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A chaotic environment can give rise to “flares” if an autocatalytic variable responds in a
multiplicative, threshold-type fashion to the environmental forcing. An “economic unit”
similarly depends in its growth behavior on the unpredictable (chaotic?) buying habits of its
customers, say. It turns out that coupled flare attractors are surprisingly robust in the sense
that the resulting “economy” is largely independent of the extent of diffusive coupling used.

Some simulations are presented.
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1 INTRODUCTION

Chaos by definition is non-robust. The butterfly-
effect [1,2], as featured in Steven Spielberg’s
blockbuster movie “Jurassic Park”, is the best-
known example perhaps. Flare attractors reflect
this unpredictability and amplify it. This is because
only certain symbolic dynamic sequences — many
consecutive “ones” rather than an even mixture
of zeros and ones, say (that is, many consecutive
suprathreshold rather than subthreshold chaotic
inputs) — support an extended period of autocata-
lytic growth (a flare). One would therefore expect
these attractors to be very sensitive to environ-
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mental influences. Unexpectedly, this is not the
case.

As we shall see in the following, many coupled
flare attractors do not strongly influence each
other. Therefore, they can be used to generate an
abstract “model economy” in the computer.

2 AN EQUATION

Figure 1 illustrates the principle. A corresponding
discrete equation is, for example,

Xnyl = 4xn(] - xn)

1
bui1 = by + by(x, — threshold) — eb?. M)
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FIGURE 1 Basic mode of action of a flare attractor. A
chaotic subsystem “forces” a non-linearly responding auto-
catalytic unit (schematic drawing).

Here, the first variable (x) is the well-known
logistic map [3]. The second variable (b) grows
autocatalytically whenever x,, the momentary
value of the chaotic forcing, exceeds the threshold
value assumed. The small parameter ¢ > 0 prevents
the second variable from reaching unrealistic
unbounded flare amplitudes. Figure 2 shows a
simulation.

Figure 2(a) is self-explanatory: The name “flares”
is directly applicable to the elements of such a time
series. The x, b plot (Fig. 2(b)) is also characteristic:
If one waits long enough, a screen-filling black
“curtain” is eventually obtained. In the transient
picture shown here, the exponentially decreasing
density, towards the top of the attractor, makes
itself manifest to the eye.

For curiosity’s sake, we also present, in Fig. 3,
a more sophisticated flare attractor. It is generated
by an invertible three-variable map:

(2-10"1) —2x, ifx, <}
Xntl =

2x, if x, > %
(1= (G-005), ifx <) @)
PTG 0.05)y,  ifx >4

bus1 = by + b,(0.37 — x,) + 1072 — 10722,

The first two variables here jointly form the “tent”
baker’s map [4], although so with some contraction
due to the small constant (0.05) subtracted from the
factor % in the same line. (This contraction assures

genericity for the forcing attractor.) The first two
pictures clearly closely resemble those of Fig. 2.
The third picture, however, the y, b plot of Fig.
3(c), shows a cross section through the attractor
which is generated by this invertible map. One sees
a self-similar fractal with gaps — the “lion’s paw” as
it has been called [5]. Note that in this flare
attractor, the sign of the product containing the
threshold has been inverted compared to Eq. (1). If
instead the convention of Eq. (1) had been used, the
lion’s paw would be replaced by the “firy flames
fractal” [5]. These invertible flare attractors are
examples of singular-continuous-nowhere-differen-
tiable (SCND) attractors, cf. [6—8].

Obviously, the flaring behavior of the third
variable is largely independent of the intrinsic
complexity of the forcing chaotic subsystem.

3 COUPLED FLARE ATTRACTORS

Figure 4 shows the sum dynamics of several flare
attractors — first of three, then of six, finally of 18 of
them. The difference equations used to generate
these pictures were:

=399 (1 — x(M)

n
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FIGURE 2 A simple flare attractor based on the logistic difference equation: Numerical simulation of Eq. (1). (a) Time plot of
the flaring variable, 5. Hereby successive points were connected by a straight line segment. (b) Side view (x, b plot). Parameter
values: threshold=0.7; ¢=0.01. Initial conditions: x; =0, by =1. Iteration number: 2000 for (a); and 1000000 for (b). This and
all following calculations were done at 16-digit precision.

