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The relation between cellular automata (CA) models of earthquakes and the Burridge—
Knopoff (BK) model is studied. It is shown that the CA proposed by P. Bak and C. Tang,
although they have rather realistic power spectra, do not correspond to the BK model. We
present a modification of the CA which establishes the correspondence with the BK model.
An analytical method of studying the evolution of the BK-like CA is proposed. By this
method a functional quadratic in stress release, which can be regarded as an analog of the
event energy, is constructed. The distribution of seismic events with respect to this “energy”
shows rather realistic behavior, even in two dimensions. Special attention is paid to two-
dimensional automata; the physical restrictions on compression and shear stiffnesses are

imposed.
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1 INTRODUCTION

The dynamics of earthquake faults is receiving a lot
of attention as an interdisciplinary problem, which
seems to manifest a great deal of all known types of
chaotic behavior. At the same time, the question
whether earthquake faults are predictable is still
open. Bak and Tang [1] suggested that earthquake
faults seem to be physical manifestations of self-
organized criticality (SOC) [2]. This observation

was mainly based on the Gutenberg—Richter law
log N = a — bm, (1)

which relates the cumulative number of events N
with seismic moment greater than the value M, to
the seismic magnitude m=IlogM. Since M is
proportional to the energy of the seismic event
log E = ¢ — dm, the logarithmic law (1), empirically
found from the earthquake statistics [3], can be
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expressed in terms of earthquake energies:
N(E> Ey)~E™"; a,b,c,d are empirical constants.
The power distribution of seismic events is rather
nontrivial fact: from elementary thermodynamics
one can expect that the density of events behaves
like exp(—E/T). The power distribution found in
the seismic events has attracted new attention to
the SOC systems [2] for which the power-law
behavior is common. Such systems are remarkable
that they constantly evolve to some minimally
stable state, and in this sense are stabilized in an
unstable state. The simplest system which shows
SOC behavior is the sand pile. Later, the same
phenomenon has been observed in other complex
systems and was found to go along with so-called
flicker-noise, a noise with 1/f power spectrum.
The peculiarity of the earthquakes, if considered
as a SOC phenomena, is the coexistence of two
aspects of the earthquake problem. On one hand,
the earthquakes can be considered as a fracture
propagation process in the earth’s crust. The earth’s
crust has fractal geometry [4] and that is why the
power law distribution of observed characteristics
is strongly expected here [5]. On the other hand, the
dynamical modelling of earthquake faults is usually
performed only on a small fragment of the crack
network, so locally the fault is reduced to slip and
stick behavior of two Euclidean half-space
domains. The dynamics of this small zoom of the
fragmentating crust is introduced by the assumption
that one of the half-spaces is divided into blocks
connected by springs: this is the Burridge—Knopoff
(BK) ansatz. The complex hehavior of the BK sys-
tem [6] can by no means be attributed to the global
self-similarity of crust fragmentation. However,
some properties of the BK model can be extra-
polated to the behavior of the rupturing media with
domain larger than that of simulated flat fault.
The advantage of the distributed computational
systems for such extrapolation is apparent: Even for
numerical simulation of the dynamics of spring-block
systems of a few hundred blocks hours of CPU time
of modern computer are required. For 2D or even 3D
simulation of the rupture propagation, a system of
N? differential equations should be solved. The

application of cellular automata (CA) seems very
attractive in this sense, since the process is evaluated
by CA locally, and hence goes fast.

The remainder of this paper is organized as
follows. In Section 2 we review the principles of
constructing BK-like CA, show that their symmetry
does not pertain that of the BK model, propose a
modification of the CA rules which eliminates this
discrepancy. In Section 3 we analyze the problem of
simulating tectonic processes with CA. It is shown
that for more realistic modelling of earthquakes, in
order to account for the shear stresses, both static
and dynamic variables should be simulated by the
CA. An analytical method which enables us to give
a new definition of a CA-simulated event magni-
tude is constructed. Section 4 is devoted to the
two-dimensional aspects of the stress redistributing
cellular automata (SRCA). We discuss in the Con-
clusion the results of numerical simulations, present
statistical characteristics of the CA-simulated time
series and highlight further investigations.

2 BK-LIKE CELLULAR AUTOMATA:
PRINCIPLES OF CONSTRUCTION

The power-law distribution of events, observed for
both the SOC systems [1] and the real earthquakes
(the Gutenberg—Richter law), has stimulated inter-
est to the sand-pile-like CA as a model for real
earthquakes. Here we review the basic ideas and
principles.

