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Some neurons generate endogenous rhythms with a period of a few hundred milliseconds,
while others generate rhythms with a period of a few tens of seconds. Sometimes rhythms
appear chaotic. Explaining how these neurons can generate various modes of oscillation with
a widely ranging frequency is a challenge. In the first part of this review, we illustrate that
such rhythms can be generated from simple yet elegant mathematical models. Chaos
embedded in rhythmic activity has interesting characteristics that are not seen in other
physical systems. Understanding of how these neurons utilizes endogenous rhythms to
communicate with each other is important in elucidating where the brain gets various
rhythms and why it can pervert into abnormal rhythms under diseased conditions. Using the
islet of Langerhans in pancreas as an example, in the second part of this review, we illustrate
how insulin secreting S-cells communicate with glucagon secreting «-cells to achieve an

optimal insulin release.
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1. INTRODUCTION

Neurons generate action potentials upon receiving
synaptic input or external stimuli. Sometimes, the
action potential appears in a form of tonic firing.
Other times it appears as a burst consisting of spikes
that are separated by a silent quiescent period.
These rhythms are important for maintaining our
daily life. For example, burst firing of 0.1-4Hz
(known as delta wave) is found during deep sleep,
spindle wave of 7—14 Hz is found in the early states
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of sleep, and single spike firing of 20—-80Hz
(gamma wave) is found during the awake state
(Steriade et al., 1993). This oscillatory behavior is
believed to originate from a network of neurons in
the thalamus and cortex (Steriade and Llinas,
1988). Each neuron involved in this network is
believed to possess endogenous rhythmic activity,
and its frequency is modulated by the secondary
messengers (e.g., cyclic AMP) which can alter the
property of the pacemaker currents (McCormick,
1992).
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In the first part of this review, we treat rhythmic
activity of three types of neurons. Our first neuron
1s the thalamocortical neuron. This neuron con-
nects thalamus to cortex. Thalamus is the principal
gateway to the cortex, and essentially all inputs to
the cortex are relayed through the thalamus. In
addition to the generation of the rhythms of sleep,
thalamus is involved in the pathological spike and
wave of absence epilepsy (Steriade et al., 1993). Our
second neuron is the pyramidal neuron in hippo-
campus. This neuron is of great interest to neuro-
scientists since a single neuron can generate a
variety of interesting electrical behaviors (Wong
and Prince, 1981). In addition, groups of hippo-
campal neurons can generate synchronized epilepti-
form oscillations (Traub et al., 1991). To those
readers who are not familiar with neuroscience,
we include Fig. 1 which illustrates the structure of
the central nervous system. Our third neuron is the
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bursting neurons of molluscan ganglion. Gastro-
pod molluscs have the largest and most accessible
cell body of the animal kingdom. Because of these,
they are particularly suited to study learning and
memory. Some of the neurons in this family have
the ability to burst when isolated from their
neighboring cells (Lotshaw et al., 1986).

In Fig. 2A, we show the intracellular recordings
made on the thalamocortical neuron (TCN). This
figure is retouched from Fig. 3 of Nunez et al.
(1992). As shown in the top frame, TCN gives rise
to oscillations when the membrane potential is
around —57mV. This oscillation has a form of
spindle wave consisting of a high-amplitude spike
mixed with small-amplitude oscillations. When the
potential is lowered to —65mV by the application
of a hyperpolarization current (first arrow), the
spindle oscillation persists. The feature associated
with the spindle oscillation can be seen more clearly

Fornix

. Thalamus

Hippocampus

The central nervous system showing the location of hippocampus, cortex, and thalamus. (Sce Color Plate 1.)
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FIGURE 2 Endogenous bursting generated by thalamocortical neurons (frame A), pyramidal neurons (frame B), and TI5
neuron of Aplysia of mollusc family (frame C). Note that the former two bursters arc fast bursters with a bursting period of few
hundred milliscconds, while the later is a slow burster with a period of few tens of seconds. In frame A, a hyperpolarizing current
is applicd at the first arrow, and a stronger hyperpolarization current is applied at the sccond arrow. The inscts show spindle
(lely) and delta (right) waves. In frame B, a depolarization current is increased from trace a o b. (o ¢, and finally to d. The top
insct shows bursting in an expanded scale, and the bottom inset shows repetitive spiking. In frame C, scrotonin is applicd stcadily
on the left. and cyclic GMP analog is applied steadily on the right.
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in an expanded scale on the upper right trace. Fur-
ther hyperpolarization (second arrow) brings the
membrane potential to —80mV, and this in turn
induces delta oscillation. The delta oscillation con-
sists of fast spikes that appear on the top of a slow
wave, as can be seen more clearly in an expanded
scale on the lower right trace.

In Fig. 2B, we show the recording of pyramidal
neurons in the hippocampus. This figure is re-
touched from Fig. 2 of Wong and Prince (1981). As
shown in trace a, the pyramidal neurons with
resting potentials of less than —65mV burst spon-
taneously. The burst typically consists of groups of
2—-10 spikes separated by a long duration of post-
burst hyperpolarizations (0.5—2 s). This can be seen
more clearly in an expanded scale on the right.
When the membrane potential is depolarized by a
steady depolarizing current, the frequency of burst
firing increases to a maximum of not more than
5Hz (see trace b). On further depolarization, the
spontaneous activity consists of a mixture of soli-
tary spikes and burst firing (see trace c). At a more
depolarized level, only single spikes persist (see the
bottom right trace). Finally, the neuronal response
changes from trains of fast spikes to long duration
slow spikes with an amplitude of about 20 mV (see
trace d).

In Fig. 2C, we have displayed the bursting
behavior of the R15 neurons in the abdominal
ganglion of the marine mollusc Aplysia californica
(hereafter referred to as the mollusc neuron, MLN).
This figure is retouched from Figs. 1 and 9 of
Lotshaw et al. (1986). As shown in the left frame,
serotonin enhances the interburst hyperpolari-
zation at first (middle trace), but a longer appli-
cation of serotonin induces continuous spiking
(bottom trace). A structure similar to this has been
observed in the presence of cyclic GMP analog
guanylylimiododiphosphate (see the right frame).
This transformation is believed to be induced by
protein kinase A that acts on several different types
of ion channels. This kinase is activated by cyclic
adenosine monophosphate (cCAMP), which is pro-
duced when serotonin binds to a receptor involved
in the adenylate—cyclase transduction pathway.