M =3.99x8(1 - x®) b =5 +b9(0.573 — x) — 107320 + 107
b = b® 4+ 58(0.572 = x®) = 107328 41073 ¥ = 3.99x10)(1 — x(10))
X =3.99x0(1 — x) B0 = (10 1 p(19(0.574 — x{10)—1073200 1035
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FIGURE 3 Flare attractor generated by an invertible map,
Eq. (2). (a) Time behavior as in Fig. 2(a), but larger. (b) Side
view (x, b plot) as in Fig. 2(b). (¢) Cross-view, y, b plot. A
cross section between x=0 and x=1 is shown (note that no
narrower slice is necessary with this particular map). 1000000
iteratlons are shown (in (b) and (c)). Initial conditions:
Xp = \/5 y0=0.1, by =0.1. tenq = 5000 (in (a)).
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Each “cell” (pair of variables with index @,
i=1,...,18) involves a similar, formally identical,
chaotic forcing variable. However, the initial
conditions of the x-variables were different for each
subsystem so that indeed the chaotic forcings are
very different. Note also that each flare attractor
(x?, ) differs from its neighbors in that the value
of the threshold used in the second variable (b) is
different in every case.

Figure 4(d), finally, shows the behavior of a
single flare-attractor variable (b'®), plotted against
the sum variable, s, of all coupled flaring variables.

In the final picture, Fig. 5, we add some
simulations in which the sum variable (s) was made
an integrator rather than being instantaneous as it
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FIGURE 4 Several coupled flare attractors, superposed. Numerical simulation of Eq. (3). (a) Time plot of b, A very similar
picture was by the way obtained if the last term in the second line of Eq. (3) was replaced by a constant, 0.6. (b) Time plot of

b through 5@, superposed. (c) Time plot of 5" through 51®, superposed. (dg bW, s plot, 1000000 iterations shown. Initial
conditions for the first variables x?: 0.010, 0.011, etc.; for the second variables b%: 0.2.

was in Eq. (3). It now reads:
Supt = 8u 4+ DV + 5P + .- — as,. (4)

The case with a=1 (instantaneous summing) has
already been presented in Fig. 4(c). Figure 5 in
addition shows three further cases with an increas-
ingly strong smoothing effect (¢ =0.99; a =0.2; and
a=10.05, respectively). Figure 5(b) to us looks a bit
like a “frozen sea”.

We present these last pictures in the hope that
specialists dealing with realistic time series — like
those taken from a real economic system like the
stock market — may find some similarities between
their own data and the sum signals of Fig. 5 as
generated by a “society” of flare attractors as it were.

4 DISCUSSION

The flare phenomenon is well known from many
natural situations like flaring outbursts from stars

or irregularly erupting burning logs. The idea to
consider “flaring” as a generic type of dynamical
behavior was originally triggered by numerical
experiments performed on Milnor-type attractors,
cf. [9]. Milnor attractors [10] are in general
(although not always) unbounded. An attractor at
infinity and an attractor at zero (say) coexist in such
a way that points in the intermediary region
undecidably belong either to the one attractor’s
basin or to that of the other. This is called the
“riddled basins” phenomenon, cf. [10,11].

Flare attractors can be considered as “tamed”
Milnor attractors. In Eq. (1), for example, a Milnor
attractor is obtained if € is put equal to zero. As
soon as the flaring amplitude of a (non-generic)
Milnor attractor is made bounded — for example,
by introducing a growth limitation through assum-
ing € greater than zero however small — , we have a
(generic) flare attractor.

