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The baker map is investigated by two different theories of irreversibility by Prigogine
and his colleagues, namely, the A-transformation and complex spectral theories, and
their structures are compared. In both theories, the evolution operator UT of observables
(the Koopman operator) is found to acquire dissipativity by restricting observables to
an appropriate subspace @ of the Hilbert space L? of square integrable functions. Conse-
quently, its spectral set contains an annulus in the unit disc. However, the two theories are
not equivalent. In the A-transformation theory, a bijective map A*~! : ® — L? is looked
for and the evolution operator U of densities (the Frobenius-Perron operator) is trans-
formed to a dissipative operator W = AUA™!. In the complex spectral theory, the class
of densities is restricted further so that most values in the interior of the annulus are re-
moved from the spectrum, and the relaxation of expectation values is described in terms
of a few point spectra in the annulus (Pollicott-Ruelle resonances) and faster decaying
terms.

1. Introduction

Consistent description of macroscopic irreversibility in terms of reversible microscopic
dynamics is one of the long standing problems in statistical mechanics. Prigogine and
his colleagues have studied this problem since 1960s [1, 2, 3, 4, 7, 8, 14, 15, 16, 17, 18,
24, 25, 26, 27, 28, 31, 32, 33, 34, 35] and proposed two answers: the A-transformation
theory [1, 7, 8, 15, 24, 25, 26] and the complex spectral theory [2, 3, 4, 14, 16, 17, 18,
27, 28, 33] (the complex spectral decomposition of references [27, 28, 33] is equivalent
to the one-dimensional subdynamics decomposition of reference [14]). In the former,
the reversible evolution operator is related to a dissipative evolution in a bijective way
(via the A-transformation) and, in the latter, the reversible evolution restricted to certain
classes of initial densities and observables is represented as a superposition of decaying
eigenmodes. Both theories came out from their earlier work, the “subdynamics theory”
[14, 34, 35], which was developed as a generalization of the van Hove’s A*t-approximation
[45, 46] to all orders with respect to the coupling strength A.
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However, the relation between the two approaches is not transparent. In particular,
one may have an impression that the irreversible evolution is derived in the two ap-
proaches through quite different mechanisms. Indeed, the structural property (the K-
property [6]) of the Kolmogorov systems is used in the A-transformation theory, while
it is not in the complex spectral theory. Fortunately, there is an example, the baker map,
to which both approaches were applied [3, 18, 26]. Since the baker map is a typical Kol-
mogorov system, the application of the A-transformation theory is straightforward. On
the other hand, the complex spectral theory leads to a generalized spectral decomposition
in the sense of Gelfand [12, 13], Maurin [23], and Lindblad and Nagel [22], where the de-
cay rates are given by the Pollicott-Ruelle resonances [29, 30, 37, 38, 39, 40, 41]. Note that
the results of [3, 18] can be obtained by different methods [10, 11] (see the appendix).

In this paper, the two approaches are compared for the baker map. In Section 2, we
review the A-transformation theory as applied to the baker map and study the spectral
property of the transformed evolution operator. Then, the properties of the transformed
operator are characterized as those of the original operator restricted to a subspace ®
of the Hilbert space L?, and a new interpretation of the A-transformation is given. In
Section 3, we explicitly derive the first two generalized decaying eigenmodes and decom-
pose the expectation values of a certain class of observables with respect to a certain class
of initial densities into a sum of the decaying eigenmodes and a residual faster decaying
term. This decomposition (hereafter, it will be referred to as the Pollicott-Ruelle decom-
position) is a special case of the results on axiom-A systems by Pollicott [29, 30] and Ru-
elle [37, 38, 39, 40, 41], and is a precursor of the complex spectral decomposition. Then,
the spectral properties of the restricted evolution operator Ut of observables (the Koop-
man operator) are investigated and the mechanism of the emergence of Pollicott-Ruelle
decomposition is discussed. The last section is devoted to the discussions.

As a common feature of the two approaches, we find that the Koopman operator
U' acquires dissipativity by restricting observables to an appropriate subspace ® of L?,
and that the spectral set of the restricted operator contains an annulus in the unit disc.
However, the two approaches are not equivalent. In the A-transformation theory, one
looks for a bijective map AT~!: ® — L? so that the evolution operator U of densities (the
Frobenius-Perron operator) is transformed to a dissipative operator W = AUA™!. In the
complex spectral theory, one further restricts the class of densities so that most values in
the interior of the annulus are removed from the spectrum, and the relaxation of expec-
tation values is described by the Pollicott-Ruelle decomposition.

Now, we begin with the description of the model. The baker map is one of the first
examples of reversible mixing transformations and was introduced by Hopf [21]. It is
defined on the unit square [0,1)? as a two-step operation: (1) squeeze the unit square to
a 2 X 1/2-rectangle and (2) cut the rectangle into two 1 X 1/2-squares and pile them up
to recover the unit square:

(1.1)
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It admits the Lebesgue measure as an ergodic invariant measure and has Kolmogorov-
Sinai entropy log2 [6]. Also, it is a typical Kolmogorov system [6]. The time evolution of
the probability densities p(x, y) is governed by the Frobenius-Perron operator

Up(x,y) = p(B™ (x,y)) = (1.2)

The operator U is unitary on the Hilbert space L? of square integrable functions, equipped
with the standard inner product (f,g) = j[o)l]z dxdyf*(x,y)g(x,y) and thenorm || f ||, =

\(f> f) [6]. Therefore, the spectrum of U on L? is a unit circle {z: |z| = 1}.