To reiterate, TCN and the hippocampal pyram-
idal neuron (PYN) are the neurons in the central
nervous system. These neurons are fast bursters
whose burst period is about few hundred milli-
seconds. On the other hand, the Aplysia T15 neu-
rons are the neurons in mollusc family, whose soma
is larger than any known neuron. They are slow
bursters with a periodicity of a few tens of seconds.
In Sections 2 and 3, we explain how a minimal
mathematical model can be derived for rhythmic
activity of these neurons. In Section 4, we demon-
strate that complex rhythms with seemingly difter-
ent periodicity may arise from these mathematical
models. In Sections 5-8, we display various
dynamic tools that can unravel complex structures
embedded in these neuronal models. In Section 9,
taking the islet cells in the mouse pancreas as an
example, we show how a network of excitable cells
can utilize endogenous rhythmic activity in order
to achieve their physiological functions. Section 10
summarizes the present review and discusses a
future outlook.

2. MODEL

As shown in Fig. 3, a typical neuron consists of the
cell body (soma), dendrites which receive informa-
tion from the presynaptic neuron, and the axon

Synaptic terminal
Dendrites

Cell body

FIGURE 3 A schematic representation of a neuron which
consists of cell body (soma), dendrites where the neuron
received information from the synaptic terminal, and axon
where the action potential is transmitted to the synaptic term-
inal, and synapse where the neurotransmitter is released.
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which carries impulses to the postsynaptic cell. The
axon terminates at specialized structures called
synapses. Modeling the whole structure of the neu-
ron is an impossible task, since there are so many
unknowns. Moreover, it defeats the purpose of
modeling; the essence of mathematical modeling
is to explain complex phenomena (e.g., Fig. 2) by
picking up only the main events. To explain endo-
genous rhythmic activity, our group has developed
a one-compartment neuronal model (Chay, 1983;
1984; 1985a; 1990a,b; 1993a,b; 1996a,b; Chay and
Fan, 1993; Chay and Cook, 1988; Chay and Lee,
1990; Chay et al., 1995). This compartmental model
is a model that lumps the dendritic membrane with
the soma, and all the inputs are delivered to the
lumped membrane. This simplified model helps
one understand the essential features that are
required for endogenous rhythms. In addition, a
one-compartment model is useful as building block
for the construction of network models, which can
be used for the study of epilepsy, schizophrenia and
Alzheimer disease.

The TCN model described in this paper is
adopted from Chay and Fan (1993). In this model,
the plasma membrane contains a voltage-activated,
low-threshold Ca®" channel (T-type) that inacti-
vates in a voltage-dependent manner. In addition,
the model contains Hodgkin—Huxley type Na*t and
K" channels and a leak current (Hodgkin and
Huxley, 1952). The low-threshold T-type current
I, activates first, and this activation in turn gives
rise to a higher threshold Na™ current In,. Acti-
vation of Iy, in turn activates a delayed rectifying
K™ current Ixpr), that leads to spike activity.
Thus, Ic, 1s a pacemaker current that generates
bursting in TCN.

The PYN model is an unpublished result of
Chay and Lee, where a mixed inward current in
the three-variable model of Chay (1985a) is
separated by Na' and Ca®" currents. This neuron
contains a Ca’"-sensitive K™ channel [K(Ca) chan-
nel], in addition to all the channels in TCN. Unlike
the Nat and Ca®* channels in TCN, however, the
Na* channel in PYN is a low-threshold channel,
while the Ca®" channel (L-type) is a high-threshold

channel that does not inactivate. In this cell, the
Na™ current activates first, and this in turn activates
the higher threshold Ca>" current. In PYN, [Ca®"];
is a dynamic variable that depends on influx of
extracellular Ca®" from outside through the cal-
cium channel and efflux of Ca’>" via the Ca®"'-
pump. During the spiking Ca’" accumulates
slowly. This accumulation in turn activates Ik (ca)
leading to the termination of the plateau. Thus,
I (ca) Is a pacemaker current that generates burst-
ing in PYN.

There are several models formulated for MLN
(Chay, 1983; 1990a; 1996a,b), but the model de-
scribed in this paper (Chay, 1996a) is attractive in
that it depicts only a minimal feature of MLN. In
this model, the bursting is due to the participation
of the endoplasmic reticulum (ER), which releases
luminal Ca®" by the calcium-induced calcium
release (CICR) mechanism (Berridge, 1991). The
calcium concentration in ER, [Ca®']gg, modulates
a voltage-independent Ca®" channel in the plasma
membrane known as a CRAC (calcium release
activated current) channel (Hoth and Penner,
1992). In addition, this model contains a voltage-
dependent Ca”" channel, a delayed rectifying K"
channel, and a leak current. In this model, [Ca®']; is
a fast dynamic variable that activates the calcium-
releasing channel (CRC) in the ER. On the other
hand, [Ca®']gr is a slow dynamic variable that
modulates I.,,., the pacemaker current.

To recapitulate, these models utilize three dis-
tinct mechanisms in order to burst — the first model
utilizes an oscillating T-type Ca®" current, the
second model utilizes a Ca*>"-sensitive K™ channel
that is modulated by oscillating intracellular
Ca®" concentration, and the third model uti-
lizes a voltage-independent Ca®" channel that
is modulated by the calcium concentration in
the ER.

3. MATHEMATICAL FORMULATION

The change of membrane potential with time in
TCN can be described by the following electrical
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circuit equation (Hodgkin and Huxley, 1952):
dv
cmE:_ZJ,-Happ, (1)

where the sum runs over all the ionic components
in the plasma membrane, and /,,;, is an externally
applied current. The gating variables that appear
in the current components (see Appendix I) can be
described by first-order kinetics:

dy  yoo—y
a" ) (2)

Ty

where y., and 7, are the gating variable y at its
steady state and therelaxation time constant, respec-
tively, and these variables are expressed by

1
1 +exp((V, = V)/S))

Yoo (3)

and

T, = )\y{exp (ay VyS~ V>
))

—l—exp((ay— 1) VyS_y V> }—l, (4)

where V) is the voltage at the half maximal point of
the y., curve, S, is the slope at V="V, A, is an
inverse of the maximal 7, and a, determines how 7,
depends on voltage (for example, a, = 0.5 makes 7,
a bell shape as an increasing function of V).

In PYN, [Ca®"]; can be described by

d[Ca®"];
ds

= —6lc — kea([Ca?'], - [C2?"]), (5)

where ¢ is the factor that converts the electro-
motive force to the concentration gradient, /¢, is
the Ca®' current, k¢, measures Ca’"-ATPase
activity in the plasma membrane, and [Ca®'], is
the intracellular calcium concentration at the
resting potential.

In MLN, [Ca®*]gg is a dynamic variable de-
scribed by the following equation:

d[C32+]ER
B TR
2
[C32+] 2+
= I ! Ca i
p{ punpK§+[Ca2+]i2[ ]
[Caz+]i
- krcl 2
K; + [Ca™");

where Jig is a net flux of [Ca®]gg, p is a measure
of the fraction of free Ca’" in the ER, the first
term inside the curly bracket is intracellular Ca®"
pumped into the ER by the sarcoplasmic/endo-
plasmic calcium ATPase (SERCA), and the second
term is due to Ca " released from CRC via the CICR
mechanism. In addition, Eq. (5) is modified such
that Jgg is added to account for the net increase of
[Ca**']; due to the ER, and ¢/, is subtracted to
account for the increase of Ca®* due to the CRAC
channel. For more detail see Chay (1996a).