2.1 The Idea of Self-Organized Criticality

Following the original paper [2] let us consider a
one-dimensional array of N particles. Let z,=
h, — h,, | represent the height differences of neigh-
boring positions. The SOC dynamics unfolds as
follows:

1. Adding a particle to the nth site we increase the
right difference and decrease the left difference:

Zp = zZy + 1, Zn—1 7 Zn—-1 — 1.
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2. If the height difference exceeds certain critical
value, one block tumbles to the left (lower)
position:

Zp = Zn — 2, Zntt — Zpk1 + L (2)

3. The boundary conditions provide free fall from
the edges:
zo =0, and zy —zy—1, fOI’ZN>Zc

ZnN—1 — Zn—1 + 1.

The redistribution law (2) is usually referred to as
a sand-pile cellular automaton.

2.2 Burridge—Knopoff Model and
Stress Redistribution

The BK dynamical model of earthquake faults is a
chain of N blocks of mass m;, i=1,..., N resting
on a rough surface and connected by harmonic
springs of stiffness k. to each other; each block is
attached by a leaf spring of stiffness k, to the
moving upper line, see Fig. 1.

Initially (at ¢t=0) the system is at rest and the
elastic energy accumulated in the “horizontal”
springs is only due to randomly generated small
initial displacements of the blocks from their
neutral positions. The moving upper line, which
simulates the movement of the external driving
plate (the tectonic stress), exerts the force f,=
—kp(x, — vt) on each block. The nonlinear friction
is defined in such a way that it holds each block at
rest until the sum of all forces applied to this block
exceeds certain critical value f;;, — then the block

Y

FIGURE | The geometry of the BK model. The system is
composed of N identical blocks of mass m;, k. is the stiffness
of the “horizontal” springs, k, is the stiffness of the pulling
springs, v is the constant velocity of the pulling line.

makes a slip to a new position with less energy.
Depending on the particular stress distribution
amongst the chain springs in the current event, a
one block slip, a number of blocks slip or a global
slip of all system may happen. Due to the particular
form of nonlinear friction force [6,7] the new block
position after a slip is of much lower potential
energy than in its previous position. The duration of
an event (a quake) in the BK model is understood as
a time-period during which the velocity of at least
one block exceeds v.

A simple CA analog of the BK spring-block
model was proposed by Bak and Tang in [1]. Their
model consists of an array of particles (0 <i< N)
subjected to the reaction force from their neighbors
and constantly applied driving force — the “tectonic
force”. Let fi, be the threshold value after which
the stress is relaxed. Then, for such i that f;> f,
where i is the block number, the stress redistribu-
tion law

fi=fi=2, fiur =S+ 1
is applied. The generalization to two dimensions is
straightforward [1].

Evidently this force redistribution law is too sim-
ple and by no means corresponds to the BK model,
where the force (stress) dynamics is governed by a
second-order differential equation.

2.3 The Nakanishi CA

A more elaborated construction of a BK-like CA
has been proposed by Nakanishi [8]. Starting from
the equation of motion of the BK system [6]

mi; = ke(xip1 + xi1 — 2x;)
+ kp (vt = x;) 4 faiss (Xi), (3)

which determines the motion of the ith block, it is
easy to express the stress (i.e. the sum of forces
applied to each block of the system) before and
after the event. Let x; be the displacement of ith
block from its neutral position before the slip, x/
be its position after the slip, then the total forces
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exerted by this block are

Ji = ke(Xip1 + xi21 = 2x3) + kp (vt — x3), )
S =ke(xip1 + xim1 — 2x]) + kp(vt' — x{),
before and after the slip, respectively. The stress
released in event is

ofi=fi—fi = ke +kp)(x{ = xi).  (5)

The duration of the event (At =t — 1), is ignored at
this stage but is applied at the final stage of CA
evolution as described below.

If the force f; exceeds the threshold value fy, and
the ith block makes a slip, the release of stress (5) is
assumed to be equally shared between its neighbors:

ke

Sfix1 = fixl +§chkp

ofi. (6)
The stress of the k,-springs is not shared. The
redistribution law (6) does not follow from the
dynamics of the BK system (3) — the new position
x] is unknown — but is believed to be physically
acceptable.