Flare attractors, in turn, belong into the class of
Kaplan—Yorke attractors [12]. That is, they possess
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FIGURE 5

“Finite decay plot”. Numerical simulation of Eq. (3), with the last line of Eq. (3) replaced by Eq. (4). (a) Almost no

smoothing (a=10.99); this picture is almost indistinguishable from Fig. 4(d). (b) Medium smoothing (¢=0.2). (c) Strong smooth-

ing (a=0.05). Compare text.

a small negative Lyapunov-characteristic exponent
which is smaller in its numerical magnitude (closer
to zero) than the positive LCE of the forcing chaos.
This causes the Lyapunov dimension of Kaplan—
Yorke attractors to jump up by unity to resemble
that of a hyperchaotic attractor (characterized by
more than one positive LCE) [12]. Kaplan—Yorke
attractors in general possess a nowhere-differenti-
able cross section on a Cantor set (that is, they
belong into the class of SCND attractors) [7,8]. The
same features are inherited by the flaring-type

Kaplan—Yorke attractors considered here. An
example of a pertinent (nowhere-differentiable on
a Cantor set) cross section has been presented in
Fig. 2(c) above. An analytical study of the closely
related map appears possible.

The main question, in the present context, reads:
Is there a connection to economics? The authors are
painfully aware of the fact that they are not
qualified to make an educated guess here. They
were just struck by a recent reaction—diffusion
model of an “evolutionary economy” proposed
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by Silverberg [13]. It both fit their intuitions
and seemed to admit of a potential “enrichment”
in terms of individually responding (not aver-
aged over) economic units. This is where the
flare attractor came to mind again as a potential
stand-in.

Real enterprises are, of course, much more
complex than the here considered “units” (the flare
attractors). Nevertheless there seemingly exists
an intuitive connection: Friedrich Jahn’s meteor-
likewise rise and fall. Everybody knows about
Wienerwald®, the precursor to McDonald’s®
success story. Friedrich Jahn adhered to the
domestic policy of putting every Dollar earned into
the next branch office of his chain, that is, the next
Wienerwald “Stube”. This fact in principle enables
the occurence of autocatalytic growth. A typical
flare phenomenon followed — including the down-
fall of the empire. We recommend his autobio-
graphy, “Ein Leben fiir den Wienerwald — vom
Kellner zum Millionér . . . und zuriick™' [14].

Jahn’s sense of enterpreneurial management
somehow resonates (“gibes”) with our own intui-
tion that a realistic economic subsystem is in
general not completely immune to being governed
by unpredictable symbolic-dynamics sequences
[15]. To put this idea to a test, we came up with
the above skeleton model of an economy. Other
stochastic time inputs beside chaotic ones —
including hyperchaotic ones — can likewise be used
numerically. In other words, the “flaring behavior”
appears to be very robust indeed. For exam-
ple, chemical reaction systems of the continuous
type — so-called continuous-stirred-tank-reactors
(CSTR’s) — readily produce flaring behavior if
autocatalytic subsystems with a threshold, analo-
gous to the b variable in Eq. (1) above, are
introduced in the presence of a chaos-generating
subsystem [9,16,17]. Flare attractors therefore
appear to be robust constituents of many non-
linear dynamical systems with complex behavior —
including perhaps the economy, but including
perhaps also a living cell.

To conclude, an important prototype of dy-
namical behavior may be hidden in everyday
economic phenomena. We would like to invite
criticism to our idea that it may be legitimate to
believe that a four-variable continuous dynamics —
a three-variable chaotic attractor coupled to a
threshold-type autocatalytic fourth variable, mod-
elled in the simplest case by the discrete two-
variable system like that of Eq. (1) — deserves to
be elevated to the status of a new generic phenom-
enon. Is this phenomenon comparable in impor-
tance to chaos itself? At any rate, a new “module” in
a non-linear construction set appears to have been
identified on a level slightly higher than the lowest-
level single-variable modules that are so widely used
today in simulation programs like Simulink®, for
example. Only the future can tell whether inter-
mediate-level approaches like the one proposed
above are of some practical usefulness.
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