4. TIME SERIES

Figures 4A and B show the time series simulated
from the TCN models. The numbers at the right
margin show the strengths of /,,, used for the
computation. The top frame of Fig. 4A shows
interspike intervals (ISI) in milliseconds as a
function of I,,,. ISI includes only the interval
between the high-amplitude spikes, not the low-
amplitude oscillation seen in the time series. Like-
wise, the top frame of Fig. 4B shows ISI as a
function of /.

As shown in Fig. 4A, TCN is quiescent at the
resting potential of —60mV (taking 7,,, =2.6 pA/
cm? as a base line since this current can be absorbed
into a leak current). When a depolarization current
of 20.7 uA/em? is applied to this neuron, the model
gives rise to tonic oscillation (i.e., repetitive firing).
When a hyperpolarization current of 2.254 pA/em?



NEURON GENERATED RHYTHMS 221

is applied, a low-amplitude oscillation grows
gradually, and this leads to a large-amplitude spike.
Note that the spike occurs at a regular interval
(i.e., every seventh time). When a hyperpolarization
current is increased further, a spike appears more

often (i.e., every fourth at 2.12, every third at 2.02,
and every other at 1.85). Finally at I,,, = 1.34 uA/
cm? the low-amplitude oscillations disappear
completely and single spike remains (referred to as

I-spike bursting). Between the regular spindle
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FIGURE 4(A)
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FIGURE 4 Time series generated by the thalamocortical neurons as a hyperpolarization current I, is increased from the top
to the bottom. A: Low- and high-amplitude oscillations and chaos are generated as /,,, decreased from the top to the bottom.
The values shown on the right are the strength of /,,, in uA/cmz. B: Bursting exhibited by this neuron as I,,, is decreased
further. The labels on the left represent the number of spikes per burst. For example, (5.4) represents bursting consisting of an
alternating sequence of 4- and 5-spikes, and (5.5,6) represents the bursts consisting of an alternating sequence of 5-, 5-, and 6-
spikes. The top frames of A and B show the interspike intervals (ms) from Fig. 7 in an expanded scale.
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oscillations resides chaos where a large-amplitude
spike appears chaotically (see the traces generated
by ILipp=2.15, 2.07, and 1.63). Between one low-
amplitude (third trace from the bottom) and two
low-amplitude oscillations (the fifth trace from the
bottom) appears an alternating sequence of one
low-amplitude oscillation, spike, and two low-
amplitude oscillations (see the fourth trace from
the bottom). This complex pattern can be seen more
clearly by the ISI plot on the top frame.

When the strength of a hyperpolarization current
is increased further (see Fig. 4B), the 1-spike burst-
ing transforms to 2-spike bursting, 2 to 3, until
15-spike bursting appears. Beyond the 15-spike
bursting the cell transforms to another quiescent
resting state of —66 mV. Note that in some regions
two types of bursting coexist, e.g., 4- and 5-spike

R

100 mV

300 ms

burstings appear in an alternating order at
0.020 uA/cm?; bursts consisting of 5-, 5-, 4-spikes
appear in a consecutive order at —0.090 pA/cm?,
and an alternating order of 6- and 5-spike burstings
appears at —0.55 uA/cm?. Between these alternat-
ing burstings there appear chaos. The ISI plot on
the top frame reveals all the chaotic regimes that
exist between — 0.350 and 1.340.

The bursting exhibited by PYN is relatively
simple, and this is shown in Fig. 5. Here, the
numbers on the right margin indicate I,,, used
for the simulation. As I,,, increases, a spike is
added one by one starting from five spikes
until seven spikes appear. Beyond this bursting
scenario, repetitive firing resides such that its
frequency increases as the strength of /,,, increases.
During the bursting [Ca®']; accumulates (see the

i b
12.0

8.1

300 UM

FIGURE 5 Time series of the membrane potential (left) and [Ca®']; (right) of the pyramidal neuron as a steady depolarization
current, /,pp, is increased from the top to the bottom. The values of I, (in unit of nA/em?) are listed on the left. Note that the
burst generated by PYN is frequency modulation in that the shape remains the same while the frequency increases drastically as

I,pp increases.
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right frame), and this accumulation in turn acti-
vates the K(Ca) channel. This simulation is similar
to that generated by the excitable models of Plant
(1981), Chay (1983; 1984; 1985a) and the model of
Traub et al. (1991) using their 19-compartment
model for the hippocampal pyramidal neurons.
Note that as I,,, increases the burst-to-burst
interval changes dramatically, while the duration
and amplitude of a spike remain about the same.
This type of bursting is known as frequency
modulation.

As shown in Fig. 6, in MLN the bursting starts
with 1-spike bursting (see the bottom trace). The
spikes are added one by one, as I, increases.
Beyond the 6-spike bursting resides tonic firing.

\ [C a®Jer

Note that [Ca®']; is a fast dynamic variable that
follows closely the electrical bursting. It, however,
differs from electrical bursting such that [Ca**];
rises rapidly during the upstroke of V, spikes are
generated during the plateau, then [Ca’']; falls
slowly during the repolarization (until the next
upstroke of membrane potential is initiated). This
slowly falling phase of [Ca*']; is due to a slow
release of the luminal Ca** from the ER (even after
the Ca®* channel closes). In contrast to the [Ca*"];
oscillation, [Ca”]lum is a slow dynamic variable
that accumulates during the plateau, and this
accumulation in turn inactivates /... Sometimes,
bursting becomes chaotic as seen in the fourth trace
from the top.
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FIGURE 6 Time series generated by the molluse neuron, where V (left), [Ca>' ;. (middle) and [Ca®'}; (right) are shown in an
increasing function of /. From the top to the bottom [, used for the computations are 5.0,3.0,2.0,1.0,0.0,—18.0 HA Jem?.

Note chaos in the fourth trace and doublets in the second trace.
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5. BIFURCATION DIAGRAMS

Bifurcation diagram is a diagram that reveals the
dynamic structure as a function of a bifurcation
parameter. With this diagram, it is insightful to
gain information on how the bursting transforms
to tonic firing as I,p, increases. Bifurcation dia-
grams shown in Figs. 7-9 are constructed by
solving the dynamic equations in Section 3. Here,
l,p, increased incrementally and automatically
by a small step starting from a low value of I,,.
The ISI (top frames) were obtained by first
recording the time, T, as the upstroke of the nth
spike crosses V= V". After collecting all T,’s, ISI
were computed by subtracting 7, from 7, _ . The
bottom frame shows a bifurcation structure of the
slowest dynamic variable (e.g., f in TCN). These
values were obtained by recording the value of the
slowest dynamic variable at the time that the
upstroke of V crosses the V= V" line. To ensure
that only the values at the limit cycle are included,
we threw away the first few hundred cycles. For
TCN V" is taken to be —30mV, for PYN —10mV,
and for MLN —20mV. Note that ISI is in units of
milliseconds for TCN and PYN whereas it is in unit
of seconds for MLN.