In Nakanishi’s paper, the new after-slip value of
stress f;, is supposed to obey a deterministic
evolution law

Sl = ofi = fin)- (7)

To complete the CA cycle “the tectonic stress” is
added to all blocks:

[l = fl + kyvAt, )

In this way the duration of a single event At
becomes a parameter of the Nakanishi CA.

Referring the reader to the original paper [8] for
general discussion concerning the exact form of the
relaxation function ¢(x) and its parameters, we just
present its specific form used in our numerical
simulations:

2=
P(x) = PRIy 9)

The plot of the function (9) for specific values of
the stress-gap parameter §f=0.01 and a number of
different values of « is presented in Fig. 2.

The one-dimensional cellular automaton with
the relaxation function (9) shows the event distribu-
tion behavior which may be described as a log-
arithmic law (1) with 5= 0.84. This distribution is
shown in Fig. 3. The magnitude was defined as a
logarithm of the stress relaxation in the event

m=logM, M=3(f~f) (10)
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FIGURE 2 The stress relaxation function ¢: f' = ¢(f—fin),
taken from Nakanishi [8]; plotted here for «=2.5,3,3.5.
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FIGURE 3 Cumulative event distribution obtained with
Nakanishi’s cellular automaton for 35 blocks, a=3, §f=0.01,
At=0.85.
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This is in agreement with that for the BK model
[7), where Mgk =Y ;(x] — x;),iff" — f kp(x' — X).

3 EARTHQUAKE EVOLUTION AND
CA DYNAMICS

Considering the dynamics of the cellular automata
[1,8], one has to admit at least a few aspects in which
these CA are different from real tectonic processes
and even from the BK model. First, in contrast to
the BK model, the CA dynamics is the dynamics of
stress redistribution: no dynamical variables like
velocities are included. Second, the definition of the
magnitude as a difference of stresses before and
after the event is not strictly adopted for these CA.
Third, one of the basic principles of the construc-
tion of cellular automata for physical applications,
is the preservation of symmetry of the original
physical system as well as possible. Both, Bak and
Tang [1] and Nakanishi [8§] CA do not meet these
requirements.

We introduce a new CA which is an extension
of the Bak and Tang and Nakanishi CA and takes
into account these three requirements.

3.1 Investigation of the CA Dynamics

If the magnitude of a real seismic event is more or
less well defined quantity — the decimal logarithm
of displacement measured at certain gauge distance
from the epicenter — then, on contrary, for the Bak
and Tang CA [1], or even for more advanced
Nakanishi’s [8] automaton, it is not clear com-
pletely, why the logarithm of the sum of tensions
redistributed by the cellular automaton should be
regarded as a magnitude. (This problem does not
arise, say, for the BK model, where displacements
and forces are related by a given system of dif-
ferential equations.)

So, regardless of the fact that SOC systems give
a power-law distribution of events, we have to
admit that neither the Bak and Tang CA [1] nor
the Nakanishi’s CA [8] accurately account for the
dynamical part of the problem (displacements and
velocities), but deal only with static parts (the

tensions). Therefore, just a bare analogy between
the BK model and the Nakanishi CA does not
form a reliable basis for the identification of the
magnitude of seismic events with that of tensions
redistributed by the cellular automaton.

The only quantities we have at our disposal
dealing with stress redistributing CA are stress
release ), (ff —f«) and stress accumulation
>« k. We do not have any kinetic characteristics,
and the only thing we can do is to use the function
1" =é(f— fin). Doing so, we construct an analog of
the kinetic energy

N
E() = £ 000 ~ f) ~fe, (1)
k=1

The averaged accumulated stress F(r) =1/
NSV fi(r) at the rhs. of Eq. (11), can he
regarded as a control parameter, which shows the
vicinity of the current CA state to the critical state.
Hereafter we shall call E(f) and F(z) the kinetic and
potential function, respectively.

In the figures below the time behavior of E(f) and
K(?) is presented. In our simulations we used one-
dimensional CA of (N=) 35 cells with relaxation
function (9). The initial configuration was given by
homogeneous random distribution of f;: 0 < f; < fu,
i=1,...,N. Asitcan he seen from Fig. 4(a), during
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FIGURE 4 Stress relaxation normalized to one cell as a
function of time (a); mean value of stress applied to one cell
as a function of time (b); plotted for one-dimensional 35-
block CA with relaxation law (10); a =3, §f=0.01.
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initial transient period the system is chaotically
approaching the statistically steady regime. The
dynamical process corresponding to this evolution
is characterized by a large number of events with
small E(¢) and rare events with huge redistribution
of stress. The potential function F(¢) is presented in
Fig. 4(b). As for many other systems with ava-
lanches, it has a saw-like behavior. The closer to the
critical state, the higher the probability of the
occurrence of strong event.

