p >0, y{o; < X[-pp]- Define
Az Lo Xi-ppl] — E (3.44)

by Ax = Ex? + Fx + G. We show that A([ x{0},X(-p.p1]) E [ X10}>X1-p.p) ] It is easy to prove
that

Axor = E(xio)” + oo + G = X0y + X101 + G = G = yqop, (3.45)
and, for every a € [0, 1],
[Axi-pp1]” = [Er(a), Er@)][ - p, p*] + [Fr(a), Fr(@)][ - p, p] + [G1(a), Gr(a)]
= [ min {E;(a)p?, —Er(a) p*}, max { — Er(a) p*, Er(a)p*}]
+[min [Fy(@)p, ~Fr(a)p}, max { - Fi(a)p,Fr(a)p}] e

+[Gr(a),Gr(a)],
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so that, for a € [0,1],

[Axi-p,p1] (@) = min{E;(a), —Egr(a)} p* + min {F,(a), —Fr(a)} p + GL(a),
(3.47)
[Ax(-p,p11r(a) = max{ — Er(a),Er(a)} p* + max { — F(a),Fr(a)} p + Gr(a).

By hypotheses and using the monotonicity properties of Ej, Er, F, Fr, G, Gr, we obtain,
foralla e [0,1],

—p < min{EL(0), —Er(0)} p* + min {F1(0), —Fr(0)} p + GL(0)
< min {Er(a), —Er(a)} p* + min {F;(a), ~Fr(a)} p + GL(a) (3.48)
= [Axi-ppi]L(a),
[Ax(-p,p11g(a) = max { — EL(a),Er(a)} p* + max { — F.(a), Fr(a)} p + Gr(a)
< max { — E(0),Er(0)} p* + max { — F£(0),Fr(0)} p+ Gr(0)  (3.49)
<p.

This proves that Ay, < x[-p,p- Besides, A is a nondecreasing operator. Take y;o; < x <
y, then

yi(a) <xp(a) <0 <xg(a) < yr(a), Vae]l0,1],

10} < [x2] = [xe(a),xr(@)]” = [xz(a)xr(@),max {(x1(a))% (x(2)}],  Va. 2
Analogously for y. Hence, since yg(a) = 0 and x;(a) < 0, then
yr(a)yr(a) < xp(a)yr(a) < xp(a)xr(a), a€]0,1], (3.51)
and, using that (x1.(a))? < (y1(a))?, (xr(a))? < (yr(a))?, we obtain
max {(x.(a))’, (xx(a))"} = max{(y2(a))’, (yz(@)’}, @€ 0,1], (352)
which proves that
{0} e [¥*]* = [y*]%, Va,
(3.53)

xiop X2 <y
Using that E,F > y{0; and Lemma 3.10, we obtain the nondecreasing character of A,

Ax=Ex*+Fx+G=<Ey*+Fy+G=Ay, forypo <x=<y. (3.54)
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Tarski’s fixed point theorem gives the existence of extremal fixed points for

A [xopxi-ppr] — [xionX-pp1] (3.55)

in the complete lattice [ yio}, X[~ p,p] ]+ O

Remark 3.12. In the hypotheses of Theorem 3.11, conditions (3.41) and (3.42) can be
written, equivalently, as

deo (B, x101) P* + deo (Fs x103) P+ deo (G 10}) < . (3.56)

Compare with condition obtained in Remark 3.7 for the ordering <. Indeed, for x € E!,
X = 03> we have x(0) < xz(a) < 0 < xg(a) < xz(0), forall a € [0,1], hence

deo (%,x10y) = sup max {|x(a)l,|xr(a)l}
ac(0,1]

= max {|x;(0)|, [xr(0)|} = max{—x.(0),xz(0)}, (3.57)

—dw (%, x10y) = —max{—x7(0),xr(0)} = min{x;(0), —xr(0)}.
Now, since E, F > y{0}, conditions (3.41) and (3.42) are equivalent to

