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1. Introduction and preliminaries

Let H be a real Hilbert space with inner product 〈·,·〉 and norm ‖ · ‖, respectively. A
mapping T with domain D(T) and range R(T) in H is called nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x, y ∈D(T). (1.1)

Let {Ti}Ni=1 be a finite family of nonexpansive self-maps of H . Denote the common fixed
points set of {Ti}Ni=1 by

⋂N
i=1 Fix(Ti). Let F : H → H be a mapping such that for some

constants k,η > 0, F is k-Lipschitzian and η-strongly monotone. Let {αn}∞n=1 ⊂ (0,1),
{λn}∞n=1 ⊂ [0,1) and take a fixed number μ ∈ (0,2η/k2). The iterative schemes concern-
ing nonlinear operators have been studied extensively by many authors, you may refer
to [1–12]. Especially, in [13], Zeng and Yao introduced the following implicit iteration
process with perturbed mapping F.

For an arbitrary initial point x0 ∈H , the sequence {xn}∞n=1 is generated as follows:

xn = αnxn−1 +
(
1−αn

)[
Tnxn− λnμF

(
Tnxn

)]
, n≥ 1, (1.2)

where Tn := TnmodN .
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Using this iteration process, they proved the following weak and strong convergence
theorems for nonexpansive mappings in Hilbert spaces.

Theorem 1.1 (see [13]). Let H be a real Hilbert space and let F : H → H be a mapping
such that for some constants k,η > 0, F is k-Lipschitzain vcommentand η-strongly mono-
tone. Let {Ti}Ni=1 be N nonexpansive self-mappings of H such that

⋂N
i=1 Fix(Ti) 
= ∅. Let

μ ∈ (0,2η/k2) and x0 ∈H . Let {λn}∞n=1 ⊂ [0,1) and {αn}∞n=1 ⊂ (0,1) satisfying the condi-
tions

∑∞
n=1 λn <∞ and α≤ αn ≤ β, n≥ 1, for some α,β ∈ (0,1). Then the sequence {xn}∞n=1

defined by (1.2) converges weakly to a common fixed point of the mappings {Ti}Ni=1.

Theorem 1.2 (see [13]). Let H be a real Hilbert space and let F : H →H be a mapping such
that for some constants k,η > 0, F is k-Lipschitzain and η-strongly monotone. Let {Ti}Ni=1 be
N nonexpansive self-mappings of H such that

⋂N
i=1 Fix(Ti) 
= ∅. Let μ ∈ (0,2η/k2) and

x0 ∈ H . Let {λn}∞n=1 ⊂ [0,1) and {αn}∞n=1 ⊂ (0,1) satisfying the conditions
∑∞

n=1 λn <∞
and α ≤ αn ≤ β, n ≥ 1, for some α,β ∈ (0,1). Then the sequence {xn}∞n=1 defined by (1.2)
converges strongly to a common fixed point of the mappings {Ti}Ni=1 if and only if

liminf
n→∞ d

(

xn,
N⋂

i=1

Fix
(
Ti
)
)

= 0. (1.3)

Very recently, Wang [14] considered an explicit iterative scheme with perturbed map-
ping F and obtained the following result.

Theorem 1.3. Let H be a Hilbert space, let T : H→H be a nonexpansive mapping with
F(T) 
=∅, and let F : H →H be an η-strongly monotone and k-Lipschitzian mapping. For
any given x0 ∈H , {xn} is defined by

xn+1 = αnxn +
(
1−αn

)
Tλn+1xn, n≥ 0, (1.4)

where Tλn+1xn = Txn − λn+1μF(Txn), {αn} and {λn} ⊂ [0,1) satisfy the following condi-
tions:

(1) α≤ αn ≤ β for some α,β ∈ (0,1);
(2)

∑∞
n=1 λn <∞;

(3) 0 < μ < 2η/k2.
Then

(1) {xn} converges weakly to a fixed point of T ,
(2) {xn} converges strongly to a fixed point of T if and only if

liminf
n→∞ d

(
xn,F(T)

)= 0. (1.5)

This naturally brings us the following questions.

Questions 1.4. Let Ti : H →H (i= 1,2, . . . ,N) be a finite family of nonexpansive mappings
and F is k-Lipschitzain and η-strongly monotone.