The comparison of Fig. 4(a) and (b) shows that
the events with small E(f) amplitudes (they usually
scope only a small number of neighboring cells)
just locally redistribute the stress, with increasing
total “accumulated stress” F(¢) of the automaton.
When system is close to the critical state, a small
external “push” is sufficient to initiate an avalanche
mechanism.

For better understanding let us consider parti-
cular example of CA evolution starting at specially
prepared initial configurations. In the example
(Fig. 5) at =0 all £;(0) except for the central cell
were set to 1 —e, where € is a small positive
parameter. The value of the central cell f,(0) was
set larger than for all other cells, but less than 1.

19 F Ke2 19 | ‘_J K=15
0.7 + 0.7 ~-A‘ b
o5 - ; j o5 ; T
19 K=6 419 K=18
07t {o7 -'\“j J—H"
05 —— . 105 . : } .
19 K=9 qrer l—, o Ke21
!

—— Ul
o7} {o7 b L
05 + + + +—+0.5
19 - K=12 1er K=24
0.7 + LI LJ 107 V.\\T_l’—/'-
s . . . “los , . . .
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FIGURE S5 The evolution of one-dimensional CA. Plotted
for the first initial configuration: 35-cell CA with relaxation
law (10); =3, 6f=0.01.

The evolution of this initial configuration is
shown in Fig. 5. Two waves originated from the
center of the automaton and moving towards its
edges are observed. The redistribution of stress in
this process increases at each time step and reaches
its maximum value at the last step, when two
waves collapse in the center of the CA. When the
“potential energy” F(f) gains its minimal value,
the energy accumulation starts again (due to both
the external “pumping”, caused by the moving
upper plate, and the redistribution of stress inside
the system by means of small local events).

In the second example, presented in Fig. 6, the
initial states f;(0) of all cells were set to 1 —e.
Figure 6 demonstrates that perturbations arising at
the ends of CA produce two waves moving towards
each other and which, after collision in the center,
suppress each other.

3.2 Discrete Evolution

To analyze the dynamical properties of our CA
analytically one can present its evolution in a
recurrent form f(z+ 1) =w(f(?), f(t—1),...), or

10 10
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-02 1 . + {02 + + : ;
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02+ {0z b 1
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10 b—— 10
06 - {os | 1
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FIGURE 6 The evolution of one-dimensional CA. Plotted

for the second initial configuration: 35-cell CA with relaxation
law (10); « =3, ¢f=0.01.
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even better in a difference form

S+ 1) =) +(f(0.f(t = 1), ...),

where 1 is the discrete time. Fortunately, the two-
step process of the CA evolution studied in this
article allows representation in a form of a one-step
difference equation.

The first step — the seismic event, during which
the values of all over-critical cells are redistributed
to their neighbors — can be written in matrix
notation (with components corresponding to the
cells of the automaton):

ﬁt+l :Ff+[A]é(ﬁt)a (12)

where F, = (fi(1), f2(1), ... fn(1))" denotes the
state of the automaton at the time of rth iteration.
Here we consider one-dimensional CA for simpli-
city: two-dimensional scheme can be described in
the same way. Let

G(f) = (g1(8),g2(0), .., gn(1)"

be the vector of stress release (g,(¢)=f(t)—
o(ft) — fun)), where ¢ is the stress relaxation
function defined by Egs. (7) and (9), [4] is [N x N]
matrix

-1 o 0 0 O 0

a -1 a 0 0 0

0 a -1 a 0 0
(4] = e ,

o -+ 0 a -1 a O

o -+ 0 0 a -1 «

0 0O 0 0 a -1

where o = k./(2k. + k) according to (6). Since the
stress redistribution mechanism (6) is applied at
each time step until all cells evolve to under-
threshold values, the difference equation (12) can
be iterated to express the state of the automaton at
the end of the certain event in terms of its state at the
beginning of this event:

Fy — By = [A]S,, (13)

where S; = 3", G(F,) is the integral stress released
in the ith cycle. (Subscript i labels the cycles of the
automaton, i.e. the periods of evolution from one
pumping (8) to the next.)