2. A-transformation approach

2.1. Summary of the previous work. Here we review the work by Misra et al. [26] in
the case of the baker map. The map B! is called “intrinsically random” if there exists a
bounded operator A on L? and a contraction semigroup W; for ¢ > 0 such that

(a) A preserves positivity;

(b) Jio,1p dxdyAp(x,y) = [jg,1 dxdyp(x, y);

(¢) Al =1, where 1 stands for the unit function;

(d) A has a densely defined inverse A™!;

(e) AU'p = W:Ap (for t > 0), where W, is the hermitian conjugate of Wy,

where (i) W; preserves positivity, (ii) W;1 = 1, (iii) Wil =1, and (iv) |W/ (p— Dl
decreases strictly monotonically to 0 as t — +oo.

For the baker map, the A-transformation is constructed as follows [26]. Let yo be a
function such that yo(x,y) = =1 if 0 < x < 1/2 and yo(x,y) = 1 if 1/2 < x < 1. And, for
each finite set S = (ny,...,1,) of integers, we set

Xs(x6 ) = UM xo(x, ) U™ xo (%, y) - - - U xo(x, p), (2.1)

then the family of functions {ys} together with the unit function 1 form a complete or-
thonormal set of L2. Note that Uys = xsi1 where S+ 1=(n; + 1,...,n, + 1) if S=(n3,...,n,).
Now, for each integer n (= 0,+1,+2,...), define an operator E, to be a projection operator
onto the subspace spanned by xs such that max{n; € S} = n, then the A-transformation
is defined by

+o00
A= > ME,+Po, (2.2)

n=—oo
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where Py is the one-dimensional projection onto the unit function and {A,} - ccnctoo 1S
a positive monotonically decreasing sequence bounded by 1 such that A,+1/4, also de-
creases monotonically as 7 increases. This leads to the following semigroup W,':

wi = (wh), (2.3)
+0o0 A
wh=AUAT = > X—“UEn+P0. (2.4)

Before closing, we give a spectral characterization of the semigroup Wt.

PrOPOSITION 2.1. The spectral set (W) of W satisfies
{z:c< |zl <1} co(WT) ciz:lz] <1}, (2.5)

where ¢ = lim, .+ Ayt1/A,. Moreover, the eigenfunction of W1 corresponding to an eigen-
valuez € {z:c<|z| <1} is

+00

Am n
p:00y) = > T xs(x), (2.6)

n=—o00

where S is a finite set of integers and m = max{n; € S}. Since c(W) = a(W'), the spectral
set (W) of W satisfies the same relation as (2.5).

Proof. From (2.4), E,Ey = 8,mEn, ExPo = 0, and P} = Py, one has

t_ - An+1 :
wwt= > ) EntPo (2.7)

n=-—0o

and, as A1/, < 1,

IWipll3 = (o, WWTp)

= A 1 : 2 2
= 3 (%) el + ol

n=—oo

T (2.8)
2 2
2. |[Eapll; +1Popll;

n=—co

+00
> {p,Eup) + (p,Pop) = llpll3,

n=-—00

IA

or | W] < 1. Thus, because of the spectral radius formula [36], the spectral radius is less
than or equal to unity and this implies the second inclusion of (2.5). The first inclusion
is a consequence of (2.6).
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Now we show the convergence of (2.6) when |z| < 1, |[ys+ll> = 1,and A,,,—, < 1lead to

+00

A
loflh = 3 = S plrrs 3G
n=—o0 |Z| |Z|
(2.9)
Z |Z|n+z Amn _ |z ++§ Amtn
2l 1=zl " & e

where the second power series converges if 1/|z| < 1/c or ¢ < |z| with 1/c the convergence
radius. The well-known formula gives

. /\m+n+1 . /\n+l
c= lim —— = lim , 2.10
n—-+oo /lern n—-+oo An ( )
which converges as the positive sequence A,,+1/1,, is monotonically decreasing. O

2.2. Properties in the original representation. We reinvestigate the above results in
terms of the original variables. For the new representation to give the same prediction
as the original one, the average of an observable should take the same value in the origi-
nal and new representations, namely,

(An,Ap) = (A,p), (2.11)

where A and p are an observable and a density in the original representation and A, is an
observable in the new representation. Thus, A, should be AT~!A and observables should
be in the domain @ (AT~!) of At~1; or the following observation holds.

Observation 2.2. The A-transformation theory implicitly assumes the restriction of a class
of observables in the original representation to D (At~1).