—p < —dw(E,x103) p* — de (F, x101) p + GL(0),

(3.58)
de (E,x101) p* + des (F, x10y) p + Gr(0) < p,
or also
des (E,x10y) P> +deo (Fox101) p < p+GL(0),
(3.59)
de (E,x104) p* +de (F, x10) p < p — Gr(0),
that is,
deo (E,x10}) p* + deo (F, x101) p < min { p+ G1(0), p — Gr(0)}
= p+min{G(0),~Ggr(0)} (3.60)
= p—dx (G, x101)-
Hence, we have obtained the equivalent condition
des (B, x101) p* + doo (F, x103) p + doo (G x103) < . (3.61)

IfE,F,G € E', E,F,G > x0}, and

dos (B, X101) +des (Fo x10) +do (G x10y) < 1, (3.62)
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conditions in Theorem 3.11 are verified for p = 1, and (1.11) has extremal solutions in
[ x103>X1=1,11]. We can choose, for instance,

1 4
S de (F,)({()}) < 8’ dW(G,X{o}) < g, (3.63)

[ R

des (E, x103) <

to obtain a result similar to Theorem 2.9.

THEOREM 3.13. Let E, F, G be fuzzy numbers such that
E,F,G > yi0} (3.64)
and suppose that there exists uy € E' with uy > oy and
Eu} + Fug + G < u, (3.65)
that is, for all a € [0,1],

min {E;(a) - max { (1), (@))’, ((t0) (@)}, Er(@) - (u0) (@) - (o) g(@)}

+min {Fp(a) - (uo) g(a),Fr(a) - (uo) (@)} +GL(a) = (uo),(a),

max B4 (a) - (o), (a) - (1) (@), En(a) - max { (o), @))%, (1) (@)} } 360
+max {Fy(a) - (), (a), Fr(a) - (o) (@)} + Gr(a) < (uo) (a).
Then (1.11) has extremal solutions in
(X010 := {x € E" s 101 < x < o} (3.67)
Proof. Define
A [ x0p,10] — E', (3.68)

by Ax = Ex? + Fx+ G. Again Ayo; > X0}, and, by hypothesis, Aug < ug. Moreover, A is
nondecreasing and A : [ xjo3,4o] — [ x0}>4o]. Using that [ y103,u0] is a complete lattice, the
existence of extremal fixed points for A in [ y0},uo] follows from application of Tarski’s
fixed point theorem. U

Remark 3.14. If we take p >0 and uy = x(-p,p] > x10} in Theorem 3.13, we get estimates
in Theorem 3.11.

The following results (Theorems 3.15-3.18) are valid for the order < as well as for the
order <X with the obvious changes. We give them only for the order <.

THEOREM 3.15. Let E, F, G be fuzzy numbers such that

E,F > Xio}> (3.69)
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and suppose that there exist a, § € E' with 8 > a > y0 and

Ea*+Fa+G= q,

(3.70)
ER+FB+G<p.

Then (1.11) has extremal solutions in [a, ] := {x € E' : « < x < }. Moreover, ifa = f, ais
a solution to (1.11).

THEOREM 3.16. Let F : E! — E! be nondecreasing and suppose that there exist o, € E' with
a < fand

Fla) > a,
(3.71)
F(B) <P
Then equation
F(x) =x (3.72)

has extremal solutions in [, ]. Note that, if « = J5, this is a fixed point for F.

THEOREM 3.17. Let S be a closed bounded interval in E', and F : S — S nondecreasing.
Suppose that there exists a € S with

F(a) = a. (3.73)
Then equation
F(x)=x (3.74)
has a solution in S. A solution is obtained as the supremum of the set
X={x€S:F(x)=x}, (3.75)

taking into account that S is a complete lattice.

TuEOREM 3.18. Let F: E! — E! be monotone nondecreasing (or nonincreasing and contin-
uous). Suppose that there exists K € [0,1) such that

dw (F(x),F(y)) <Kdw(x,y), Vx=y, (3.76)
and there exists xo € E! with
F(xy) = xo or F(xy) < xo. (3.77)
Then there exists exactly one solution for equation

F(x) = x. (3.78)
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Proof. Following the ideas in [4], if F(xg) # xo and F is nondecreasing, we consider the
sequence {F"(xo)}uen, which is a Cauchy sequence in E' and monotone. Since E! is a
complete metric space, then there exists y € E! such that

s n —
lim F(x) =y, (3.79)
and y is a fixed point of F. For more details, see [4, Theorems 2.1, 2.2, and 2.4] and [5,
Theorem 2.1]. O
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