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1. INTRODUCTION

Recently, there are more and more authors to
study the various properties of solutions for lattice
dynamical systems, mainly are coupled map
lattices and lattice ordinary differential equations,
see [1-5] and the references therein. Lattice
systems can be found in many fields of applica-
tions, for example, in chemical reaction theory,
image processing and pattern recognition. Lattice
systems have their own forms, in some cases, they
arise in the spatially discretizations of partial
differential equations.

In this paper, we shall consider the asymptotic
behavior of solutions for the following second
order lattice dynamical system:

it + odty — (imy — 2u; + wip1) + M + f(ui) = gi,
ieZ

(1)

where o and ) is a positive constants, g; is given,
f(8) =X toas ¥t with ¢;>0, j=0,1,...,m, is a
polynomial. By introducing a new weight inner
product and norm in the space 2 = {u = (;);
lu; €R,Y ;o ;u? <00}, we prove the existence of
a global attractor of system (1). The idea of
using such a technique is due to Zhou [6] and
Bates!, the later considered the existence of a
global attractor for a first order lattice dynamical
system.

Equation (1) can be regarded as a discrete
analogue of the following continuous damped
semi-linear wave equation:

Uy + Q= thx + M+ f(u) = g. @)
The global attractor and its dimension to Eq.
(2) in bounded domain and unbounded
domain have been studied in Hilbert spaces by

!Peter W. Bates, Kening Lu, Bixiang Wang, Attractors for lattice dynamical systems, Preprint, 1999.
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many people, see [6—12] and the references
therein.

This paper is organized as follows. In the second
section, we present the existence and uniqueness of
solutions for system (1). In Section 3, we prove the
uniformly boundedness of solutions. In Section 3,
we prove the existence of the global attractor.

2. EXISTENCE AND BOUNDEDNESS
OF SOLUTIONS

In this section, we consider the existence and
uniqueness of solutions for system (1) with initial
conditions:

{ it + oty — (Ui—1 — 20 + wip1) + N +f (w;) = gi,
ui(0) = uip, #;(0) =uip, I€Z,

3)

where a, A >0, g=(g)ic z and f(s) = 37 a;s ¥
witha;>0,j=0,1,...,m. For any u=)jc z€0,
define

(Bu); = w1 — wi,  (Bu); = uiy —u,

(Au); = —(ui—1 — 2u; + uin1), VieZ.

Then B, B, A are linear operators from 2 to /2 and
satisfy A = BB = BB.

For any two elements u=u;);cz, v=0)icz
€ ¢%, define two bilinear forms as

(#,v), = (Bu,Bv)+A(u,v),
Nl = (oa,20) 5 = 1Baal > + Xtl> = 3 ¢ 7 (aier =il + Noa ).
4)

{ (u,v) :Eiezuivi’ ||u||2=(u,u) :Eiezludz;

Obviously, the bilinear forms (-,-) and (-,-), in
(4) are both the inner products, moreover, the
norms ||-|| and ||-||x are equivalent each other
because

Miad® < Nl = > (uter — i + Neail”)

ieZ

< (4 X)Jull.

Denote by £2, £2 the spaces with the inner products
and norms in (4), respectively ¢>=(¢2,(-,-), ll-1Ds
B = () - 1l,), then £ and £ are Hilbert
spaces. Let E = £2 x £2, endowed with the inner
product and norm as: for ¢; = (), y)) = (!,
(“z(j)))iez €E,j=1,2,

(p1,92) = (D, u?), + (1) @)
= D _l(Bu),(Bu),
i

FPWONCIINONC]
lollz = (0, 0)p Vo€l x £2.