(i) Could we construct an explicit iterative algorithm to approximate the common
fixed points of the mappings {Ti}Ni=1?

(ii) Could we remove the assumption (2) imposed on the sequence {xn}?
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Motivated and inspired by the above research work of Zeng and Yao [13] and Wang
[14], in this paper, we will propose a new explicit iteration scheme with perturbed map-
ping for approximation of common fixed points of a finite family of nonexpansive self-
mappings of H . We will establish strong convergence theorem for this explicit iteration
scheme. To be more specific, let αn1,αn2, . . . ,αnN ∈ (0,1], n ∈ N . Given the mappings
T1,T2, . . . ,TN , following [15], one can define, for each n, mappings Un1,Un2, . . . ,UnN by

Un1 = αn1T1 +
(
1−αn1

)
I ,

Un2 = αn2T2Un1 +
(
1−αn2

)
I ,

...

Un,N−1 = αn,N−1TN−1Un,N−2 +
(
1−αn,N−1

)
I ,

Wn :=UnN = αnNTNUn,N−1 +
(
1−αnN

)
I.

(1.6)

Such a mapping Wn is called the W-mapping generated by T1, . . . ,TN and αn1, . . . ,αnN .
First we introduce the following explicit iteration scheme with perturbed mapping F.
For an arbitrary initial point x0 ∈H , the sequence {xn}∞n=1 is generated iteratively by

xn+1 = βxn + (1−β)
[
Wnxn− λnμF

(
Wnxn

)]
, n≥ 0, (1.7)

where {λn} is a sequence in (0,1), β is a constant in (0,1), F is k-Lipschitzian and η-
strongly monotone, and Wn is the W-mapping defined by (1.6).

We have the following crucial conclusion concerning Wn.

Proposition 1.5 (see [15]). Let C be a nonempty closed convex subset of a Banach space
E. Let T1,T2, . . . ,TN be nonexpansive mappings of C into itself such that

⋂N
i=1 Fix(Ti) is

nonempty, and let αn1,αn2, . . . ,αnN be real numbers such that 0 < αni ≤ b < 1 for any i∈N .
For any n ∈ N , let Wn be the W-mapping of C into itself generated by TN ,TN−1, . . . ,T1

and αnN ,αn,N−1, . . . ,αn1. Then Wn is nonexpansive. Further, if E is strictly convex, then
Fix(Wn)=⋂N

i=1 Fix(Ti).

Now we recall some basic notations. Let T : H → H be nonexpansive mapping and
F : H → H be a mapping such that for some constants k,η > 0, F is k-Lipschitzian and
η-strongly monotone; that is, F satisfies the following conditions:

‖Fx−Fy‖ ≤ k‖x− y‖, ∀x, y ∈H ,

〈Fx−Fy,x− y〉 ≥ η‖x− y‖2, ∀x, y ∈H ,
(1.8)

respectively. We may assume, without loss of generality, that η ∈ (0,1) and k ∈ [1,∞).
Under these conditions, it is well known that the variational inequality problem—find
x∗ ∈⋂N

i=1 Fix(Ti) such that

VI

(

F,
N⋂

i=1

Fix
(
Ti
)
)

:
〈
F
(
x∗
)
,x− x∗

〉≥ 0, ∀x ∈
N⋂

i=1

Fix
(
Ti
)
, (1.9)
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has a unique solution x∗ ∈ ⋂N
i=1 Fix(Ti). [Note: the unique existence of the solution

x∗ ∈⋂N
i=1 Fix(Ti) is guaranteed automatically because F is k-Lipschitzian and η-strongly

monotone over
⋂N

i=1 Fix(Ti).]
For any given numbers λ∈ [0,1) and μ∈ (0,2η/k2), we define the mapping Tλ : H →

H by

Tλx := Tx− λμF(Tx), ∀x ∈H. (1.10)

Concerning the corresponding result of Tλx, you can find it in [16].

Lemma 1.6 (see [16]). If 0≤ λ < 1 and 0 < μ < 2η/k2, then there holds for Tλ : H →H ,

∥
∥Tλx−Tλy

∥
∥≤ (1− λτ)‖x− y‖, ∀x, y ∈H , (1.11)

where τ = 1−
√

1−μ(2η−μk2)∈ (0,1).