Then, it is natural to study the evolution U'* of observables in the restricted space
DAY = ATL2 C L2

PROPOSITION 2.3. Define a norm || - ||n in ATL? by ||Alla = |ATYA|l (for all A € ATL?),
then

(i) with respect to || - || o, the space AYL? is a Banach space. It is dense in the Hilbert space

L? and its norm topology is stronger than the Hilbert space topology. Then there exist
a triple ATL? C L* C (ATL?)T, where (ATL?)! is the space of continuous conjugate
linear functionals over (i.e., the dual space of) ATL%;

(ii) the space ATL? isinvariant under Ut and ||UTA||5 < ||Alla. Then, U can be extended
to the dual space (ATL?)1;

(iii) for z € {z: c < |z| < 1} with ¢ = limy 1 Adyr1/Ay, let yS be a conjugate linear func-
tional defined by

Vs (A) = (AT71A,¢5), AeATl? (2.12)
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where ¢S is an eigenfunction of W1 given in Proposition 2.1, then, v € (ATL*)T and,
for any A € ATL?, the relation

y5(UTA) = zy3(A), (2.13)

holds or y3 is an eigenfunction of the extension of U to (AYL*)t with eigenvalue z;
(iv) the spectral set (Ut |p112) of UT restricted to the space ATL? satisfies

{z:c<lzl <1} co(Utlai) C{z: 1zl <1}, (2.14)

where ¢ = lim,_ ;0 Auy1/An.

Proof. (i) To show that ATL? is a Banach space, it is enough to check its completeness. Let
{A,} 121 be a Cauchy sequence in ATL? with respect to the norm || - ||, or

[[Ay = Anll, = [|ATTA, = ATTTAL|L, — 0 (n,m — +o0). (2.15)
Then, {AT7'A,} =1 is a Cauchy sequence in L? and there exists B € L? such that
Oznlirllw||AT’1An—B||2 =nlier||An—ATB||A, (2.16)

or {A,},>1 has the limit ATB € ATL? and, thus, ATL? is complete.

Since AT = A, ATL? = AL? is the domain of A~! and, thus, is dense in L? by the
property (d) of A. In addition, the boundedness of At leads to |All, = [[ATAT!A]|, <
IATIIIAT= Al = IATI2IIAllA, or the topology of ATL? is stronger than the Hilbert
space topology.

(ii) Let A € ATL2, then there exists B € L? such that A = ATB. On the other hand,
the property (e) of A implies AtW = UTAT and, thus, UTA = UTATB = ATWB € ATL%
Moreover, as || W, = |WT|, <1,

|lUtA||, = [|ATTUTA||, = IWBI, < IWILIBI = WAl < Al (2.17)

(iii) When A € ATL?, AT"'A = B € I, and y$(A) is well defined and bounded, |yS(A)|
< [1gSl211All 5, or y5 € (ATL?)t. Moreover, because of UT AT = ATW and Proposition 2.1,
one has the desired result:

v (UTA) = (ATTUTATB, ) = (WB,¢7) = (B,W'93) = 2(B,¢3) = zy2(A). (2.18)

(iv) The second inclusion is a consequence of (ii) and the first inclusion follows from
(iii) and the next lemma.
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LemMA 2.4. Let U: X — X be a bounded operator on a Banach space X and suppose, for
A € C, there exists an element y* (# 0) of the dual space X1 (or y* is a conjugate linear
functional over X) such that y*(Ux) = A* y*(x) holds for every x € X. Then A is in the
spectrum of U: A € a(U).

This follows immediately. Suppose A is in the resolvent set of U, then, for every x €
X, there exists x" = (A1 — U)~'x € X with 1 the identity operator. But, by assumption,
y*(x)=y*(A1-U)A1-U) 'x) =A* y*(x") — y*(Ux") = 0. This contradicts y* #0, or A
is in the spectrum. O

2.3. A-transformation revisited. We have observed that the A-transformed operator W
and the restricted operator Ut |,t7: have similar spectral sets, and that AT~! maps their
domains with each other: AT=!: ATL?> — L2, This is not a mere coincidence. Indeed, one
has the following proposition.

ProPOSITION 2.5. (i) The map At=1: AYL? — L? is isometric and onto.

(ii) For every w € (ATL?)t, there exists a unique g € L? such that y(A) = (AT714,g)
(for all A € ATL?). Since AT(ATL?) C ATL?, A can be extended continuously to (ATL?)t
and Ay = g.

(iii) As a dual space of the Banach space, (AYL?)! is again a Banach space with its norm
lyllarrey = Ayl

(iv) The map A : (AYL*)t — L? is isometric and onto.

(v) Let y$ € (AYL*)T be an eigenfunction of U defined by (2.13) and let ¢S € L? be an
eigenfunction of W defined by (2.12), then Ay = ¢3.

This observation may provide a new interpretation of the A-transformation. By re-
stricting the evolution operator U' to a subspace ® = ATL? C L? with a stronger topol-
ogy, it becomes dissipative. Note that its adjoint U is simultaneously extended to the
dual space ®T O L?. Now the A-transformation is introduced so that A : @t — L2 and
AT~1:® — L2 are isometric and onto. And, as a consequence, the evolution U is trans-
formed into the semigroup W. In short, A manifests the dissipative nature of Ut |12 as
a Hilbert space property.