It is convenient to reduce system (3) as an
ordinary differential equation of first order in time
on E. With above notations, problem (3) can be
written as

i+otu+Au+du+fluy=g, t>0,
u(0) = (uip);cz = to, #(0) = (U1:0);cz = o,

(6)

where u=w)icz, fW=(fW))icz, §=@)icz
Let v = &4 + eu, where ¢ is chosen as

al

€=—a2+4/\ >07 (7)

then system (6) is equivalent to the following initial
value problem in Hilbert space E

¢+ Cp =F(p),
@(0) = (uo, vo)" = (uo, u10 + €tig)",  (8)

where ¢ =(u,v)7,

fw+g)7,

v=u+eu, Fp)=(0, -

el =1
C= (A+)\I+e(6—04)1 (a—s)l)' ©)
For any u= (u);c. €, Juif < [l

1/2 m )
£l = (Z |f<u,~)|2) <l > el ?,
icz =0
(10)
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thus, f maps ¢* into ¢2, i.e., F maps E into itself.
Let B be a bounded set in E, ¢; = (u),vV)) =
(@), ), ., €B, j=1,2, similar to (10), there
exists L(a;, B) such that

IF (1) — F(e2)llp < L(ai, B)llo1 — 2l
thus, F(p) is locally Lipschitz from E to E. It
is easy to see that the solutions of problem (3)
is backward unique in time because if ¢ and
a are replaced by —¢ and —a, the Eq. (3) is
not changed. By the standard theory of
ordinary differential equations, we obtain the
existence and uniqueness of local solution ¢ for
problem (8).

LemMma 1 If g=(g)ic z€ 2, then for any initial
data p(0) = (ug, vo)” € E, there exists an unique local
solution () = (u(t), v(t))T of (8) such that p € C'
(= Ty, To), E) for some To>0. If Ty < +00, then
lim—z, o (1)1 = +oc.

From Lemma 3 below, it is obtained that the
local solution ¢(#) of (8) exists globally, that is,
@ e C'(R, E), which implies that maps

S(2) = p(0) = (uo,v0) €E — ¢(t) = 5(2)(0)
= (u(t),v(t))€E, t>0 (11)

generates a continuous semigroup {S(#)}, > o on E,
where v(¢) = u(t) + eu(t).

3. BOUNDEDNESS OF SOLUTIONS

LeMMA 2 For any ¢ =(u,v)" € E,

a
(Co, <P)520||90||§+5||V||2, (12)
where
= e . a3)
Va2 +4X(a+ Va2 + 4))

Proof 1t is easy to check that

(Bu,v) =
(Au,v) =

(u,Bv) and
(Bu,Bv), Vu,vel’.

and

a 2
(Co,0)r — ollelly - 5 IVl
2
> (e — o) [[1Bull® + Allull’]

+(5-e-o)ir

JJMMI+MWHW%M

But

4(s~a)(%—e—a) =2

Thus, the proof is completed.

~|

We consider the boundedness of solutions
() of (8). Assume that gef’. Let o(f)=
(u(1), W())" € E be a solution of (8), where v(z) =
u(t) + eu().

Taking the inner product (-,-)g of (8) with ¢(?),
we have

%% lollz + (Coo, ) + (f(u), it) + e (f (u),4) = (g,v).-

(14)
By (12),
(Cop)pzollelz +5bIP (19)
Write  G(s) = [gf(r)dr = 37 o(a;/ (2 +2))s ¥*2,
then
(MM})Ww(Zw)(m
ieZ ieZ

= Zf(ui)ui > ZG(W), (17)

ieZ i€Z
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and
1 2 a9
< — — .
(8,1 < 518l + 5] (18)

By putting (15)—(18) into (14), we find

It +23- 6w
+olol} + 23 6] < Sl

icz @

By Gronwall’s inequality,

llellz +2_ G(u)

i€eZ

< IO + 2.3 Glun) e

ieZ

1 2 —ot
L g e, (19

But

m N .
Z G(un) = Z Z 21,‘3_ Su y+2

ieZ ieZ j=0

<F'(lu(O)]) - [lu(0)1*

then,

lillz < ()17 + 27 (Iu(O) )] - l1u(0)[*)e™"

L [glP(1 ). (20)

From (20), for any initial data ¢(0) = (uo, vo)” € E,
then the solution ¢(f)=(u(?), W(?))" is bounded
for all t€][0, +00), that is, the solution «(?)
exists globally on [0, +00), maps {S(?);> o}
defined by (11) form a semigroup on FE.
Inequality (19) implies that the semigroup
{S(®)},>0 possesses a bounded absorbing set
in E.