Next, let us state four preliminary results which will be needed in the sequel. Lemma
1.7 is very interesting and important, you may find it in [17], the original prove can be
found in [18]. Lemmas 1.8 and 1.9 well-known demiclosedness principle and subdiffer-
ential inequality, respectively. Lemma 1.10 is basic and important result, please consult it
in [19].

Lemma 1.7 (see [17]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0,1] with

0 < liminf
n→∞ βn ≤ limsup

n→∞
βn < 1. (1.12)

Suppose

xn+1 =
(
1−βn

)
yn +βnxn, (1.13)

for all integers n≥ 0 and

limsup
n→∞

(∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥
)≤ 0. (1.14)

Then, limn→∞‖yn− xn‖ = 0.

Lemma 1.8 (see [20]). Assume that T is a nonexpansive self-mapping of a closed convex
subset C of a Hilbert space H . If T has a fixed point, then I −T is demiclosed. That is, when-
ever {xn} is a sequence in C weakly converging to some x ∈ C and the sequence {(I −T)xn}
strongly converges to some y, it follows that (I − T)x = y. Here, I is the identity operator
of H .

Lemma 1.9 (see [21]). ‖x+ y‖2 ≤ ‖x‖2 + 2〈y,x+ y〉 for all x, y ∈H .

Lemma 1.10 (see [19]). Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤
(
1− γn

)
an + δn, (1.15)



Yeong-Cheng Liou et al. 5

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn =∞,

(2) limsupn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.
Then limn→∞ an = 0.

2. Main result

Now we state and prove our main result.

Theorem 2.1. Let H be a real Hilbert space and let F : H → H be a k-Lipschitzian and
η-strongly monotone mapping. Let {Ti}Ni=1 be a finite family of nonexpansive self-mappings
of H such that

⋂N
i=1 Fix(Ti) 
= ∅. Let μ ∈ (0,2η/k2). Suppose the sequences {αn,i}Ni=1 sat-

isfy limn→∞(αn,i− αn−1,i) = 0, for all i = 1,2, . . . ,N . If {λn}∞n=1 ⊂ [0,1) satisfy the following
conditions:

(i) limn→∞ λn = 0;
(ii)

∑∞
n=0 λn =∞,

then the sequence {xn}∞n=1 defined by (1.7) converges strongly to a common fixed point x∗ ∈
⋂N

i=1 Fix(Ti) which solves the variational inequality (1.9).

Proof. Let x∗ be an arbitrary element of
⋂N

i=1 Fix(Ti). Observe that

∥
∥xn+1− x∗

∥
∥= ∥∥βxn + (1−β)Wλn

n xn− x∗
∥
∥

≤ β
∥
∥xn− x∗

∥
∥+ (1−β)

∥
∥Wλn

n xn− x∗
∥
∥,

(2.1)

where Wλn
n x :=Wnx− λnμF(Wnx). Note that

Wλn
n x∗ = x∗ − λnμF

(
x∗
)
. (2.2)

Utilizing Lemma 1.6, we have

∥
∥Wλn

n xn− x∗
∥
∥= ∥∥Wλn

n xn−Wλn
n x∗ +Wλn

n x∗ − x∗
∥
∥

≤ ∥∥Wλn
n xn−Wλn

n x∗
∥
∥+

∥
∥Wλn

n x∗ − x∗
∥
∥

≤ (1− λnτ
)∥
∥xn− x∗

∥
∥+ λnμ

∥
∥F
(
x∗
)∥
∥.

(2.3)

From (2.1) and (2.3), we have

∥
∥xn+1− x∗

∥
∥≤ [β+ (1−β)

(
1− λnτ

)]∥
∥xn− x∗

∥
∥+ (1−β)λnμ

∥
∥F
(
x∗
)∥
∥

= [1− (1−β)λnτ
]∥
∥xn− x∗

∥
∥+ (1−β)λnμ

∥
∥F
(
x∗
)∥
∥

≤max
{∥
∥x0− x∗

∥
∥,
(μ

τ

)∥
∥F
(
x∗
)∥
∥
}
.

(2.4)

Hence, {xn} is bounded. We also can obtain that {Wnxn}, {TiUn, jxn}(i = 1, . . . ,N ; j =
1, . . . ,N), and {F(Wnxn)} are all bounded.

