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1. Introduction and preliminaries

Let X be a nonempty compact subset of a Banach space (E,‖·‖), and let C(X) and CC(X)
denote the families of all nonempty compact and all nonempty compact convex subsets
of X , respectively. It is well known that (C(X),H) is compact, where H is the Hausdorff

metric induced by ‖·‖. For A,B ∈ CC(X) and t ∈ R = (−∞,+∞), let A + B = {a + b :
a∈ A, b ∈ B}, and let tA= {ta : a∈ A}. In the sequel, we assume that X is a nonempty
compact convex subset of E. Hu and Huang [1] proved that (CC(X),H) is a compact
subset of (C(X),H). It is clear that tA+ (1− t)B ∈ CC(X) for all A,B ∈ CC(X) and t ∈
[0,1]. That is, CC(X) has convexity structure. Let I be a nonempty subset of CC(X).
A mapping T : (I,H)→(I,H) is said to be nonexpansive if H(TA,TB) ≤H(A,B) for all
A,B ∈ I.

Within the past 20 years or so, a few researchers have applied the Mann iteration
method and the Ishikawa iteration method to approximate fixed points of nonexpansive
mappings in several classes of subsets of Banach spaces. For details we refer to [2–11].
Recently, Hu and Huang [1] established the following result.

Theorem 1.1. Let X be a nonempty compact convex subset of a Banach space (E,‖·‖), and
let I be a nonempty compact convex subset of CC(X). Suppose that T : (I,H)→(I,H) is
nonexpansive. Then for any A0 ∈ I, the sequence defined by
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An= 2−1(An−1 +TAn−1
)
, n≥ 1, (1.1)

converges to a fixed point of T .

Inspired and motivated by the results in [1–11], in this paper we introduce the con-
cepts of the Mann and Ishikawa iteration sequences in hyperspaces, and establish the con-
vergence theorems for the Mann and Ishikawa iteration sequences dealing with nonex-
pansive mappings in hyperspaces. The results in this paper extend substantially Theorem
1.1.

In order to prove our results, we need the following concepts and results.

Definition 1.2. Let I be a nonempty compact convex subset of CC(X), and let T : (I,H)→
(I,H) be a mapping.

(1) For any A0 ∈ I, the sequence {An}n≥0 ⊆ I defined by

Bn =
(
1− sn

)
An + snTAn, n≥ 0,

An+1 =
(
1− tn

)
An + tnTBn, n≥ 0,

(1.2)

is called the Ishikawa iteration sequence, where {tn}n≥0 and {sn}n≥0 are real sequences in
[0,1] satisfying appropriate conditions.

(2) If sn = 0 for all n≥ 0 in (1.2), the sequence {An}n≥0 ⊆ I defined by

An+1 =
(
1− tn

)
An + tnTAn, n≥ 0, (1.3)

is called the Mann iteration sequence.
(3) If sn = 0 and tn = 1 for all n≥ 0 in (1.2), the sequence {An}n≥0 ⊆ I defined by

An+1 = TAn, n≥ 0, (1.4)

is called the Picard iteration sequence.

Lemma 1.3. Let A, B, U , and V be in CC(X), and let t be in [0,1]. Then

H
(
tA+ (1− t)B, tU + (1− t)V

)≤ tH(A,U) + (1− t)H(B,V). (1.5)

Proof. Put r = tH(A,U) + (1− t)H(B,V). For any a∈A and b ∈ B, by Nadler’s result we
know that there exist u∈U , v ∈ V such that ‖a−u‖ ≤H(A,U) and ‖b− v‖ ≤H(B,V)
which yield that

∥
∥ta+ (1− t)b− tu− (1− t)v

∥
∥≤ t‖a−u‖+ (1− t)‖b− v‖ ≤ r. (1.6)
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It follows that

sup
a∈A,b∈B

{
inf

u∈U ,v∈V
∥
∥ta+ (1− t)b− tu− (1− t)v

∥
∥
}
≤ r. (1.7)

Similarly, we have

sup
u∈U ,v∈V

{
inf

a∈A,b∈B
∥
∥ta+ (1− t)b− tu− (1− t)v

∥
∥
}
≤ r. (1.8)

Consequently, we infer that

H
(
tA+ (1− t)B, tU + (1− t)V

)

=max
{

sup
a∈A,b∈B

inf
u∈U ,v∈V

∥
∥ta+ (1− t)b− tu− (1− t)v

∥
∥,

sup
u∈U ,v∈V

inf
a∈A,b∈B

∥
∥ta+ (1− t)b− tu− (1− t)v

∥
∥
}
≤ r.