Proof of Proposition 2.5. (i) This immediately follows from the definition of || - || 5.

(i) Por each y € (ATL?)T, w(ATB) (B € L?) defines a conjugate linear functional on L?
and the Riesz theorem [36] implies the existence of a unique g € L? such that y(AB) =
(B,g), or y(A) = (AT"1A,g). Moreover, it implies Ay (A) = y(ATA) = (A,g) or Ay = ¢
as well.

(iii) This follows from |y (A)| = [(AT1A,g)| < |AllAllgll2 and |y (ATg)| = ligll3 with
g=Ay.

(iv) This is a consequence of (ii) and (iii).

(v) This immediately follows from the definition. (I

3. Complex spectral theory

The complex spectral theory gives the generalized spectral decomposition consisting of
point spectra in the following sense [3, 10, 11, 18]:
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(A,p) = Fo(A)E; (p)+ > D F,, (A)ES,(p)

v=1r=0

v—1
(ArUP> FO(A +Z{ FVV(A) )+ZFV,T+1(A)F;:1‘(P)}3

(3.1)

where Fy, Fy, F,,, and F,, are conjugate linear functionals and A and p are appropriate
functions. This decomposition, however, requires narrower classes of observables A and
initial densities p, and is not appropriate for studying the general structure. Thus, we
adopt wider classes of A and p so that one has

(A, U'p) = Fo(A)FG (p) + 2 ZF” (A)ES,(p)
=0 (3.2)

2
+ 3 PR +0( 5 ):

This formula can be regarded as a special case of the Pollicott-Ruelle theorem [29, 30, 37,
38, 39, 40, 41] and is referred to as the Pollicott-Ruelle decomposition.

In this section, we construct the Pollicott-Ruelle decomposition for the baker map. We
begin with the description of subspaces of L? corresponding to the classes of observables
and initial densities.

3.1. Functional spaces. Let C2 C L? be a space of functions f(x, y) such that

(C1) for almost every y, f(x,y) is twice continuously differentiable in x,
(C2) supy ;| f(x,)1> and sup,_,; 10/ f (x,y)/0x/|* (j = 1,2) are integrable in y.

The space is equipped with the norm

o (3.3)

0=<x<1 0<x<1

1
IlfchEJ dy sup | f(x.y)] +ZJ |y sup

The other subspace C; of twice y-differentiable functions is defined by interchanging x
and y in the definition of C2, and is equipped with the norm

I fllcy = dx sup | f(x,y | + z dx sup | — = (3.4)
0<y<l O<y<l a)’]
For these spaces, we have the following proposition.
ProposiTION 3.1. (i) The space C? is a Banach space with respect to the norm || - || cx.

(ii) The subspace C? is dense in the Hilbert space L> and its norm topology is stronger
than the Hilbert space topology. Thus an inclusion C2 C L?> C C2t holds, where C2 is the
dual space of C2.
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(iii) The space C2 is invariant with respect to the evolution operator U: UC? C C? and is
bounded: ||U fllcx < |l f llcx> but it is not invariant under the adjoint operator Ut.

The space C}z, satisfies the above statements (i) and (ii), and

(iii") Ut C}Z, C C)z, and U fllcy < | fllcy, but Ci is not invariant under U.

Proof. (i) It is enough to show that C2 is complete. The proof is almost parallel to the
standard proof of the completeness of L? [20]. Let { f;},>1 C C? be a Cauchy sequence.
Then, one can find a subsequence { f,,;} j=1 of { fu}x=1 which satisfies, for almost every y,

sup |05 fu, (%, ) = 05 fu (6, y) | — 0 (j,k — oo for s =0,1,2), (3.5)

0<|x|<1

where 0, is the x-derivative. Hence, for each fixed y, the sequence of functions
{fn; (%, )} j=1 of x converges uniformly to a limit g(x, y), which is twice continuously
differentiable with respect to x. Moreover, one has, for almost every y,

lim sup [0} fy,(x,y) - dg(x,y)| =0 (fors=0,1,2). (3.6)

j—too 0=<x<1

Combining this equality,

1
Sy sup 135, o) | < [ lle,” <+, (3.7)

0<x<

and Fatou’s lemma [20], one finds that the limit g(x, y) satisfies the condition (C2) and,
thus, g € C2. Finally, lim,—« || fu — gllc, = 0 can be shown immediately.

(ii) The space P of polynomials of x and y is dense in L. Then, since  C C%, C2 is
dense as well. Moreover, for f € C2, one has

1
I £ = Lm)dxdylf(x,y)\2 <], dyosup | Fen) |2 < 1 flleds (3.8)

<x<1

or the topology of C? is stronger than that of L.
(iii) The twice continuous differentiability of U f (x, y) in x immediately follows from
definition (1.2) of U. And we have

0<x<1 <x<

2 1 2 1
ZJ _dy sup |aiUf(x,y>|2sZJ5fo dy sup [9f(ey) | < lfllce (3.9
j=0 j=0 O=x<l

which implies Uf € C2 and |U fllcx < |l fllcx- Since Ut introduces a discontinuity at
x =1/2 in general, UTC2 ¢ C2.
The proof for C; is the same as above. O
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3.2. Pollicott-Ruelle decomposition. From Proposition 3.1, the adjoint Ut of the evo-
lution operator can be continuously extended to the dual space C;', and U to Cj. These
extensions admit decaying eigenfunctions, which control the decay of expectation values.
More precisely, we have the following proposition.