As shown in Fig. 7 for TCN, a spike is reduced
one by one starting from the 15-spike bursting.
Doublets appear as the 6-spike bursting transforms
to the 5-spike bursting. This doublet corresponds
to the time series seen in the eighth trace from the
top of Fig. 4B, where the 5- and 6-spike burstings
appear in an alternating order. Between the 5-
and 4-spike burstings, one finds more complex
rhythms. First, a period-doubling scenario arises
where the 5-spike bursting appears in doublets.
Then, the period-doubling sequence ends with a
sequence consisting of 5-, 5- and 4-spike burstings.
How the sequence alternates can be seen more
clearly from the sixth frame from the top of Fig. 4B.
This alternating bursting transforms to another
alternating of 4- and S-spike burstings. The time
series of 5- and 4-bursting is displaced in the fifth
trace of Fig. 4B. Chaos exists between these two
alternating sequences. Then, the 5- and 4-spike
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FIGURE 7 Bifurcation diagram for the thalamocortical
neuron showing the interspike interval (top) and the inactiv-
ation variable of I¢, (bottom) as a function of I,,,. This dia-
gram and subsequent two diagrams were constructed by
solving the differential equations given in Section 3. ISI and f

were obtained whenever the upstroke of a spike crosses the
V'=-30mV plane.

burstings eventually transform to 4-spike bursting
by passing through another chaotic regime. The
sequence similar to this appears when the 4-spike
bursting transforms to the 3-spike bursting, the 3-
to 2-spike bursting, and finally to the I-spike
bursting. Beyond the I-spike bursting lie spindle-
like oscillations as shown in Fig. 4A, where low-
amplitude oscillations preceed a high-amplitude
spike. After passing through the resting state, the
cell exhibits tonic repetitive firing.
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The ISI of Fig. 7 indicates how fast TNC fires
as I,p, increases. Here, the upper line is the
burst-to-burst interval, and the condensed lines in
the lower part are the spike-to-spike intervals (i.e.,
low-amplitude oscillation is not included). As I,
increases, a delta wave of 1-5Hz appears at first,
and it remains there until the cell enters a spindle-
type regime. In the spindle-type regime (/,,, equals
about 1.4-2.3), the frequency of the spike-to-spike
interval ranges anywhere between 0.1 and 10 Hz
(depending on how chaotically the spike rides on
low-amplitude oscillations). Spindle chaos is not
utter chaos but has several distinct bands (see also
the top frame of Fig. 4A). In the tonic firing regime,
the frequency increases from about 10 to 100 Hz
(gamma wave) when I, is increased by 1.5-fold
(see the right branch of Fig. 7).

The bifurcation structure of PYN is rather simple
as shown by Fig. 8. In the upper line of the top
frame is the burst-to-burst interval, while the con-
densed lines of the lower part are the spike-to-spike
interval. A period-adding sequence starts with
S-spike bursting, which leads to 6-spike bursting,
and then to 7-spike bursting, before entering a
repetitive firing mode. Note that the frequency of
bursting increases exponentially from about 0.2 to
10 Hz. Also, [Ca®*]; increases drastically by nearly
100-fold during this period. Chaos does not appear
in this diagram.

As in PYN, MLN also starts with a period-
adding sequence (i.e., 1-, 2-, 3-, 4-, 5- and 6-spikes),
see Fig. 9. But unlike PYN, it ends with an inverse
period-doubling route. Chaos appears in the
region where a new spike is added, and the region
in which chaos resides becomes wider and more
complex as more spikes are added. Chaos that exists
in each of the transition regimes is not simple
regions of utter chaos, but there are several regular
periodic states embedded in each of these chaotic
regimes (Chay, 1996a).

Let us examine closely how chaos arises as
one moves from the right to the left of this diagram.
The right-most chaotic regime contains very com-
plex structure. First, the route from order into
chaos follows the Feigenbaum diagram of the

1000 .
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FIGURE 8 Bifurcation diagram for the pyramidal neuron
showing the interspike interval (top) and [Ca®*]; (bottom) as
a functions of I,,,. The ISI and [Ca®>"]; were collected when-
ever the upstroke of V passes —10mV. Note that the burst-
ing period (the top line in ISI) decreases exponentially while
the number of spikes remains almost constant (the number of
spikes can be found from the number of lines in [Ca®']).

period-doubling scenario (Feigenbaum, 1973). Out
of repetitive spiking two branches bifurcate
(period-2), out of these branches two branches bi-
furcate again (period-4), and then two branches
bifurcate out of each of these again (period-8). We
can follow the bifurcating tree up to period-16;
afterwards spiking-chaos sets in (Chay, 1984; Chay
et al., 1995; Chay and Rinzel, 1993). After passing
through the spiking-chaos, crisis transition
(Grebogi and Ott, 1983) sets in, where spiking-
chaos suddenly transforms to bursting-chaos. Even
within the spiking-chaotic regime, there arises a
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FIGURE 9 Bifurcation diagram for the mollusc neuron
showing how a period-adding series starts and ends as Zpp
increases. The ISI (top) and [Ca®*]gr (bottom) were collected
whenever the upstroke of V passes —20mV.

crisis transition, demonstrating the fractal nature of
chaos. In the bursting-chaotic regime, we see a
variety of beautiful structures. There exist six bands
resulting from points not being uniformly distrib-
uted over this chaotic regime. The system ends with
regular bursting after passing through an inverse
period-doubling route (where each of six branches
inversely bifurcates). Similar patterns are seen when
6-spike bursting transforms to 5-spike bursting, 5-
to 4-spike bursting, 4 to 3. But the pattern becomes
less complex as the spike is reduced each time. This
bifurcation structure was first observed in a three-
variable model of Chay (1985a, reviewed in Chay
et al., 1995).

6. AUTO ANALYSIS

Although the bifurcation analysis approach in
Section 5 gives detailed information on the burst-
ing regime, it does not give information of where
the periodic state starts, where it ends, and whether
multiple stable branches coexist in the bifurcation
diagram. This information is provided by AUTO
analysis (Doedel, 1981; Doedel and Kernevez,
1986; Doedel et al., 1991a,b; 1997). In addition,
the role of the key channels in these neurons can be
seen more clearly using AUTO analyses. Figures
10—12 are the bifurcation diagrams obtained using
AUTO for TCN, PYN, and MLN, respectively.
In these figures, stable steady states (SSSs) are
drawn by the solid green line and unstable steady
states (USSs) by the same color in dashes. Two
distinct periodic branches can be seen in these
figures; a spiking branch on the right and a burst-
ing branch on the left. The spiking branch where
tonic firing resides is seen in the blue color with
the stable periodic state (SPS) by the solid line and
the unstable period state (UPS) by the dashes. The
bursting branch is drawn by pinks and grays. The
grays came from AUTO, and the pink dots came
from the dynamic solution (whenever AUTO could
not connect this branch).