At the second step of CA evolution (see also
Section 2.3) the values of all cells are uplifted by
the tectonic force (8) with the value 6 = kpvAt:

FS) = F? + 66, (14)

where ¢, = (1,1,..., 1)T, the superscripts ‘b’
and ‘¢’ denote ‘begin’ and ‘end’ of the event,
respectively.

Taking into account (14) and the evolution law
(13), we can define the “energy functional”

—

U(S) = —1(S,[4]S) - 8(e, 5),  (15)

which allows us to rewrite the, evolution equation
(13) in the gradient form

Fyy = Fp = V5 U(S). (16)

Since S(7), which is an argument of the r.h.s. of the
latter equation, depends only on the integral stress
released up to the time ¢, but does not depend on the
particular path of the CA evolution. As we will see
below, the “energy functional” may be a more
relevant characteristic of events, especially in two-
dimensional CA.

The functional U(S) can be considered as an
analog of the released energy of the original BK
model. In Fig. 7 we present the time dependence of
U(S(1)), calculated for one-dimensional cellular
automaton.

3.3 Asymmetric Redistribution of Stress

The other point to be stressed here is that one of
the basic principles of the construction of cellular
automata for physical applications, is the preserva-
tion of the symmetry of the original physical system
as well as possible. The CA of Bak and Tang [1]
and Nakanishi [8] do not meet this requirement.
The original BK model is asymmetric with respect
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FIGURE 7 The dependence of the energy functional U(S)
on the event number of a one-dimensional 35-cell CA,
a=0.3.

to the space inversion x — —x; the driving plate
velocity fixes preferable direction. Both CA evi-
dently are not.

The modification of the stress redistribution
law which respects the space asymmetry is easily
written down:

fin = i+ (=) g,
c+kp
ohe (17)
Jie1 = fin1 +7m5ﬁ,

where y=0.5 corresponds to equal sharing (6),
~v=0 leads to completely asymmetric sharing.

The asymmetric stress redistribution changes
the dynamics of the cellular automaton creating
preferable direction. The fact of asymmetry has
significant physical consequences. Recently, it was
even mentioned that an additional asymmetry
should be incorporated in BK spring block system
itself in order to make it more realistic [9].

We will show now that the asymmetry is an
important parameter of the system and affects
not only the visually observed dynamics of the
avalanches, but also the power-law distribution
of events. For this purpose we have performed
computer simulations with one-dimensional 35
blocks CA for different values of the asymmetry

oo \ r
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10t \\ \ :
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FIGURE 8 Cumulative event distribution N(M > M") for
one-dimensional 35-cell CA. Plotted for different values of
asymmetry parameter y=0.25,0.4,0.45,0.5. Plotted in log-
arithmic coordinates vs. the magnitude m=1log M with the
event size understood as the total stress relaxation
M =Y".(fi —f!). The relaxation function ¢ was taken as in
Nakanishi [8].

parameter v=0.25,0.4,0.45,0.5. The cumulative
event distribution, i.e. the number of events
with the magnitude not less than a given value,
which is often expected to have the form of the
Gutenberg—Richter law, is presented in Fig. 8.

As it can be seen from the picture, the asymmetry
parameter v significantly affects the slope of the
curve (the logarithm of the cumulative event
number vs. magnitude). We also observe the ampli-
tude of events to decrease with the asymmetry
increasing. This means that v is a control parameter
of the system, the appropriate choice of which can
tune the system close or far from the realistic value
of b~ 1 in the Gutenberg—Richter law [3].

4 BK-LIKE AUTOMATA IN TWO
SPACE DIMENSIONS

In this section we describe the two-dimensional CA,
which we construct by modifying the Olami—
Feder—Christensen model [10]. The modifications
are:

e The stress relaxation function was taken from
the one-dimensional Nakanishi CA model [8].
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e The ratio of compressive and pulling stiffnesses
ke/k,~10 was taken in accordance to corre-
sponding ratio of real earth crust materials.

e The model is made asymmetric in one space
direction.

It is shown by numerical simulations that the
definition of CA event magnitude, taken by many
authors as a sum of stress drop > (f— f'), does not
give a power-like distribution of events for two-
dimensional automata, as it does for one-dimen-
sional ones. In our approach, in contrast, an energy
functional of second power in stress release gives
feasible distributions for both one- and two-dimen-
sions. The asymmetry, which we incorporate in
our CA, turns out to be a new control parameter
of the system and allows the control of the slope
of the event distribution.

