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Unveil uncertain forces acting into (or onto) systems is a very interesting and old
problem. Indeed, a lot effort has been devoted to develop procedures which results in
the understanding of the uncertain forces and its effects. This contribution deals with
recovering of the dynamics of the uncertain forces from measurements (time series). The
main idea is to construct an internal model of the nonlinear system and design a discrete-
time feedback in such way that the model/system differences be stabilized at origin. In
principle, if the internal model tracks the trajectory of the nonlinear system, then the
uncertain force is recovered by the stabilizing command.
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1. INTRODUCTION

Unveiling the forces acting into (or onto) systems
is not an easy task. In fact, a lot effort has been
devoted to unveil the hidden secrets of nature. The
mathematical model development searches knowl-
edge in this direction. Several theories have been
proposed. There are some alternatives from the
probability theory (for instance, Synergetics [1])
whereas another one departs from the determinis-
tic and operators theory (see, for example, [2] and
[3]). However, mathematical models have some
limitations; hence estimation procedures are
desired.

Recently, estimation procedures have been
taken from control theory. For instance, ob-
servability property [4] of the nonlinear systems
can be exploited to get estimated values of un-
measured states. The observability property
strongly depends on the choice of the measured
state (which is so-called system output if meas-
urements are continuous [4] and time series if
measurements are discrete-time [5, 6]). The main
idea behind observability is the phase-space re-
construction; i.e., the history of all states is
into the time series [7]. The main application of
the observability property has been to recon-
struct, if exists, the attractor of the dynamical
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system [5,6]. However, in [4] was discussed that
observability property can be exploited to perform
chaos synchronization. This is, if the history
of all states is into the time series and the ob-
servability property conditions are satisfied,
then the hidden states can be dynamically re-
constructed. For example, according to Takens
theorem [7], it is possible to reconstruct an em-
bedding of a time series in a phase-space in
absence of noisy measurements [5] by using time-
delay coordinates. In addition, the time delay
coordinates can be employed as estimated
values of a dynamical system to yield chaos
suppression [8]. Nevertheless, such state re-
construction has some constraints, which can
be fundamentally seen as sensitivity tradeoffs
[91.

On the other hand, from the practical point
of view, there is an important problem. Can
the uncertain forces be reconstructed from the
measured state?. In principle, since the history
of the system is in the time series and the dyna-
mical series are yielded by forces acting into
(or onto) the system, hence the unknown forces
can be unveiled from the time series. Indeed, un-
veil uncertain forces is an interesting and old
problem for physicist. Some a priori informa-
tion is often required; for example, the order
of the system, smoothness or boundedness. Be-
sides, some information regarding noise or
disturbances can be useful. Nevertheless, the
more interesting case is to unveil uncertain forces
against the least prior knowledge about the
system.

A force unveiling procedure is presented in
this contribution. The main idea is to construct a
dynamic feedback, which comprises a control
law and a discrete-time estimator. The estimator
and control cannot be separately designed. This
is, the coupling between the control law and the
discrete-time estimator yields the unveiling of
the unknown force. The state estimator is based
on the time-delays coordinates from time series
whereas the control law structure is a stabilizing
command.

2. PROBLEM STATEMENT

Consider
system

the following nonlinear dynamical

Xipm = Xoum (1.a)
Xom = Fu(Xp;0m) + T (8 7) + (x(2))

Y = CXM (lb)
where x,,€ R? is a state vector, Fys (Xaz; par) is @
smooth function (which could be uncertain), T,
(t;rp) is an external perturbation term (which
could be also uncertain) and py,, s are parameter
set and y,,€ R is the system output (time series).
Without lost of generality, one can denote «a(x(?))
as the unknown force.

Note that uncertain forces can be acting into (or
onto) the system. For example, let us assume that
a(x) =0 and Falxag; par) or Ta(t; rar) 1S uncertain,
the force to be unveiled is acting into the system.
In same way, if Fy(xarpar) and Ty (t;ra) were
known functions, hence a(x)#0 represents the
uncertain force, which should be unveiled.

Let us now take an almost-exact copy of
the system (1.a), which is so-called mathematical
model

(L)

X15 = X2

Yo,5 = Fs(xs;ps) + Ts(t;rs) +u
Ys = CXS (ld)
where u€ R is an external force (control law).
Fy(x,;p,) and T(t;p,) are known and bounded
functions; however; pys # ps and ryy # 7.