The top frame of Fig. 10 reveals how the maxi-
mum and minimum membrane potentials of TCN
change as I,p, increases. Note that in the spiking
branch two stable states, SPS and SSS, coexist.
This means that the repetitive tonic firings seen
in the top trace of Fig. 4A are very susceptible to
noise, such that a small perturbation can make a
firing cell to a quiescent depolarized cell, and vice
versa. Note also in the region between HB (Hopf
bifurcation) =22.3166 and LP (limit point)=
23.31332, two SSSs coexist — stable repolarized
and depolarized states. From LP=23.31332 to
HB =22.3166, three states coexist — repolarized,
firing, and depolarized states.

To gain further insight into the role that each
channel plays, we plotted a bifurcation diagram
when /¢, is non-oscillatory, i.e., d=d,, and f=f
(the middle frame) and that when /Iy, is absent
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FIGURE 10 AUTO plot showing the membrane potential
vs. L, for the thalamocortical neuron. The top frame was
obtained using the five dynamic variables (d, f, i, n, and V),
the middle frame was obtained using three dynamic variables
(h, n, and V) by setting d and f at their steady state values,
and the bottom frame was obtained by setting Iy, =0. Here,
the solid green lines are stable steady states and the dashed
greens are unstable steady states. The blue envelope is a spik-
ing branch (solid is stable and dashes are unstable). The pink
circles on the top frame were obtained by solving the dynamic
equations. In the top two frames, the limit points of the steady
state occur at —167.9530 and 29.00959. In the top frame, the
periodic limit points are located at 23.31332 and 170.04882,
while in the middle frame these points are located at 27.5246
and 152.9140. HBs are listed in the figure. (See Color Plate 11.)

(bottom frame). As seen in the bottom frame, in the
absence of Iy,, Ic, can generate a low-amplitude
oscillation, which overshoots and undershoots the
steady state line (dashed green). If /¢, is not oscil-
latory (as seen in the middle frame) the bursting
branch completely disappears, and there remains
the spiking branch. Note that the spiking branch
in the top frame is almost identical to that in the
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FIGURE 11 AUTO plot showing the membrane potential

vs. Ipp for the pyramidal neuron. In the bottom frame, the
gating variable (po) of Ix(ca) is fixed at 300/(Kxc+300). In
the top and bottom frames, the green lines represent steady
state branches and blues lines represent spiking envelopes. In
the top frame the pink solid line was obtained using the
dynamic solution, since AUTO was unable to continue in the
bursting regime. (See Color Plate Iil.)

middle frame. This implies that tonic firing is
exclusively controlled by three currents, Iv,, Ik,
and /i, and the bursting is generated by the oscil-
latory Ic,.

How important is the /¢, oscillation to the
genesis of bursting can be evidenced by the bottom
frame. When Ic, is oscillatory, the membrane
potential overshoots to a level that is higher than
its steady state value, and this depolarization causes
activation of the Na™ current. That is, without this
depolarization, Iy, cannot be activated. Activation
of Iy, leads to the bursting.

The bifurcation structure of PYN is revealed by
the top frame of Fig. 11. There arc two HBs in this



NEURON GENERATED RHYTHMS 229

frame. The periodic branch that starts from the
right HB is a spiking branch where tonic firing
resides. The UPS starts from the left HB and
terminates when it approaches the HCO. A new
bursting branch that starts from this point is shown
by a pink line. This pink line was obtained by the
dynamic solution. To show why Ik ca) Is a pace-
maker current that gives rise to bursting, we dis-
played in the bottom frame a bifurcation structure
of PYN when I ca) is non-oscillatory. Ik ca) was
made non-oscillatory by fixing the gating variable
Poo at 300/(Kgxc+300). Compare the top frame
with the bottom frame. Note that the left HB
disappears and consequently the bursting branch
disappears completely when I c,, becomes non-
oscillatory.

The role that CRAC plays on the bursting for
MLN can be seen by comparing the top and
bottom frames of Fig. 12. The top frame shows
a bifurcation structure when I, is oscillatory
and the bottom frame when it is non-oscillatory.
Here, I..,. was made non-oscillatory by fixing
Poo At Kipaeo/(Kerac + 50). Note that the spiking
branch (blue) appears both on the top and bottom
frames, while the bursting branch (gray + pink)
appears only on the top frame. The pink was
obtained using the dynamic solution since AUTO
was unable to continue this part of bursting branch.
The steep change seen in the lower part of the
bursting branch is where the spike is added, starting
from 1-, 2-, 3-, 4-, 5-, 6-spikes. Beyond the 6-spikes,
the bursting branch merges with the spiking branch
(blue).

The period-adding sequences shown in Figs. 8
and 9 give little insight into why the chaos arises
only in MLN. By comparing the top frame of
Fig. 11 with the top frame of Fig. 12, however, it
becomes apparent why choas arises only in Fig. 12.
Chaos does not appear when the bursting branch
(pink) is far appart from the spiking branch (blue)
asin Fig. 11. Chaos arises only if these two branches
are closely spaced as in Fig. 12. That is, chaos is due
to SPSs (pink) and UPSs (blue) coexisting in
vicinity.
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FIGURE 12 AUTO plot for the mollusc neuron. The top
frame is plotted using the full equations, and the bottom
frame is plotted by fixing p., of Iae at Kipae ' /(Kerac + 50).
(See Color Plate IV.)

7. PHASE PLANE ANALYSIS

Phase plane analysis is another way of studying why
a complex dynamic structure arises from the model
under study. This analysis assumes that the multi-
variables in the model can be reduced to two
variables. In the case of the TCN, these variables
are the membrane potential (') and the inactiva-
tion variable f'of I, as shown in Fig. 13. In the case
of MLN, these two variables are V" and [Ca® " g as
shown in Fig. 14.

How delta and spiral waves arise as I, is raised
can be explained when the dynamic orbital is pro-
jected onto the V/—f phase plane. On this plane, we
superimpose the V-nullcline (green) and the

f-nullcline (red). Here, the f~nullcline was obtained

from therelation, f=/.,(V), whereas the V-nullcline
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FIGURE 13 The dynamic orbit that travels on the V-f
phase plane for the thalamocortical neuron. Here, the red
curves are the fnullclines (df/d7=0), the green curves are the
V-nullclines (dV/d¢=0), and the blue curves are spiking
branches. The solid lines signify stable states, while dashes are
unstable states. The top frame was constructed using I, =
—3.5uA/cm?, and the bottom frame using Lpp=2.07 pA/cm?.
(See Color Plate V.)

was drawn by setting the three fast gatings at their
steady state (i.e., d=ds,, h=hs, and n=ny) and
by using AUTO. In the V-nullcline, the solid green
lines are stable, and the dashed lines are unstable.
The knee is where SSS becomes USS. A fixed point
is the point where two nullclines intersect. Oscilla-
tion arises when the fixed point is unstable. The
fixed point is unstable when the red line intersects
the dashed green line.