PROPOSITION 3.2. Suppose A € C; and p € C3, then there exist conjugate linear functionals
Fo,F{,F} € C2! and Fy,F{,F{ € C2 defined by

Folp) = LO . dxdyp(x,y)*, (3.10)

Fo(p) = LO | dxdydep(y)”, (3.11)

- 1

Hpy=| dxdy(y=3)ewn - | dndppwyt, G
[0,1)2 2 [0,1)2

Fo(A) = j dxdyA(x, y)*, (3.13)
[0,1)2

F(A) = I dxdy(xf l)A(x,y)* - J dxdg, (7)3,A(x,y)*, (3.14)
[0,1)2 2 [0,1)2

FU(A) = L L dxdyd, A y)", (3.15)
0,1)2

where the function gy is continuous and is defined as a unique solution of

1 2 1

—g1(2x)—x—+§, 0<x=<_,

]2 4 8 2
a0 =1 2 3% 11 (3.16)

Egl(ZX*l)'f'Z*?‘f'g, ESXSl

Note that the integrals involving dg, are the Riemann-Stieltjes integrals, which are well de-
fined [47] since g is continuous and the integrands are of finite variation with respect to the
integration variables.

(i) Those functionals are principal vectors of the extensions (i.e., generalized principal
vectors) of U and U*, respectively:

UFy(A) = Fo(UTA) = Fy(A), (3.17)
UF{(A) = %F{‘(A) + 1—16Ff(A), (3.18)
UFP(A) = %Flb(A), (3.19)
U'Fy(p) = Fo(Up) = Fy(p), (3.20)
UF(p) = () (3.21)
U'B (o) = 3R )+ i) (3.22)



S. Tasaki 261

(ii) The time evolution of the expectation value of A at time t is given by

(A, U'p) = Fy(A)Fo(p)*

1 a £a( )% b S vk o Lpb £a( )% (3.23)
+ o[BI ) + R (o) + SR ()" | + Ri(A,p),
where Ri(A, p) is a sesquilinear form satisfying
A x
|Rt(A,p)| =< M{Kztz‘FKlt'l—Ko}, (3.24)

4t
and K;’s are positive constants.

Proof. First we discuss the properties of g (x). Its defining equation is similar to de Rham’s
functional equation [9, 19, 42, 43, 44] and is a fixed point equation of the following map
T

1 2 1
Eg(Zx)—xZ+§, Osxsz,
Tg(x) = 5 (3.25)
! (2x71)+x—73—x+l l<x<1
28 4 88 27750

As easily seen, J is a contraction on a Banach space of bounded functions equipped
with the supremum norm and, because of Banach’s fixed point theorem [20], it admits
a unique fixed point g;. If g is continuous, Jg is continuous and, thus, an approximate
sequence { fu}ns0 of g defined by f, = J f,—; and f; = 0 is a sequence of continuous
functions uniformly converging to g;. As a result, the limit g; is continuous. Note that g
has a fractal graph and g;(0) = g;(1) = 0.

Next we show Fo,Ff’,Ff’ S C)Z,Jr and Fy, ~f‘,I:“{’ IS C,%Jf. As the arguments are similar, we
only consider F?. As p € C2, F!(p) is well defined and its conjugate linearity is obvious.
The continuity follows from a straightforward calculation. Indeed, integration by parts
and g1(0) = g;(1) = 0lead to

o (p) = LO’W dxdy{ (y - %) p(x,9)* + g1 (x)p(x, y)* } (3.26)

and, thus,

1
_ 1
| F(p)] SJ dy{‘y—g
0

sup |p(x,y)| + sup [gi(x)| sup Iaip(w)l}
0<x<1 0 1 0 1

=<x< <x<

|2
0<x<1

1 1
SHy—ZM dy sup |p(x,y)
2 0
(3.27)

1
+ sup |g (x)IJ . dy sup 182p(x,9) |

0=<x<1 0=<x<

+ sup |g1(x)|>||P||Cx < (2—b§ + %) lipllces

2 0=x<1

1
Y73



262 On Prigogine’s approaches to irreversibility

where we have used ||y — 1/2[l> = 1/(2+/3) and sup, [g1(x)| < 1/32 (cf. (3.25)). Then,
Jals (p) is bounded and, thus, continuous.
(i) Equation (3.22) is shown as follows. Because d,Up = (1/2)Uo,p and

dgi (2x) = 2dg (x) + (x - i)dx,
(3.28)
dgi(2x — 1) = 2dg,(x) + (—x+ Z)dx

(cf. (3.16)), we obtain the desired relation (3.22)
B 1 1/2 y - 1
Eb(Up) = J dy[ dxip X,y J dxzp(x y)* ]
0 0
1 (! 12 1
1 || dn@oaptnt+ | dgex- Do ]
0 0 12