The unveiling problem is: given the system
output yy and least prior knowledge of the structure
of the nonlinear system (l.a), design an feedback
scheme such that the uncertain forces can be
unveiled. In some sense, the unveiling problem
seems as a synchronization one where the
actual system (1.b) can be seen as the so-called
“master” whereas the mathematical model (1.c)
represents the “slave” system. In others words,
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the synchronization objective is that y, tracks y,,.
which implies that x(¢) — 0= x,(f) — x»,(f). This
implies that  Fy(x,, t; p,) — Fayxa, 6, pa)  and
Ty(t;ry) — T (t; ry) therefore « (x(¢))—u— 0. From
the control theory viewpoint, the synchronization
problem can be interpreted as follows. Let us
define xeR"” such that x;=x;,—x;, for i=
1,2,3,...,n. In this way, the following dyna-
mical system describes the dynamics of the model
error

5C1 = X2
X = AF(x,,p1) + AT(6,p2) +ax) —u - (2)
y=Cx

where  AF(x; p1) = Fa(xXppm) — Fy (X ps) and
AT(t; p)=Talt;rar)—To(t,rs)  are  uncertain
smooth functions, which represent the mismatches
between dynamical system and its model. Now,
since the unveiling problem can be seen as a
synchronization one and, from the control theory
point of view, the synchronization problem can
be understood as the stabilization of the system
(2) at the origin. Hence, the goal is to find a feed-
back control law u=u(x,t) such that lim x — 0
ast— o0.

3. THE PROPOSED UNVEILING
SCHEME

3.1. Dynamic Evolution in an Extended Space

Following the ideas reported in [10], let us define
n=AF(x;p)+AT(t; pa)+a(x). Then the model
error system can be rewritten as follows

5C1 = X2 (38.)
X =n+u (3.b)
n=T(x,n,u,t;m) (3.)

where T'(x,n,u,t;m) = x201 (AF (x;p1) + AT(t;p2)+
a(x)) + [n+u]OL(AF (x; p1) + AT(8 p2) + a(x))+
i, 7 is the parameters set.

It has been proved that, under feedback output
control, the a second-order driven oscillator can
be stabilized at origin (see Appendix in [10]). In
addition, has been proved that the system (3) is
externally dynamically equivalent to the system
(2). This is, there is a time-invariant manifold, W¥(x,
7, t; 7), such that the solution of the system (2) is a
projection of the system (3) as long as the initial
conditions be ¥(x(0), 7(0), 0; ) =0, which is satis-
fied by definition (see Appendix in [10]). In order
to illustrate the geometrical interpretation of the
augmented state, n, we have selected the Duffing
equation. To perform the numerical simulations,
we have defined the augmented state as follows:
N= —6xy+x; —x} + Acos(wt). In this way, one has
that T'(x;, X2, 1, u, )= —8(n+u)+x,—3x3x; —
Awsin(wt). Figure 1 shows the phase portrait of
the systems (2) and (3). The initial conditions were
chosen as follows: for system (2) x(0)=(0.0,1.0)
while for system (3) (x;(0), x2(0),n(0)) = (0.0,
1.0.0.01). The same parameters values were chosen
for both systems.

Since systems (2) and (3) are dynamically
equivalent, hence a feedback can be designed from
the system (3) in such way that trajectories of the
system (2) be leaded to origin. In fact, Eq. (3) is
used as an intermediate system toward the con-
struction of the feedback. The main idea is the
following. If one is able to stabilize the trajectories
of the system (3) neither measurements of the
velocity, x,, nor the augmented state, n, then the
trajectories of the system (2) will be leaded to origin
(prescribed point) against the uncertain terms.