How delta and spiral waves arise as I, increases
can be explained by studying the dynamic orbital
on the V-—f phase plane. Oscillation is simple as
long as the gating variables, d, h, and n, are at their
steady states. In this two-variable (V and f) system,
the path that the orbit travels is seen by the upper

and lower solid green lines — from the left to the
right on the lower branch until it hits the knee and
then jumps to the upper branch (from the right to
left) until it hits the HB (the point where the green
solid line becomes the dashed green).

Bursting arises when these variables become
dynamic, i.e., by solving all five dynamic variables
using AUTO. When the three variables are turned
on, a periodic branch appears (see the blue line) in
this phase plane. In the periodic branch (blue line),
the dashes are unstable and the solids are stable.
The homoclinic orbital (HCO) is the point where
the SPS (solid blue) intersects the USS (dashed
green). At the HCO, the period becomes infinity.

In the upper frame of Fig. 13 where the hyper-
polarization current is strong, the spike is gen-
erated as the orbit enters the periodic branch and
terminates as it passes HCO. As the spike termi-
nates the orbit drops to the lower branch of SSS.
From the point of the drop, the orbit moves to the
right. As it passes the knee, the orbit enters SPS,
and the spikes are generated again. In the lower
frame where the hyperpolarization current is weak,
the orbit cannot drop all the way down to the SSS
but to the USS near the knee. Note that in this
region USS curves gently. Since the USS slopes
gently, the orbit can spiral around the fixed point.
The amplitude of the spiral grows gradually. When
it grows enough the Na™ current is elicited. Once
the Na™' current is activated, the large-amplitude
spike follows.

In the case of MLN, the complex oscillations
embedded in the model can be explained by
projecting the dynamic orbit on the V—[Ca*"]gr
phase plane. Figure 14 reveals the orbit which
travels at six different locations of the bifurcation
diagrams of Fig. 9. Here, repetitive spiking (tur-
quoise) appears at /,,, = 5.0, doublets at /,,, = 3.0,
chaos (green) at I, = 1.0, 5-spike bursting (red) at
Lpp=0.0, 2-spike bursting (pink) at I,,,=—10,
and l-spike bursting (blue) at /,,, = —18. The solid
lines at the bottom are SSSs, the dashed lines in
the middle are USSs, and the solid lines at the
top and middle are SPSs. Note that the V-
nullcline slides to the left and upward as I,
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FIGURE 14 The dynamic orbit projected on the V~[Ca”"]ggr phase plane for the mollusc neuron at six different /,p, values:

Lipp=—18 (blue), I,pp,=—10.0 (pink), I,p,=0.0 (red), I,p,=1.0

(green), I, =3.0 (navy blue), and I p,=35.0 p/em? (turquoise).

Here, the solid lines on the bottom represent SSSs, the dashed lines in the middle represent USSs. The top and middle solid lines

are spiking envelopes. (See Color Plate VI.)

increases. The [Ca’"]gr-nullcline, on the other
hand, is invariant to I,p, and it intersects the USS
(not shown).

How bursting, chaos, and spiking arise from
MLN can be explained as follows. Note that
the inward current I, decreases as [Ca’']ggr
increases. So, as one moves from the left side to
the right, the inward current contributed by /I ;¢
decreases, but the inward current contributed by
Ipp increases. Thus, in some regions in the diagram
there is an increase in the sum of the two currents,
while in others there is a decrease in the sum. A
decrease leads to a gain in the downward speed of
the orbit, and an increase leads to the opposite effect
(i.e., the orbit stays around the periodic branch).

On the left-most region (blue and pink) where
I,pp carries a strong hyperpolarization current, the
orbit has a very strong downward speed. This
speed sends the orbit to the SSS. Once in the
SSS, the orbit moves to the left until it passes
the knee. After passing the knee, the orbit enters the
SPS, and the spikes are generated. Each time the
orbit spikes [Ca®"]gr increases, and this increase
results in a decrease of /... This decrease causes
the spike to come closer and closer to the HCO. As
the orbit passes HCO, the spike terminates, and the
cycle repeats.

At the right-most region (turquoise and navy
blue) where I,,, carries a sufficiently strong
depolarization current, the orbit cannot come
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closer to HCO (since it does not have enough
downward speed). Repetitive spiking follows.
How does bursting-chaos set in? Follow the green
trajectory in Fig. 14. As seen here, if the orbit does
not have enough speed to land on the SSS (i.e., the
lowest solid line), it gets trapped on the USS (the
dashes lines). When the orbit is in the USS, it travels
to the left along the path provided by USS. Since
this path is unstable the orbit can reenter the SPS in
a random manner. One of these entries may cause
the orbit to gain enough speed to land on the SSS.
Once it lands on the SSS, the orbit has to follow the
stable path and enters back to the periodic branch.

8. TYPES OF BIFURCATION DIAGRAMS

The bifurcation diagrams shown in Figs. 10—12
suggest that there are at least four distinct ways that
a periodic branch arises from a HB and terminates

L)
SSS
//
SPS HB
HB
55—
(IIn)
~ SSS
~ .:,I;m/“
)
sss

as I,pp changes. These structures are schematically
presented in Fig. 15.

In Type I, a periodic branch that evolves from
one of the HBs terminates when it enters the
second HB. An example is seen in the bottom frame
of Fig. 10. It also appeared in the two-variable
model of Chay and Lee (1990; 1992). A subcritical
HB is the HB from which an unstable periodic
branch is evolved (as seen in the right HB of top
and middle frames in Fig. 10). A supercritical HB
is the HB from which a stable periodic state is
evolved (as seen in the right HB of the bottom frame
of the same figure). For more discussion on types of
HB, see Glass and Mackey (1988).

In Type II, a periodic branch evolves from the
HB and terminates at a homoclinic orbital giving
rise to homoclinic bifurcation (Wang and Rinzel,
1995). When it terminates at the knee it is referred
to as saddle node bifurcation. When it terminates
at the USS, it is referred to as regular saddle
bifurcation. Examples of homoclinic bifurcation

(I SPS /Sss

sss

FIGURE 15 Four types of a bifurcation structure, which show how the periodic branch starts and how it ends. (See Color Plate

VIL)
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are seen in the bottom frames of Figs. 11
and 12. Note in these frames that the periodic
state terminates at the knee, forming saddle node
bifurcation.