(1.9)

This completes the proof. �

Lemma 1.4 [9]. Suppose that {an}n≥0 and {bn}n≥0 are two sequences of nonnegative num-
bers such that an+1 ≤ an + bn for all n≥ 0. If

∑∞
n=0bn converges, then limn→∞an exists.

2. Main results

Now we prove the following results.

Theorem 2.1. Let X be a nonempty compact convex subset of a Banach space (E,‖·‖), and
let I be a nonempty compact convex subset of CC(X). Suppose that T : (I,H)→(I,H) is
nonexpansive and there exist constants a and b satisfying that

0 < a≤ tn ≤ b < 1, 0≤ sn ≤ 1, n≥ 0, (2.1)

∞∑

n=0

sn <∞. (2.2)

Then for any A0 ∈ I, the Ishikawa iteration sequence {An}n≥0 converges to a fixed point of T .

Proof. Let n and k be arbitrary nonnegative integers. Note that tA+ (1− t)A= A for any
A ∈ CC(X) and t ∈ [0,1]. Using (1.2), Lemma 1.3 and the nonexpansiveness of T , we
infer that

H
(
TBn,An

)≤H
(
TBn,TAn

)
+H

(
TAn,An

)

≤H
(
Bn,An

)
+H

(
TAn,An

)≤ (1 + sn
)
H
(
An,TAn

)
,

(2.3)
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and that

H
(
An+1,An

)≤ tnH
(
TBn,An

)≤ tn
(
1 + sn

)
H
(
An,TAn

)
. (2.4)

By virtue of (1.2), (2.3), (2.4), Lemma 1.3, and the nonexpansiveness of T , we get that

H
(
Bn,An+k+1

)

≤H
(
Bn,An+1

)
+

k∑

i=1

H
(
An+i,An+i+1

)

≤ (1− sn
)
H
(
An,An+1

)
+ snH

(
TAn,An+1

)
+

k∑

i=1

tn+i
(
1 + sn+i

)
H
(
An+i,TAn+i

)

≤ (1− s2
n

)
tnH

(
An,TAn

)
+ sn

[(
1− tn

)
H
(
An,TAn

)
+ tnH

(
TBn,TAn

)]

+
k∑

i=1

(
tn+i + sn+i

)
H
(
An+i,TAn+i

)

≤ (tn + sn
(
1− tn

))
H
(
An,TAn

)
+

k∑

i=1

(
tn+i + sn+i

)
H
(
An+i,TAn+i

)

≤
k∑

i=0

(
tn+i + sn+i

)
H
(
An+i,TAn+i

)
,

(2.5)

and that

H
(
TAn+1,An+1

)≤ (1− tn
)
H
(
An,TAn+1

)
+ tnH

(
TBn,TAn+1

)

≤ (1− tn
)(
H
(
An+1,TAn+1

)
+H

(
An+1,An

))
+ tnH

(
Bn,An+1

)

≤ (1− tn
)
H
(
An+1,TAn+1

)
+
(
1− tn

)
tn
(
1 + sn

)
H
(
An,TAn

)

+ tn
((

1− tn
)
H
(
An,Bn

)
+ tnH

(
TBn,Bn

))
,

(2.6)

which together with (2.1) implies that

H
(
An+1,TAn+1

)≤ (1− tn
)(

1 + sn
)
H
(
An,TAn

)

+
(
1− tn

)
H
(
An,Bn

)
+ tnH

(
TBn,Bn

)

≤ (1− tn
)(

1 + 2sn
)
H
(
An,TAn

)

+ tn
((

1− sn
)
H
(
An,TBn

)
+ snH

(
TAn,TBn

))

≤ (1 + 2sn
(
1− tn

))
H
(
An,TAn

)

≤ (1 + 2
(
1− a

)
sn
)
H
(
An,TAn

)
.