3.2. The Discrete-time Feedback
Via Uncertainties Estimation

Now, let us consider the ideal feedback, which
can be obtained from system (2) as follows:
u= —n-+kyx,+kix;, where, by definition, n=
AF(x;p1)+AT(t; p)+a(x). Under such ideal
feedback the system (2) becomes stable at origin if
polynomial P,(s) = s>+ kos+ky has its roots at left-
hand complex plane. This implies that the system
(3) is also stable at origin. Nevertheless, the ideal
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feedback requires knowledge about the uncertain
terms. Here, the following estimation procedure
is proposed: The main idea is to estimate the un-
measured states of the system (3) from measure-
ments of the time series y = x;. It is clear that, from
Egs. (3.a) and (3.b), the unmeasured states can be
estimated by x, ~ X =(x(¢;)—x;(¢t;_))/At and
n(tx) ~ 0(t) = (i) + 2x1(86 1) — xi(t;-2))/ At —
u(t;_1), where At denotes the sampling rate,
(x2,7m) are estimated values of (x,,7) and x,(¢)
is the value of the measured state at time t=¢;. In
this way the ideal feedback can be modified to get

u(t;) = —ﬁ(li) + k2xl(ll') + kl(xl(l[) — X](tj,]))/At
(4)

where 7)(¢;) is given by the above estimator. Note
that the uncertainties estimator 7)(¢;)= (x(¢,)+
2xi(ti ) —x1(t;—2))/At+u(t; 1) only  requires
knowledge about the measured and the last
control action. This can be seen as a torque
balance. In this sense the estimated value 7(¢;)

15

Blue line is the space-phase of the Duffing sequation whereas black line represents the trajectories of the Duffing

reconstructs the unknown force acting into (or
onto) the system. The feedback (4) and the uncer-
tainties estimator cannot be designed separately.
In this way, the unveiling procedure depends on
two factors: (a) The feedback parameters should
be chosen such that the real part of the roots of
the polynomial P,(s) be negative defined and (b)
the sample rate At be arbitrarily small. Indeed,
as Atr— 0 as the u(¢;) tends to the ideal feedback,
u. Of course, if At=0 the feedback (4) cannot
be physically realizable. This is, there is a tradeoff
between the estimation and the stabilization capa-
bility, which can be resumed as: The rate of the
uncertainties estimation is limited by stabilization
rate and viceversa. The unveiling tradeoff is illus-
trated in next section.

4. ILLUSTRATIVE EXAMPLES

We have selected two interesting systems: The
former is the magneto-elastic beam. In this system,
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we illustrate that forces acting onto the system can
be reconstructed via the proposed scheme. The
latter is a magnetic bearing. In this case,
the uncertainties source is into the systems. The
unknown function is the force between the magnet
and a class of high-temperature superconductor.

4.1. Unveiling External Perturbing Force

Let us consider the magneto-elastic beam system.
This system was experimentally studied by Moon
and Holmes (see Chapter 2 in [2]) and can be
modelled by the a driven second-order oscillator
(Duffing equation): X + 6x — x + x* = 7,(¢) + u,
where ¢ is a damping coefficient, # denotes the
stabilizing command and 7.(¢) is a periodic func-
tion, which represents the perturbing external
force, e.g., T.(t) = Acos(wt). Note that in this case
the uncertain force a(x(¢)) = 0 for all 7, see Eq. (1.b).

Let us assume that only the perturbing force,
T,(f), is unknown and unmeasured. In this way, the
augmented state is defined by n=7.(¢) and the
extended uncertain system becomes

XIZXZ
xzzn—é‘xz—l-xl—x';’—l—u
T'I:%e(t)

where n and its time-derivative are unknown.
Thus, the internal model feedback is given by

AN x1(t) + 2x1(tiz1) — x1(tiz2)
) = (Ar)?

+6<%§M>

+ x1(t) — x; () — u(tiz1)

u(ts) = (ky + 5)(%)

—(t:) = x1(8:) + %7 () + kaxa (1)

Figure 2 shows the performance of the time
discrete feedback for several sampling rate, At.
The sampling rate were chosen as follows:
At=0.0005 (dashed line), Ar=0.01 (solid line),

At=0.1 (dotted line) and Az=0.5 dash-dotted
line. The unveiling feedback scheme was activated
at t=>50.

If the uncertain force is unveiled (which means
that 7 is close to the unknown force), the control
action compensates the perturbation onto the
system. On contrary, as the At increases the esti-
mated value of the uncertain term the control
action increases and stabilization is lost. For
instance, if Az=0.5 (see dash-dot line in Fig. 2)
then the estimation error is around 1.0, the
position, x;, cannot be stabilized at origin and
the stabilizing command is larger, u. This is, the
uncertain force can be unveiled if the position
error is stabilized at origin and viceversa.