LEMMA 3 If g € £, then there exists a bounded ball
0=0¢g(0,ry), centered at O with radius rq, such
that for every bounded set B of E, there exists

T(B) > 0 such that
S(H)BC 0, Vt>T(B), (21)

where 12 = (2/ao)||g|.

Therefore, there exists a constant 7o >0 de-
pending on O such that

SHoco, Vi>T,. (22)

4. GLOBAL ATTRACTOR

Let H be a complete metric space and {S(¢), ¢ > 0}
be a continuous semigroup on H.

DeriNiTION 1 A set X of H is called a global
attractor for the semigroup {S(?), t > 0} if (i) X is
invariant set, ie., S(X=X, Vt>0. (ii)) X is a
compact set. (iii) X attracts any bounded set of
H, i.e., for any bounded set BCH, d(S(¢)B, X)=
SUPx e s(a infy ¢ xd(x,y)—0 as t—oo0.

To obtain the existence of a global attractor for
the semigroup {S(#),> o} associated with (8) on E.
We need prove the asymptotic compactness of

{8(®): > o}-

LemMma 4 If gef* and ©(0)=(ug,vo) € O, then
V1 >0, there exists T(n) and K(n) such that the

solution p(£) = (p)ic z = ((U: (1), (v{D))icz € E of
problem (8), v(t) = u(t) + eu(t), satisfies

Sl =Y 1Bu@) + Nu()?
Jil > K(n) il > k(n)
+ (0P <n, Ve2T(n),
(23)
where (Bu(%)); = u; 4+ 1(£) —ui?).

Proof Choosing a smooth function § € C'(R™, R)
satisfies:

0<f(s)<1, 1<s<2, (24)

0(s) =0, 0<s<1
0(s) =1, §>2,
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then there exists a constant C, such that
|0/(s)| < Co for seR™.

Let  o(t)= (), v(1)) = (pdic z= (D), (v
(M)icz be a solution of (8), where v(f) =
u(t) + eu(t), p;i=(u;, vy, € is as in (7).

Let £ be a fixed integer and set w; =46
(lil/kyus, zi = 0|l /kYvi,  y=(w,2) = ((W2), z))ie z-
Taking the inner product (-, -)g of (8) with y, we
have

(@) + (Co,¥)g = (F(©),)g- (25)

It is possible to check that

=550 (T )Ielt o

iez
where
lipillz = (Bu),l* + Nwil* + [vil®
= |urr — wl* + MNu* + vi’,  (27)
and

(C‘pay)E = E(Bu,BW) - (BV, BW) + )‘E(u’ W)
= A(v,w) + (Au, z) + Ay, 2)

+ X (u, z) — e(v,2) + (h(v — eu), 2),

(28)
S (CORT)
(tiv1 — vi)utiz + 0( )
(Uiy1 — ui)z}
> 4C0ro i Zo( )(uz+1 u,-)z,
iez ot
(Bv,Bw) = ; [9(""; 1|)

(vig1 — Vi)Uiy1

_ 0(%)(1),.“ - vi)ui],

(Bu, Bz)

- Z [9( |l—; 1|>(u,-+1 — Ui)Vit1

iezZ
-0 —-lll (u'+1 —u-)v'
k ! e K

EOE) A1)

(uH-l Vi — U Vt+1)

> zw'ﬂ

ieZ

(Bu,Bz) — (Bv, Bw)

i1V — Uivi|

_4¢rs

v

, Vt>T,.

thus,
8Cor? «a
o)z =284 5o ) otont + 5 ),
ieZ
vt > Ty. (29)
and

(F(@),y)g =—(f(u),2) + (8,2)
/i
119> 530( Jotw
-I—eZO(H)G( D, (30)

(8,2)< = Zo( >v +—Zg, (31)

t€Z |1|>k
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Putting inequalities (26), (29)—(31) into (25), we
obtain