(2.7)
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Notice that the compactness of I implies that {H(An,TAk) : n≥ 0, k ≥ 0} is bounded. It
follows from Lemma 1.4, (2.2), and (2.7) that

lim
n→∞H

(
An,TAn

)= r ≥ 0, (2.8)

which implies that for any ε > 0 there exists a positive integer N such that

r− ε ≤H
(
An,TAn

)≤ r + ε, n≥N. (2.9)

It follows that

H
(
An+1,TC

)≤ (1− tn
)
H
(
An,TC

)
+ tnH

(
TBn,TC

)

≤ (1− tn
)
H
(
An,TC

)
+ tnH

(
Bn,C

)
, C ∈ I, n≥ 0,

(2.10)

which yields that

H
(
An,TC

)≥ (1− tn
)−1(

H
(
An+1,TC

)− tnH
(
Bn,C

))
, C ∈ I, n≥ 0. (2.11)

Now we prove by induction that the following inequality holds for all n≥ 1:

H
(
Ap,TAp+n

)≥ (r + ε)

(

1 +
n−1∑

i=0

tp+i

)

− 2ε
n−1∏

i=0

(
1− tp+i

)−1

− (r + ε)
n−1∑

i=0

[

tp+i

(n−1∑

j=i
sp+ j

) i∏

k=0

(
1− tp+k

)−1
]

, p ≥N.

(2.12)

Using (2.5), (2.9), and (2.11), we obtain that

H
(
Ap,TAp+1

)≥ (1− tp
)−1(

H
(
Ap+1,TAp+1

)− tpH
(
Bp,Ap+1

))

≥ (1− tp
)−1(

r− ε− (r + ε)tp
(
tp + sp

))

= (1− tp
)−1[

r− ε− (r + ε)
(
1− 2

(
1− tp

)
+
(
1− tp

)2
+ tpsp

)]

= (r + ε)
(
1 + tp

)− 2ε
(
1− tp

)−1− (r + ε)tpsp
(
1− tp

)−1
, p ≥N.

(2.13)

Hence (2.12) holds for n= 1. Suppose that (2.12) holds for n=m≥ 1. That is,

H
(
Ap,TAp+m

)≥ (r + ε)

(

1 +
m−1∑

i=0

tp+i

)

− 2ε
m−1∏

i=0

(
1− tp+i

)−1

− (r + ε)
m−1∑

i=0

[

tp+i

(m−1∑

j=i
sp+ j

) i∏

k=0

(
1− tp+k

)−1
]

, p ≥N.

(2.14)
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According to (2.5), (2.9), (2.11), and (2.14), we infer that

H
(
Ap,TAp+m+1

)

≥ (1− tp
)−1(

H
(
Ap+1,TAp+m+1

)− tpH
(
Bp,Ap+m+1

))

≥ (1− tp
)−1
{

(r + ε)

(

1 +
m−1∑

i=0

tp+1+i

)

− 2ε
m−1∏

i=0

(
1− tp+1+i

)−1

− (r + ε)

[m−1∑

i=0

tp+1+i

(m−1∑

j=i
sp+1+ j

) i∏

k=0

(
1− tp+1+k

)−1
]

− (r + ε)tp
m∑

i=0

(
tp+i + sp+i

)
}

= (r + ε)
(
1− tp

)−1
[

1 +
m−1∑

i=0

tp+1+i−
(

t2
p + tp

m∑

i=1

tp+i + tp

m∑

i=0

sp+i

)]

− 2ε
m∏

i=0

(
1− tp+i

)−1− (r + ε)
(
1− tp

)−1
m−1∑

i=0

[

tp+1+i

(m−1∑

j=i
sp+1+ j

) i∏

k=0

(
1− tp+1+k

)−1
]

= (r + ε)

(

1 +
m∑

i=0

tp+i

)

− (r + ε)
(
1− tp

)−1
tp

m∑

i=0

sp+i

− 2ε
m∏

i=0

(
1− tp+i

)−1− (r + ε)
m∑

i=1

[

tp+i

( m∑

j=i
sp+ j

) i∏

k=0

(
1− tp+k

)−1
]

= (r + ε)

(

1 +
m∑

i=0

tp+i

)

− 2ε
m∏

i=0

(
1− tp+i

)−1

− (r + ε)
m∑

i=0

[

tp+i

( m∑

j=i
sp+ j

) i∏

k=0

(
1− tp+k

)−1
]

, p ≥N.