4.2. Unveiling the Magnetic Force
in a Levitation System

Consider the dynamical system given by
X+ox+x+alxxt)=n()+u (5)

where x means the position, § is a damping factor,
71(f) = Acos(2f) represents a periodic perturbing
force, a(x, X, f) is a nonlinear function acting into
the system, which represents the force between a
magnet supported by the high temperature Type-11
superconductor [11].

Let us assume that the internal force, a(x, x, 1),
is uncertain. Besides, consider that external per-
turbing force, 7((¢), and damping parameter are
exactly known. In addition, suppose that only
position, x;, is available from measurements.
Then, following the above procedure, feedback
with uncertainties estimator is obtained

() = W
(i) = xi(t) + 2x (Atit_zl) — xi1(ti-2) o
+ 65€2(ti) + X1 (ti) — T (ti) _ u(ti—l)
u(t;) = —0(t;) + (6 — k2)x2(;)

+ (ki = Dx1(#:) — 1 (4)
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FIGURE 2 Performance of the discrete-time unveiling scheme. The force acting onto the Duffing equation is unveiled.

where the feedback constants are k; = 1.0, k, =2.0,
which implies that the roots of the polynomial
P(s) are located at —1.0.

In principle, the feedback (6) can be experimen-
tally implemented in a magnetic bearing device.
However, in seek of clarity, we have performed
numerical simulations of the magnetic levitation
process. Although a(x, X, ¢) is not exactly known,
it has been reported [11] that the characteristics
of the system can depend on the hypo-elasticity
function whose dynamics is given by d(x,x)=
wlox, x, 1) — P(x, X)), where pu, is a parameter
and the nonlinear function 1is given by

P(x, X) = p1(x)[14 po(X)]. Besides, the nonlinear
functions can be approximated by the force-dis-
placement relation, ¢;(x) = puexp(— x), and

—H3 ——,5(, CSX
da(X) = § (=%(ps + p4a)/2¢), —C<x<(
Ha, X< — C-

where ¢ =0.005, uy=0.1, u;=0.3, uz3=ps=1.0.
Figure 3 shows the performance of the uncertain

force for several sampling rates, Atz. In this case, if

sampling rate Az=0.5 the closed-loop system is
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FIGURE 3 Performance of the discrete-time unveiling scheme. The force acting into the magnetic-bearing equation is unveiled.

unstable; hence the sampling rate were chosen as
follows: At=0.0005 (dashed line), Ar=0.01 (solid
line) and Az=0.1 (dotted line). The unveiling
feedback was activated for ¢ > 100. Note that as
the sampling rate decreases the stabilizing com-
mand increases, in consequence the unveiling error
increases. This is, if At— 0 the stabilizing com-
mand approach is not physically realizable. Hence,
the hidden forces cannot be unveiled.

5. CONCLUDING REMARKS

A procedure to construct an unveiling scheme was
proposed in this letter. The unveiling is a discrete-
time feedback scheme and comprises an estimation
procedure and a stabilizing command. The proce-
dure departs defining an augmented state to get
the construction of an extended system, which is
an uncertain nonlinear system. After that, the
augmented state is estimated via backward finite

differences. In this way, the resulting scheme only
requires measurements of one available state at
time ¢, t;_; and ¢;_, and the knowledge about last
stabilizing command, u; ;. Two illustrative exam-
ples were presented. In first one an uncertain force
acting onto the system is unveiled whereas in the
second one an unknown force acting info the
system is unveiled.

In principle, the unveiling scheme allows to get
an estimated value of any uncertain force from
on-line measurements. Hence, experimental im-
plementation can be expected. Previously, the dis-
crete-time unveiling scheme should be designed.
Then, the following configuration for experimental
unveiling can be proposed: The measurements
from the experimental apparatus are entered to
any computing machine, where the model and the
discrete-time unveiling are programmed. The goal
is to synchronize the experimental system and the
programmed model via the discrete-time scheme.
If synchronous behavior is attained, the estimated
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value of the uncertain force is close to the actual
value. Experimental results will be reported in
short time.
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