Jl dy[ " dx(y — Dp(x, y)* = Lm {dgl (x)+ (’z—c - é)dx}axp(x,y)*]

1 1 1 N 1 X 3 N
by L]t =] o (=5 F)axfaptn]

— 1~ (! * *1 1 = a
= SFp)+ ¢ L lp(Ly)" = p(0,7)"} = SFi(p) + 74 )
(3.29)
The proofs of the other relations are the same as above.
(ii) The derivation is given in the appendix. O

3.3. Spectrum of the restricted evolution operator. At first sight, the decay property as
expressed by (3.23) seems to be an operator property of U restricted to the subspace C2
or UT restricted to C;. However, it is not the case and (3.23) is the property of a triple C3,
Cy, and U (or U'). Indeed, for the operator U restricted to C;, we have the following
proposition.

ProposITION 3.3. (i) The spectral set (U* lc2) of U restricted to the space C; satisfies
{z:1/4<|zl <1} co(Utlc) C {z: |zl < 1}. (3.30)

(ii) Let h(y) be a function satisfying [, dyh(y) = [, dyyh(y) = 0 and let n, with
1/4 < |z| < 1 be a conjugate linear functional defined by

+o0
n:(A) = > Z”J dxdyh(y)UT™"A(x, y)*
=7 Joay
; (3.31)
+ Z (—) J dxdyh(y)]yUT”af,A(x,y)*,
[0,1)2
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where ], f (x,y) = [ dy’ [ dy” f(x,y"), thenn, € C3t and Un, = zn,. Examples of h(y)

are y* — y+1/6 or cos(2mrmy) (m # 0).
Moreover, when h(y) = y* — y +1/6,

1:(A) = L : dxdy{h) (x, y)A(x, y)* + hP () A(x, y)*}, (3.32)
0,1)2

where h;(zl)(x,y) =4y?/(4 —z)+{a,(x) —2/(2—2)} y + b.(x) + 1/(6 — 62), and a, b, and
h? are unique solutions of the following equations:

gaz(Zx), 0<x< %,

a,(x) = (3.33)
Zax-n+-2 Loran
27 4-z0 27 ’
2b,(2%), 0<x< %

b.(x) = 1 (3.34)

2z(3 —2) 1
\zbz(Zx 1) +a.(x) C-2d-2" 2 <x<l1,
C 2 _ 2
lhgz)(Zy)+M, 0§y<l’
() =1 % 122 2 (3.35)

Loy W0 =2p 1
L4777 12z =Y

Proof. (i) The second inclusion follows from Proposition 3.1(iii") and the spectral radius
formula [36]. The first inclusion holds because of (ii) and Lemma 2.4.

(ii) Each term of (3.31) is well defined for A € C}Z, and, foreveryz € {z:1/4 < |z| < 1},
we have 77, € C;T because (3.31) converges absolutely and

! o Izl 4|z|
SOPNN/ peers ACRNECR DO

Now we consider 77, (UTA). Because of 05 UTA = (1/4)U'9;A and the properties of h, we
have

n:(UTA) —zn,(A) = ZLO . dxdyh(y){A(x, y)* ~J,0,A(x,y)*}
1’ 1 1 (3.37)
_ zjo dx{A(x,O) JO dyh(y) +3,A(x,0)* L dyyh(y)} —0.

This shows the first half.
The second half is shown as follows. By noting fol dyh(y)], f(y) = fol dyH(y) f (y) with
H(y) = f; dy'(y" — y)h(y"), one has (3.32) with

+00 + 00 n

1

WD = 3 zUtnh, =3 (4_2) U"H, (3.38)
n=0 n=1
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which satisfy
D = zUTh(V +h, (3.39)
1
2) - = (2)
WP = U{h? +H}. (3.40)

The solution of (3.39) is quadratic in y* and can be cast into the expression just after
(3.32) with a, and b, given, respectively, by (3.33) and (3.34). Equation (3.40) is nothing
but (3.35). O

3.4. Pollicott-Ruelle decomposition revisited. Now we reinvestigate the Pollicott-Ruelle
decomposition. In case of the one-dimensional Bernoulli map [5] defined on the unit
interval [0,1) by

2x,

0<x<lt
S(x) = | 21 (3.41)
2

2x—1, <x
the spectrum of the Frobenius-Perron operator on the Hilbert space of square integrable
functions is the unit disk {z: |z| < 1} and the corresponding eigenfunctions are mostly
represented by nonsmooth Weierstrass functions. By restricting densities to m-times con-
tinuously differentiable functions, eigenfunctions without this smoothness are not al-
lowed and the corresponding eigenvalues are removed from the spectrum. In this way, the
spectrum of the Frobenius-Perron operator changes from the unit disk to a set {1,1/2,...,
1721} U {z: |z| < 1/2"}, and the Pollicott-Ruelle decomposition is derived.

Propositions 3.2 and 3.3 suggest that the Pollicott-Ruelle decomposition (3.23) is ob-
tained in a similar way. To see this in detail, a projection 7, onto the dilating direction is
defined.