Let us present the model in more detail. The
specific feature of earthquake faults in comparison
to other strong events in continuous media, say,
shock waves in gases, is that an earthquake is a
relaxation of shear stress, rather than a simple
compression as for acoustic waves.

4.1 The Proposed CA

A straightforward generalization of the one-dimen-
sional Nakanishi automaton [8] to two space
dimensions was given by Olami et al. in [10]. Their
system is a two-dimensional array of blocks con-
nected to each other by harmonic springs (with
strength k, and k, for two orthogonal directions
respectively), see Fig. 9 redrawn from [10]. Each
block is attached to the moving upper line by a
spring of stiffness k.

The particular numerical realization of our
scheme was the following:

1. Initialize all sites to a random value between 0

andﬂh.
2. If any f;> fi then redistribute the force on fj;
to its neighbors according to the rules:

iy = ¢(fis = fin)
Jisrg = i+ (1=17) 2k

Sl S ¥
2k + 2k, + kp f‘l

Xij+1
i, j+1
sz
K, K,
[ i-1,j —~~—A 1i,j FJ\lt_:Lj
K
Xl-l,j { 2 Xi+1,j

FIGURE 9 Two-dimensional BK-like cellular automaton
(redrawn from Ref. [10]).

2k
Jiorj = fior + ’Ym@(zj’
k
Sije1 = fijr1 + 2 ofp»

2k + 2k, + kp
(18)

where &f; = fij — fj-

3. Repeat step 2 until the earthquake is fully
evolved.

4. Increase the tension of each block according to
the rule f;; — f;;+ vkpAt, where At is time-step
parameter of CA.

Evidently this machine does not account for
shear stresses: in terms of Fig. 9 they would
correspond to rotations of blocks. However, this
automaton has rather intriguing dynamics and we
should understand what behavior it describes. To
do this, let us recall that the original paper [6]
contains a number of physical models, rather than
the famous spring-block model alone. The first
model (see Figs. 1 and 2 of [6]) is a string which
rests on a rough surface moving with constant
velocity. The sequence of events is as follows (cited
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from [6, p. 343]):

Starting from some initial configuration, the
masses and strings ride along the moving sur-
face without deformation of the chain, except
for segments at the ends. ..

After some critical time, the mass nearest the end
is displaced abruptly in the direction opposite to
the motion of supporting surface, thereby chang-
ing the angles of the segments of the string
between two end masses and the support. After
this sudden motion cases, the entire system again
rides at relative rest on the moving surface. ..

If we consider a two-dimensional system and
suppose the rough material to be elastic and
viscous, the velocity of rough material has to
depend on the transversal (normal to V') coordinate
as well. In a discrete version the situation can be
modelled as shown in Fig. 9 of [10], where a system
of blocks rests on a rough surface and each block
of the system is attached to this surface by har-
monic spring of strength k,, k; corresponds to k.
of the BK model; k, stands for the shear stress,
which was introduced in [10] for the first time. The
direction of moving surface is the x-direction of
the picture.

Thus k. and kj, harmonic springs are exactly that
of 1D BK model, while k, stands for the additional
shear stress appearing in two dimensions. To have
a physically relevant model it is desirable to relate
stiffness and shear strength close to the relation of
rock materials. This means k| ~ 3k,, and k,/k, > 1.
The two-dimensional model with symmetric stress
redistribution — k| =k, and no asymmetry param-
eters (7 =0.5) included — shows potential behavior,
which resembles propagation of shock waves initi-
ated by potential isotropic sources. Such dynamics
we can expect to happen for the waves irradiated
by point spherically symmetric explosions: by no
means such behavior resembles shear waves.

4.2 Power-Law Distribution of Events

The direct attempt to obtain the Gutenberg-—
Richter power-law distribution of events with a
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FIGURE 10 The event distribution for our 35 x 35-cell CA.

magnitude defined by (10) for our two-dimensional
CA, gives a distribution, which is far from linear
dependence in logarithmic coordinates, see Fig. 10.
The reason for this is that the introduction of k;
“shear” springs makes the relation (10) less relevant
than in one dimension. To improve the situation,
we redefine the magnitude of event, using the
energy functional U(S). Being quadratic in stress
release, see Eq. (15), this functional is less sensitive
to the details of stress redistribution, but accounts
mainly for the global event characteristics.