We will use M to denote the possible different constants appearing in the following
reasoning.
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We note that

∥
∥Wλn+1

n+1 xn+1−Wλn
n xn

∥
∥

= ∥∥Wn+1xn+1−Wnxn− λn+1μF
(
Wn+1xn+1

)
+ λnμF

(
Wnxn

)∥
∥

≤ ∥∥Wn+1xn+1−Wnxn
∥
∥+ λn+1μ

∥
∥F
(
Wn+1xn+1

)∥
∥+ λnμ

∥
∥F
(
Wnxn

)∥
∥

≤ ∥∥Wn+1xn+1−Wn+1xn
∥
∥+

∥
∥Wn+1xn−Wnxn

∥
∥+

(
λn+1 + λn

)
M

≤ ∥∥xn+1− xn
∥
∥+

∥
∥Wn+1xn−Wnxn

∥
∥+

(
λn+1 + λn

)
M.

(2.5)

From (1.6), since TN and Un,N are nonexpansive,

∥
∥Wn+1xn−Wnxn

∥
∥

= ∥∥αn+1,NTNUn+1,N−1xn +
(
1−αn+1,N

)
xn−αn,NTNUn,N−1xn−

(
1−αn,N

)
xn
∥
∥

≤ ∥∥αn+1,NTNUn+1,N−1xn−αn,NTNUn,N−1xn
∥
∥+

∣
∣αn+1,N −αn,N

∣
∣
∥
∥xn
∥
∥

≤ ∥∥αn+1,N
(
TNUn+1,N−1xn−TNUn,N−1xn

)∥
∥+

∣
∣αn+1,N −αn,N

∣
∣
∥
∥TNUn,N−1xn

∥
∥

+
∣
∣αn+1,N −αn,N

∣
∣
∥
∥xn
∥
∥

≤ αn+1,N
∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥+ 2M

∣
∣αn+1,N −αn,N

∣
∣.

(2.6)

Again, from (1.6), we have

∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥

= ∥∥αn+1,N−1TN−1Un+1,N−2xn +
(
1−αn+1,N−1

)
xn

−αn,N−1TN−1Un,N−2xn−
(
1−αn,N−1

)
xn
∥
∥

≤ ∥∥αn+1,N−1TN−1Un+1,N−2xn−αn,N−1TN−1Un,N−2xn
∥
∥

+
∣
∣αn+1,N−1−αn,N−1

∣
∣
∥
∥xn
∥
∥

≤ ∣∣αn+1,N−1−αn,N−1
∣
∣
∥
∥xn
∥
∥+

∣
∣αn+1,N−1−αn,N−1

∣
∣M

+αn+1,N−1
∥
∥TN−1Un+1,N−2xn−TN−1Un,N−2xn

∥
∥

≤ 2M
∣
∣αn+1,N−1−αn,N−1

∣
∣+αn+1,N−1

∥
∥Un+1,N−2xn−Un,N−2xn

∥
∥

≤ 2M
∣
∣αn+1,N−1−αn,N−1

∣
∣+

∥
∥Un+1,N−2xn−Un,N−2xn

∥
∥.

(2.7)
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Therefore, we have
∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥

≤ 2M
∣
∣αn+1,N−1−αn,N−1

∣
∣+ 2M

∣
∣αn+1,N−2−αn,N−2

∣
∣

+
∥
∥Un+1,N−3xn−Un,N−3xn

∥
∥

≤ 2M
N−1∑

i=2

∣
∣αn+1,i−αn,i

∣
∣+

∥
∥Un+1,1xn−Un,1xn

∥
∥

= ∥∥αn+1,1T1xn +
(
1−αn+1,1

)
xn−αn,1T1xn−

(
1−αn,1

)
xn
∥
∥

+ 2M
N−1∑

i=2

∣
∣αn+1,i−αn,i

∣
∣,

(2.8)

then
∥
∥Un+1,N−1xn−Un,N−1xn

∥
∥

≤ ∣∣αn+1,1−αn,1
∣
∣
∥
∥xn
∥
∥+

∥
∥αn+1,1T1xn−αn,1T1xn

∥
∥

+ 2M
N−1∑

i=2

∣
∣αn+1,i−αn,i

∣
∣≤ 2M

N−1∑

i=1

∣
∣αn+1,i−αn,i

∣
∣.