For v € (Ci)*, if there exists a function f(x) such that y(A fo dx f(x)A(x)* holds
for every A € Cj which does not depend on y, then 7, y/(x) = f (x .

With this definition, one has

1
e Ff = x — X an{’ =0,

. X , (3.42)
el = JO dyhV(x,y) = 58:(%) +ba(x) +

z
24-2)2-2)(1-2)

Hence the projection 7,7, of the generalized eigenfunction of U is singular with respect
to x. Indeed, for nonreal z, the function a,(x) is nondifferentiable, of infinite variation,
and has a fractal graph [43]. On the other hand, the projections 7, F{ and . F b of the gen-
eralized eigenfunctions involved in the Pollicott-Ruelle decomposition are smooth in x.
This suggests the following. First, by restricting the class of observables A to C2, the spec-
trum of Ut changes so that it contains an annulus {z: 1/4 < |z| < 1}. Next, by restricting
densities to functions smooth along the x-direction, there remains only the eigenfunc-
tions smooth in the x-direction (which corresponds to the eigenvalues 1 and 1/2), and
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the other values in the annulus {z: 1/4 < |z| < 1} are removed from the spectrum. Then,
one obtains the Pollicott-Ruelle decomposition (3.23).

4. Discussions

We have studied the baker map by two different theories of irreversibility by Prigogine and
his colleagues: the A-transformation theory and the complex spectral theory. In both ap-
proaches, by restricting the class of observables to a subset @ of L* (® = ATL? or CJ), the
evolution operator Ut becomes dissipative as expressed by the spectral set containing an
annulus in the unit disc. However, the two approaches are not equivalent. In the former,
one looks for a surjective isometric transformation Af~!: ® — L? (the conditions (a),
(b), (¢), (d), and (e) are imposed as well). Then, the transformed evolution W = AUA™!
of the densities becomes a dissipative Markov operator. In the latter, one further restricts
the class of densities so that most values in the interior of the annulus are removed from
the spectrum, and the relaxation of expectation values is described by point spectra in the
annulus and faster decaying terms. One thus obtains the Pollicott-Ruelle decomposition.

The dissipativity of the restricted operator UT|p (® = ATL2, C}z,) can be seen easily by
considering the averages. First we note that A € @ is “smooth” along the contracting y-
direction. (When ® = Cj, this is obvious.) When ® = ATL?, this can be seen as follows.
For large enough n, E,-subspace consists of functions ys which are constant along the
x-direction and highly oscillatory along the y-direction. Because every element of AtL?
can be expressed as A = ATB (B € L?), A contains less and less E,-components as 7 in-
creases, or A contains less and less highly oscillatory component along the y-direction.
Next we remark that, as time goes on, the density U’p becomes highly oscillatory along
the y-direction. Hence, the fine structure of the density U’p cannot be “probed” by the
average value of the restricted class of observables A € ®. In other words, dissipation
arises in the evaluation of observables which are smooth along the y-direction with re-
spect to densities U’p which are highly oscillatory along the y-direction. In this sense, the
restriction of the operator acts as a kind of coarse graining. However, as @ is dense in L?,
no information is lost in this procedure.

Appendix
A. Functional equation method

So far, the subdynamics decomposition and the resolvent method have been used to de-
rive the generalized spectral decomposition and, thus, the Pollicott-Ruelle decomposi-
tion (3.23). Although they are systematic, it is not easy to obtain explicit expressions of
the generalized eigenfunctions, which may involve Stieltjes integrals with respect to frac-
tal functions. In this appendix, the Pollicott-Ruelle decomposition is derived via a set of
functional equations of de Rham type [9, 43, 44].

First, we note that the expectation value of an observable A at time ¢ is rewritten as

1
(AUp) = | dxlh(ACE D"~ Glx 13,A 0 D)
0 (A1)
n LO’UZ dxdyGy(x, y)RA(x )",
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where p is the initial density, U is the Frobenius-Perron operator, h;(x) = fol dyU'p(x,y)
and Gi(x,y) = [ dy" [ d y"U'p(x,y"") are auxiliary functions, and d, stands for the par-
tial derivative with respect to y.

From the definition of the Frobenius-Perron operator (1.2), the recursion relations of
hy and G; are easily derived:

oo (x) = %{ht(;f) ht("“)} — Vhi(x), (A2)

where V is a linear operator defined by the preceding expression, and

Gt+l(x>y) :AGt(x>y)+Ft(-x)y)> (A3)

where a linear operator A and a function F; are given by

G( y) O0<y=< %,
AG(x,y) =
—G(x”;l 2y - 1) Scy<1,
] (A.4)
0, O<y=<-,
Fi(xy) = ?
’ 1 X 1 1 x 1
6(31) 2 0-2)m(3) or=r
A.1. Auxiliary function h;(x). Let I be an integral operator
X 1 X
Lf(x) = J dx' f(x') - j de dx' (%), (A5)
0 0 0
then I,V =2VI, and
1 1 1
_ J dxho(x') + (x _ 5) J dx' B ho(x') + 2020 (x). (A.6)
0 0
Since V'1 =1 and V'(x — 1/2) = 1/2(x — 1/2), one gets
he(x) = V'ho(x)
J ax o) + 5 (x— 1) J axDeho()+ LRV B (a7
- (o 1\
= Folp)* + 5 (x— §>F1 (0)* + 4[1:? '32ho(x),
where Fy and F¢ are functionals given by (3.10) and (3.11), and we have used
1
J dx'ho(x') = J dxdyp(x,y),
’ o0 (A8)