The evolution of energy functional U(S), cal-
culated for two-dimensional cellular automaton
is presented in Fig. 11. The stochastic behavior,
with a few irregularly distributed huge events
(avalanches) is clearly observed there in figures. In
the figures below we present the comparison be-
tween cumulative event distribution calculated with
respect to U(§) (Fig. 12) and the magnitude (10)
(Fig. 10), respectively. Our definition of the magni-
tude (15), as is observed, provides more clear linear
dependence. In comparison to the one-dimensional
case, dealing with 2D CA we are restricted to the
symmetric v=0.5 stress redistribution, but the
tension coefficients may be different of course:
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FIGURE 11 Energy functional U(§) as a function of event

number (see explanations in text): two-dimensional 25 x 15-cell
CA with a; =0.26, oy = 0.087.
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FIGURE 12 The distribution function of event P(U) vs.
magnitude U; two-dimensional 35x 15 CA with different
spring tensions. Sx corresponds to «, «, is chosen in accor-
dance to ratio k/k;=3.

For general case (7 #£0.5) the evolution laws (18)
cannot be expressed in terms of a potential function
U(S), since the existence of the potential U(S) de-
mands the symmetry of the matrix 4 (see Eq. (12))
A= Aj. Physically, this is related to the fact
that at least two potentials — scalar ¢ and vector
A~ are required to represent an arbitrary vector
field in a gradient form v=V - ¢ + V x /T, rather
than scalar potential alone. The introduction of

torsion in our CA model is beyond the scope of
this paper [11].

4.3 Asymmetric Modification of Our CA

The snapshot of the dynamics for the symmetric
automaton (y=0.5) and asymmetric one (y = 0.35)
is shown in the applet figure below, Figs. 13 and 14.
The comparison of this two figures ensures that
the asymmetric automaton gives a more realistic
picture, since traveling waves are clearly observed
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FIGURE 13 Screen-shot of the visualization Java program
for two-dimensional CA: symmetric case (available at (www
http://linserv.jinr.ru/Projects/ISPRA/ca/index.html)).

FIGURE 14 Screen-shot of the visualization Java program
for two-dimensional CA: asymmetric case, y=0.35.
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on it, rather than just bursts of compressions and
explosions, as on the first one. The analysis of the
cumulative event distributions for one-dimensional
CA (see Fig. 8), obtained for different values of v
shows that the slope of the distribution (i.e. the b
exponent, if the linear Gutenberg—Richter approx-
imation is considered) essentially depends on +. So,
changing the asymmetry parameter we change the
evolution of the cascade observed. This may
describe different physical situations.

5 CONCLUSION

The ideas of self-organized criticality have sug-
gested the application of CA to the simulation of
earthquake related processes. In general, the CA
technique is incomparably faster than solving
differential equations, but its applicability to an
arbitrary system is not granted a priori. For the case
of tectonic processes CA seem to be very appro-
priate. This results from both theoretical and
experimental arguments, as well as from the
numerical simulations. In both CA simulations
and real earthquake processes the power-law
distribution of events N(E> Ey)=E % with
1 < B<2isclearly observed. Whether or not earth-
quakes are SOC phenomena in mathematical sense
(the N — oo limit may not be appropriate in geo-
physics), the tree-like cascade structures evidently
take place in both. Besides this qualitative similar-
ity, as we observed in our investigation, the value
of the Hurst exponent calculated over CA gener-
ated time series (see Fig. 15) is about #=0.6-0.7,
which is close to the values obtained in field
observations [12].

We attempted to construct a cellular auto-
maton, which is as close to the existing dynamical
models (usually written in the language of differ-
ential equations) as possible. We proposed an
asymmetric stress redistribution CA which better
fits the symmetry of the original BK model. We
have also developed an analytic method which
suggests a new integral characteristic of the CA-
generated event size.
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FIGURE 15 The Hurst exponent for the time series gener-
ated by two-dimensional CA.

The next step towards the construction of the
more realistic CA for the earthquake-related
studies should account for the fact that seismic
events are essentially shear events, and, therefore,
new degrees of freedom should be incorporated in
the numerical models. An analytical investigation
of the problem might require some new links
between dynamical models, SOC theory and phase
transitions [13].
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