In Type III, a periodic branch that starts from
one of HBs terminates with an infinite period
when it reaches the USS. Another one that starts
from the second HB terminates when it meets the
periodic branch from the first HB. An example is
shown in the top frame of Fig. 12. Type Il has been
observed in bursting neurons (see Fig. 5 of Chay
et al., 1995). A period-doubling scenario arises
from the intersection of the two periodic branches.
That is, doublets are formed by SPS and UPS
which coexist in this region. The time series of the
doublets can be seen in the second trace of Fig. 6,
and their phase—plane trajectory can be seen in the
navy blue line in Fig. 14.

In Type 1V, an unstable periodic branch that is
evolved from one of HBs terminates with an infinite
period at HCO. Unlike Type II, the amplitude of
the oscillation that is evolved from the second HB
is so high that it passes the knee. But, this periodic
branch also terminates as soon as it passes the first
HB. An example is seen in the middle frame of
Fig. 10. This has been first observed in the Beeler—
Reuter model of ventricular myocardium (Chay
and Lee, 1985).

There is another type that is a combination of
types 111 and 1V, and this is seen in the left side of
the top frames of Figs. 10 and 11. Note from these
figures that there are two HBs (left and right). UPS
evolves from the left HB and terminates when it
meets HCO (as in type 1V). However, above this
HCO arises a SPS that terminates when it meets a
periodic branch from the right HB. This periodic
branch can be UPS as in the frame of Fig. 10 or
SPS as in the top frame of Fig. 11.

9. NETWORK PHENOMENA

One of the most challenging problems of brain
research is how different types of neurons interact
so as to give rise to the complex rhythmic behavior

seen in the electroencephalograph (EEG) of the
brain. Since the brain is too complex, a network
behavior can be more effectively studied in other
simpler systems, e.g., the islet of Langerhans in
pancreas.

The S-cells occupy about 70% of the islet. In the
islet, the (-cells are surrounded by at least three
other cell types. These are the a-cells that secrete the
hormone glucagon, the é-cells that secrete the
hormone somatostatin, and the PP cells that secrete
pancreatic polypeptide hormone. Both glucagon
and somatostatin affect insulin release such that
glucagon enhances the secretion of insulin while
somatostatin inhibits the secretion of both insulin
and glucagon. In addition, insulin secretion is also
affected by neurotransmitters released from both
sympathetic and parasympathetic fibers, which
enter pancreatic islets.

The a-cells (which lie on the periphery of the islet)
have a lower threshold for glucose (i.e., about
SmM) than (-cells (which require about 7mM of
glucose). How important the role of a-cell is to the
(B-cell can be seen from experiment of Pipeleers
(1984), who showed that intact S-cells (i.e., S-cells
in the islet) release 30-fold more insulin than
isolated single S-cells. This higher release of insulin
by intact G-cells is attributed to glucagon released
from the neighboring a-cells (Schuit and Pipeleers,
1985). This is further evidenced by the secretory
response which is markedly amplified when single
(-cells are incubated in the presence of «a-cells or
glucagon (Gorus et al., 1984).

The «-cells also affect electrical bursting and
[Ca”"]; oscillation of B-cells. This can be evidenced
by Fig. 16 which compares electrical bursting
(frames A and C) and [Ca®"]; oscillation (frames
B and C) of single cells (frames A and B) with intact
p-cells (frames C and D). The inset of this figure
shows electrical bursting (left) and [Ca®"]; oscilla-
tion (right) at the limit cycle. Frame A was
retouched from Smith et al. (1990), while frames
B-D were retouched from Hattori et al. (1994).
Note that single cells lack what is known as the
biphasic response (the rich transient state seen in
frames C and D).
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FIGURE 16 Electrical bursting (A) and intracellular calcium oscillation (B) in isolated single f-cells. Electrical bursting (C) and

intracellular calcium oscillation (D) in intact S-cells in the islet.

Glucagon and forskolin (an activator of the
catalytic subunit of adenylate cyclase) can increase
not only the frequency of electrical bursting but
also the plateau fraction (the ratio of the activate
phase to the silent phase (Ikeuchi and Cook, 1984).
Epinephrine and somatostatin, on the other hand,
enhance hyperpolarization and decrease the fre-
quency of burst activity (Cook and Perara, 1982;
Pace and Tarvin, 1981). This intriguing S-cell
bursting behavior is shown in Fig. 17. Note that
in the presence of glucagon [-cells burst with a
periodicity of several seconds (the top trace), while
in the presence of epinephrine the periodicity
becomes several minutes (the bottom trace). Insulin
production is increased by several-fold in the
presence of glucagon, and the opposite is observed
in the presence of epinephrine.

The slow bursting (which takes tens of seconds
to several minutes) in Figs. 16 and 17 could not
possibly be due to a H—H type mechanism, since the
H-H mechanism is too fast to generate such slow
bursting. Also, it could not be due to the [Ca’"];
dynamics since this dynamic variable is very fast as
evidenced by experiment which shows that it fully

grows within tens of milliseconds following the
depolarization. To generate such a long periodicity
that lasts for tens of seconds to several minutes, the
participation of the ER is essential. The ER is not
only a slow buffer but also is a store that contains
a huge amount of Ca’".

Based on Figs. 16 and 17 and other experimental
evidence, a store-operated mathematical model has
been formulated (Chay, 1995; 1996a,b; 1997a,b),
which was modified from our previous mathe-
matical S-cell models (Chay, 1985b; 1986; 1987,
1990b,c; 1993a,b; 1996a—c; Chay and Kang, 1988;
Chay and Keizer, 1983; Chay et al. (1990); Lee
et al., 1983). This model is based on the hypothesis
that [Ca®" Jjum in the ER is a slow dynamic variable
and this slow dynamic variable is the origin of the
underlying wave in pancreatic 8-cell bursting.

The model is schematically presented in Fig. 18.
As shown in this figure, three signaling pathways
exist in S-cells (Prentki and Matschinsky, 1987):
(i) the phosphatidylinositol (PI-) signaling pathway
(left) that can activate protein kinase C (PKC),
(ii) the glucose-sensing pathway (right) that can
activate calcium—calmodulin kinase (Ca—CAM K),
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FIGURE 17 Top trace: continuous recording of membrane potential of [-cell exposed to a steady flow of epinephrine
(500 nmol) for 15min. Bottom trace: effect of glucagon (2mM) on glucose induced electrical activity.
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FIGURE 18 Three signaling pathways involved in secretion of insulin from pancreatic S-cells: the phosphatidylinositol-signaling
athway (left). the glucose-pathway (lower right and the center), and the adenylate—cyclase transduction pathway (right). Here

the symbols + and — indicate activation and inhibition, respectively. In the islet of Langerhans, the «-cell secretes glucagon at
lower threshold of glucose. (See Color Plate VIII.)
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and (iii) the adenylate—cyclase (AC-) transduction
pathway (top right) that can activate cyclic AMP-
dependent kinase (PKA). These kinases can release
insulin from its granules via phosphorylation. An
agonist (e.g., neurotransmitters such as acetylcho-
line or hormones such as glucagon) activates the
GTP-bound G-protein when it is bound to their
respective receptors (REC). This agonist produces a
secondary messenger such as cAMP (see right) and
IP; (left). When the glucose concentration is raised
to about 7mM, [ATP]; rises in B-cells, and this rise
activates the AC-transduction pathway. How glu-
cagon can raise [CAMP] whereas epinephrine can
suppress [CAMP] can be seen from the reactions
involved in the right side of Fig. 18