&3o0(5) o + 260
+alezze(%)[usoi||§+26<ui>l
1 Isg

8C0r2
|t| >k

Since gef?,
that

then V7 >0, there exists K(n) such

SCOVO
< Vk > K
k + Illgk gl 7” (n)’

by Gronwall’s inequality,

Ze(ll )[||801||E+2G(u,)] < g o(t=To)

ieZ

S-o( ) el + 266z + 2

ieZ

< e TR(1 4 2Mo) + 1, VT,
(o

where My =|f" (ro)|. Taking
1. o 5
T(n) = max | To, To + ;ln‘ﬁ(l + 2Mo)r; ¢

then for ¢ > T(n) and k > K(n), we have

S el oW )relk< 2.

li| > 2k ieZ

which implies Lemma 4. The proof is completed.

LEMMA 5 If g€ f?, then the semigroup {S(t)};> o
is asymptotially compact in E, that is, if {pn}
is bounded in E and t,— +oo, then {S(t,)p,} is
precompact in E.

Proof Let {@,} C E= £} x£* be bounded, as-
sume that ||p,||z<r for some positive constant

r,n=12,...
that

. By Lemma 3, there exists 7, such

S(t)pn C O, Vt>T,, (33)

where O is the absorbing set. By ¢,— +oo,
there exists Ni(r) such that ¢,> T, if n> Ny(r),
thus,

S(ty)en C O, Vn>Ni(r), (34)

Since E is a Hilbert space and by (34), there exists
po€ E and a subsequence of {S(t,)p,} (denoted
still by {S(¢,)¢,}) such that

S(ty)on — wo weakly in E. (35)

In what follows, the convergence here is a strong
one, i.e., Vn > 0, there exists N(n) such that

1S(2n)ion — Vn > N(n).

(p0”E ST],

For n > 0, by Lemma 4 and (33), there exist K;(n),
T(n) such that

Y ISOS@T)en)illz <

%, t>T(n),
lil > K1(n)

By t,— 400, there exists N(r,n) such that
tn > T,+T(n) if n > Nx(r,n), hence,

ST 1St en)illz

il > Ki(n)

= Y 6t —T)STea)llE <

lil > K1(n)

7’2
T (36)

Again, since g € E, there exists K,(n) such that

e (37)

lil = K2(n)

Let K(n) =max{K;(n), K2(n)}, by (35),

((S(En)en) i < k) = ((20)i)i < km)

2K+ p2K(n)+1

strongly in R} , h— 400,
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that is, there exists N3(n) such that

S 1(Sn)en); — (o)l < %2

lil < K(n)

Vn > N3 (7])
(38)

Setting  N(n) =max{Ny(r), No(r,n), N3(n)}, from

(36)—(38), then for n > N(n)

1(t)n — ollz
= S 1(SUn)en); — (o)l

lij < K(n)
+ 3 1(S(t)en); — (wo)illz
il > K(n)
<P S (ISt — o)l
<7 )en)illz — 1 (eo)illz)
il > K(n)
<7

The proof is completed.

As a direct consequence of Lemmas 3, 5 and
Theorem I. 1.1 of [8], we obtain the existence of a
global attractor for semigroup {S(#)}; > o.

TuroreM 1 If g € 2, then the semigroup {S()};> o
associated with (8) possesses a global attractor f3
in E.

Remark Since the solutions of problem (8) are
backward unique in time, the invariance of the
global attractor B means

S(t)8 =8 for teR. (39)

We can consider the mapping So(?) : (uo, u10)" —
(u(t),(t))T € £2 x £2 associated with problem (3)

in the space ¢* x ¢* with the usual inner product

e 1
is an isomorphism on ¢?x ¢* and {S}i>o0
possesses a global attractor B in E, the global
attractor of {So(#)};> o in E is R _ B, which implies
that {So(#)},>0 possesses a global attractor in
2 x £ because > x (> and E have the same
elements and their norms are equivalent.

and norm. Since So(f) = R_S(®)R,, R, = ( 1 0)
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