(2.15)

That is, (2.12) holds for n=m+ 1. Hence (2.12) holds for any n≥ 1.
We next assert that r = 0. Otherwise r > 0. Let m be an arbitrary positive integer, and

let ε= 2−1(1− b)m min{r,1}. It follows from (2.2) and (2.8) that there exists a positive
integer N =N(ε) satisfying (2.9) and that

∣
∣
∣
∣
∣

q∑

i=0

sn+i

∣
∣
∣
∣
∣≤ ε, n≥N , q ≥ 0. (2.16)
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According to (2.1), (2.2), (2.9), (2.12), and (2.16), we easily conclude that

H
(
AN ,TAN+m

)

≥ (r + ε)
(

1 +
m−1∑

i=0

tN+i

)
− 2ε

m−1∏

i=0

(
1− tN+i

)−1

− (r + ε)
m−1∑

i=0

[

tN+i

(m−1∑

j=i
sN+ j

) i∏

k=0

(
1− tN+k

)−1
]

≥ (r + ε)
(

1 +
m−1∑

i=0

tN+i

)
− 2ε(1− b)−m− (r + ε)ε

m−1∑

i=0

tN+i(1− b)−i−1

≥ r + ε− 2ε(1− b)−m + (r + ε)
(
1− ε(1− b)−m

)m−1∑

i=0

tN+i

≥ r + ε− 2·2−1r(1− b)m(1− b)−m

+ (r + ε)
(
1− 2−1(1− b)m(1− b)−m

)m−1∑

i=0

tN+i

≥ 2−1r
m−1∑

i=0

tN+i ≥ 2−1rma−→ +∞ asm−→∞.

(2.17)

That is, {H(An,TAk) : n≥ 0, k ≥ 0} is unbounded, which is a contradiction. Hence r = 0.
The compactness of I yields that there exists a subsequence {Ank}k≥0 of {An}n≥0 satisfying
that

lim
k→∞

H
(
Ank ,A

)= 0 for some A∈ I. (2.18)

In view of (2.8), (2.18) and the nonexpansiveness of T , we have

H(A,TA)≤H
(
A,Ank

)
+H

(
Ank ,TAnk

)
+H

(
TAnk ,TA

)

≤ 2H
(
A,Ank

)
+H

(
Ank ,TAnk

)−→ 0 as k −→∞.
(2.19)

That is, A= TA. From (1.2) and Lemma 1.3, we know that

H
(
An+1,A

)≤ (1− tn
)
H
(
An,A

)
+ tnH

(
TBn,A

)

≤ (1− tn
)
H
(
An,A

)
+ tnH

(
Bn,A

)

≤ (1− tn
)
H
(
An,A

)
+ tn

((
1− sn

)
H
(
An,A

)
+ snH

(
TAn,A

))

≤H
(
An,A

)
, n≥ 0.

(2.20)

It follows from (2.18) and (2.20) that limn→∞H(An,A)= 0. This completes the proof. �

From Theorem 2.1 we have the following.

Theorem 2.2. Let X be a nonempty compact convex subset of a Banach space (E,‖·‖), and
let I be a nonempty compact convex subset of CC(X). Suppose that T : (I,H)→(I,H) is
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nonexpansive and there exist constants a and b satisfying that

0 < a≤ tn ≤ b < 1, n≥ 0. (2.21)

Then for any A0 ∈ I, the Mann iteration sequence {An}n≥0 converges to a fixed point of T .

Remark 2.3. In case tn = 1/2 for all n≥ 0, Theorem 2.2 reduces to [1, Theorem 3.2] by Hu
and Huang. The following example reveals that Theorem 2.2 extends properly the result
of Hu and Huang.

Example 2.4. Let E = R with the usual norm |·|, X = [0,1], and let I= {[0,x] : x ∈ X}.
Define T : (I,H)→(I,H) by

T[0,x]= [0,1− x], x ∈ X. (2.22)

Then I is a nonempty compact convex subset of CC(X) and

H
(
T[0,x],T[0, y]

)= |x− y| =H
(
[0,x],[0, y]

)
, x, y ∈ X. (2.23)

That is, T is nonexpansive. Set tn = (n+ 1)/(10n+ 3) for all n≥ 0 and a= 1/10, b = 1/3.
Thus all conditions of Theorem 2.2 are fulfilled. Therefore, we may invoke our Theorem
2.2 to show that T has a fixed point in I; but we cannot invoke [1, Theorem 3.2] by Hu
and Huang to show that T has fixed points in I since tn 	=1/2 for all n≥ 0.

Remark 2.5. The example below shows that the Picard iteration sequences of nonexpan-
sive mappings in hyperspaces need not converge and the condition “tn ≤ b < 1, n≥ 0” in
Theorem 2.2 is necessary.

Example 2.6. Let E, X , I, and T be as in Example 2.4. Take tn = 1 for all n ≥ 0. For any
A0 = [0,x] with x ∈ X \ {1/2}, the Picard iteration sequence {An}n≥0 ⊂ I does not con-
verge since A2n = [0,x] for all n≥ 0 and A2n−1 = [0,1− x] for all n≥ 1.
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