1
J dx' 0y ho(x') = J dxdyosp(x,y).
0 [0,1)2
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A.2. Auxiliary function G;(x,1). From (A.3), (A.4), G(x,1) is found to obey
Gror(x,1) = %VGt(x, 1)+ a:(x), (A.9)
where
alx) = 3hi(3) = J dx' (') + ——J dxDeho() + o Oh(x) (A10)

with 8h¢(x) = I2V'02ho(x/2). Because of f(x) = fol dx' f(x") + Loy f(x) and I,V = 2V,
this leads to

Gt(x> ):_V GO x) +z

s=1

L
=5deh0( ztgfdxa o(x')

th[J {Go(x 1) - *ho(x'ﬂﬂ'(g_i) Joldx,ax{h()(x,)

Lok |1
+§J0dx ot +Zrt(x),

25— 1VS lat s(x)

(A.11)

where

) = 3 L V10,8 (x) - I g Oenlx

s+l
s=1 (A.12)

FLV'9,Golx, 1) — (— _ —) J dx' 3 ho ().
2 4) )
Because of I,V = 2V, and fol dx' 0y hy(x') = jol dx' V39, hy(x'), one has

1 7 1/2 1
[ v O [t viay o - [ dxviae ]
0 0 0

s+l
1/2

1
[ dxn veay () + % j dx V3o (x)
0 0

1/2 1 X . 1 X 3 S
_ L dx<§ - E)V 3k (x) + dex<§ - g) VEah(x)

(A.13)

1
:demwamwx

where

(A.14)



268  On Prigogine’s approaches to irreversibility

With the aid of an equality

1
(| deCov 0 = [ dtaten s, (A15)
with
2 0< !
~ B Eg( x), <x< >
Tg(x)= | ] (A.16)
Eg(Zx—l), Esx<1,

the above expression leads to

ZJ 2S+1 ZJ d(T°y(x))ocho(x) = J dgi (x)0xho(x)

(A.17)
~ | daidyapeny),
[0,1)2
where g1(x) = 2.2, ﬁsy(x) is the solution of the functional equation (3.16).
With the aid of
b , L, 1
J dx {Go(x 1) = hotx )} - —j dxdy(y— —)p(x,y), (A.18)
0 2 [0,1)2 2
G(x,1) casts into
1. 112 x 1\ t o= r(x)
G 1) = SFo(p)* = 5 [ o) = (5= 3 )E o) | - i Frore + 520, (a9)

where Fo, F{, and E? are functionals given, respectively, by (3.10), (3.11), and (3.12).

A.3. Auxiliary function G;(x, y) and Pollicott-Ruelle decomposition. According to the
results of the previous subsections, F;(x, ) in (A.3) reads as

O (( L )

sl Rer - (2-3) e nEE: Jo(y- 1) + R e,

where 0 is a step function and

RO(x, y) = [rt(g) 2y - 1)1§vfa§ho(§)]e(y - 5). (A21)
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Then, the solution of the recursion relation (A.3) is given by

G,(x,y) AGO XY +ZAS lFt s(x )’)

s=1
= Folp)*ao(y) — ~a2(tfz* [tar (y) — oz (x, 9)] (A.22)
- Flz(tfl)* a1 () + R (x, ),
where the residual term is given by
R (x,) = At[G()(x, 7+ 30 () = Folp)*aoly) = 1 FE(p) aa( ) |
(A.23)

t
Z 4A) 1RV (x, ),

and the functions «; (j = 0,1,2) are the solutions of the de Rham-type functional equa-
tions

1oco(Zy), 0<y< 1,
%o(y) = 411 11 ’
: 2o 2
4a0(2y 1)+2 g 2sy<1,
%(xl(Zy), 0<y< %,
a(y) =11 1 (A.24)
5061(2)/—1)4'1, 5Sy<1,
%062<§,2}/)+061()/), 0sy<%,
e C e FR TS 1
E“2< 2y—1>+0¢1(y)+(8y 2)(x—1), 5§y<1
As easily seen, the solutions of the above equations are
2
W =2, w(=2, @) =4Pex-Draap)),  (A25)

and thus,

(A.26)
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By substituting (A.7) and (A.26) into (A.1), one obtains the desired decomposition
(3.23) with

1
Ri(A,p) = J dx[%[ﬁV’aiho(x) —Ri“(x,l)]ayA(x,l)*
0 (A.27)
+J drdyR( (x, )P A(x, y)*.
[0,1)2

Then, by noting |Af(x,y)| < sup, , | f(x,y)|/4 and the boundedness of I, and V, one
obtains the desired estimate (3.24) of R;(A,p).
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