(2.9)

Substituting (2.9) into (2.6), we have

∥
∥Wn+1xn−Wnxn

∥
∥≤ 2M

∣
∣αn+1,N −αn,N

∣
∣+ 2αn+1,NM

N−1∑

i=1

∣
∣αn+1,i−αn,i

∣
∣

≤ 2M
N∑

i=1

∣
∣αn+1,i−αn,i

∣
∣.

(2.10)

Substituting (2.10) into (2.5), we have

∥
∥Wλn+1

n+1 xn+1−Wλn
n xn

∥
∥≤ ∥∥xn+1− xn

∥
∥+ 2M

N∑

i=1

∣
∣αn+1,i−αn,i

∣
∣+

(
λn+1 + λn

)
M, (2.11)

which implies that

limsup
n→∞

(∥
∥Wλn+1

n+1 xn+1−Wλn
n xn

∥
∥−∥∥xn+1− xn

∥
∥
)≤ 0. (2.12)

We note that xn+1 = βxn + (1− β)Wλn
n xn and 0 < β < 1, then from Lemma 1.7 and (2.12),

we have limn→∞‖Wλn
n xn− xn‖ = 0. It follows that

lim
n→∞

∥
∥xn+1− xn

∥
∥= lim

n→∞(1−β)
∥
∥Wλn

n xn− xn
∥
∥= 0. (2.13)

On the other hand,
∥
∥xn−Wnxn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1−Wnxn

∥
∥

≤ ∥∥xn+1− xn
∥
∥+β

∥
∥xn−Wnxn

∥
∥+ (1−β)λnμ

∥
∥F
(
Wnxn

)∥
∥,

(2.14)
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that is,

∥
∥xn−Wnxn

∥
∥≤ 1

1−β

∥
∥xn+1− xn

∥
∥+ λnμ

∥
∥F
(
Wnxn

)∥
∥, (2.15)

this together with (i) and (2.13) imply

lim
n→∞

∥
∥xn−Wnxn

∥
∥= 0. (2.16)

We next show that

limsup
n→∞

〈−F
(
x∗
)
,xn− x∗

〉≤ 0. (2.17)

To prove this, we pick a subsequence {xni} of {xn} such that

limsup
n→∞

〈−F
(
x∗
)
,xn− x∗

〉= lim
i→∞

〈−F
(
x∗
)
,xni − x∗

〉
. (2.18)

Without loss of generality, we may further assume that xni → z weakly for some z ∈H .
By Lemma 1.8 and (2.16), we have

z ∈ Fix
(
Wn
)
, (2.19)

this together with Proposition 1.5 imply that

z ∈
N⋂

i=1

Fix
(
Ti
)
. (2.20)

Since x∗ solves the variational inequality (1.9), then we obtain

limsup
n→∞

〈−F
(
x∗
)
,xn− x∗

〉= 〈−F
(
x∗
)
,z− x∗

〉≤ 0. (2.21)

Finally, we show that xn→ x∗. Indeed, from Lemma 1.9, we have

∥
∥xn+1− x∗

∥
∥2

= ∥∥β(xn− x∗
)

+ (1−β)
(
Wλn

n xn−Wλn
n x∗

)
+ (1−β)

(
Wλn

n x∗ − x∗
)∥
∥2

≤ ∥∥β(xn− x∗
)

+ (1−β)
(
Wλn

n xn−Wλn
n x∗

)∥
∥2

+ 2(1−β)
〈
Wλn

n x∗ − x∗,xn+1− x∗
〉

≤ [β∥∥xn− x∗
∥
∥+ (1−β)

∥
∥Wλn

n xn−Wλn
n x∗

∥
∥
]2

+ 2(1−β)λnμ
〈−F

(
x∗
)
,xn+1− x∗

〉

≤ [β∥∥xn− x∗
∥
∥+ (1−β)

(
1− λnτ

)∥
∥xn− x∗

∥
∥
]2

+ 2(1−β)λnμ
〈−F

(
x∗
)
,xn+1− x∗

〉

≤ [1− (1−β)τλn
]∥
∥xn− x∗

∥
∥2

+ (1−β)τλn

{

2
μ

τ

〈−F
(
x∗
)
,xn+1− x∗

〉
}

.

(2.22)

Now applying Lemma 1.10 and (2.21) to (2.22) concludes that xn → x∗ (n→∞). This
completes the proof. �
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