A “hot” spot exists underneath a cluster of L-type
Ca”" channels (see the top left). This channel opens
when the membrane is depolarized, permitting
extracellular Ca®" ions to come inside the cell and
inactivates when [Ca”"]; is undesirably high. A
Ca®"-sensitive K™ channel [K(Ca)] coexists with
L-type channels. In the vicinity of the VDCCs lies a
voltage-independent non-selective (NS) cationic
channel, which is activated when [Ca*™]jum
becomes low. Outside this hot spot lies a voltage-
dependent delayed rectifying K™ [DR(K)] channel,
which contributes to spike activity.

In the hot spot lie two types of intracellular
calcium stores (ICSs): the ER and insulin contain-
ing secretory granules (SGs). SGs sequester intra-
cellular Ca?* via its Ca>"-ATPase pump and then
release insulin and intragranular Ca®" into the
external medium during exocytosis (Bovist et al.,
1995). The ER contains a SERCA that pumps
intracellular Ca®" into the ER. The ER also con-
tains two types of CRC — an IP3-sensitive CRC and
a ryanodine-sensitive CRC whose activity is modu-
lated by both [Ca®']; and cAMP.

According to this model, the K(ATP) is active at
rest. The NS channel is also active since the ER is
nearly empty. The current generated by these two
channels is the main source of the resting potential
of —70mV. Addition of glucose raises [ATP];. A
rise of [ATP]; triggers several events. First, the
K(ATP) channels close (the lower right of Fig. 18).

This closure leads to depolarization as seen in
frame C of Fig. 16. As the K(ATP) channel closes,
a low-threshold transient Na* channel of a H-H
type is activated first. This channel, in turn,
activates a slower voltage-dependent L-type Ca®"
channel. Second, SERCA is activated, which in
turn decreases [Ca*]; as seen in frame D of Fig. 16.
Third, a rise of [ATP]; raises [CAMP] via the AC-
signaling pathway (see the reaction on the right of
Fig. 18). [TAMP] enhances activity of CRC in the
ER. During the transient rich active phase (see
Fig. 16C), more intracellular Ca>" is pumped into
the ER. When ER is filled sufficiently by Ca®", the
cell repolarizes (due to inactivation of the NS
current) as seen in frame C of Fig. 16. Enhanced
CRC prevents [Ca®"]; to come all the way down to
the initial level. Biphasicity is a result of enhanced
CRC activity.

As shown in Fig. 19, the model exhibits more
than a 10-fold increase in the frequency of bursting
when k. (i.e., CRC activity) is increased by 10-fold.
This explains why glucagon and somatostatin have
the ability to control the frequency of the bursting
(see Fig. 17). Note that isolated, single cells lack
neighboring a-cells. That explains why isolated
(-cells contain a very low concentration of cAMP,
and this is why single §-cells burst with a periodi-
city lasting for several minutes while intact S-cell
bursts with a periodicity lasting for tens of seconds
(see Fig. 16).

Note from Figs. 16, 17 and 19 that the faster
bursting causes a decrease in the amplitude of
both electrical bursting and [Ca®']; oscillation.
Note also that the [Ca®"]; level becomes higher
as the frequency becomes faster. A lot more in-
sulin is secreted from intact S-cells than from
isolated (-cells. Likewise, a lot more insulin is
secreted from (-cells in the presence of glucagon
than epinephrine. This implies that insulin secre-
tion is modulated both by frequency and amplitude
(Chay, 1997b). Figure 19, thus, is a demonstra-
tion that neighboring glucagon secreting a-cells
are required for (-cells to release insulin in an
optimal way.
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FIGURE 19 Model simulation by changing k., the release rate of the calcium releasing channel. The parameter k. is
increased from 0.03s " (top), to 0.1s ™' (middle), and to 0.5s ' (bottom).

10. DISCUSSION

Two types of chaos have been discovered in the
models presently reviewed: period-reducing chaos
that leads to spindle oscillations (Figs. 7 and 13)
and period-adding chaos that leads to an inverse
period-doubling sequence (Figs. 9 and 14). In the
period-reducing scenario exhibited by TCN (Fig. 7),
the spikes are reduced one by one at first. When the
spikes are reduced sufficiently chaos appears in the
transition region where a spike disappears. The
chaotic regime becomes broader and more complex
at first, then it becomes narrower and simpler as the

spikes disappear one by one until only one spike
remains. Beyond the 1-spike bursting, this neuron
generates spindle- type chaotic oscillations. In the
period-adding scenario exhibited by MLN (Fig. 9),
a spike is added, one by one at first. When spikes
are sufficiently added, chaos appears in the region
where a new spike appears. Crisis transition
(Grebogi and Ott, 1983) sets in, and this transition
leads to a familiar period-doubling sequence in an
inverse order. As one can see in Fig. 8, not all the
period-adding sequences contain chaos.

To our knowledge a period-adding scenario was
first observed in Chay’s neuronal models (1984;



238 T.R. CHAY AND Y.S. LEE

1985a), and a period-reducing scenario was first
observed in the Chay—Fan model (1993) and later
in Wang’s thalamic relay neuron model (1994). In
addition to the currents that appear in the Chay—
Fan model, Wang’s model contains two other
currents — a hyperpolarization activated cationic
NS current and a persistent Nat current that
does not inactivate. Since the bursting structure
from his model is almost identical to that of the
Chay—Fan model, these two currents must be
playing submissive roles. In the Chay—Fan model,
this submissive current is modeled by 7, = 2.6 pA/
cm? at the resting potential of —60 mV.

According to the way the neurons burst, we
classify their bursting structures by two ways — fast
bursters with a periodicity of a few hundred milli-
seconds and slow bursters with a periodicity of
tens of seconds. In this review, we showed that the
slow bursters require the participation of the ER
in addition to the ion channels in the plasma
membrane and [Ca’"]; dynamics. Not only does
the ER act as a Ca®" buffer (so as to slow down
the rhythm), but it also releases luminal Ca** by a
calcium-induced Ca”*" release mechanism. The
neurotransmitters involved in the PI- and AC-
signaling pathways influence the burst periodicity
by modulating CRCs in the ER (see Figs. 17 and
19). The faster bursters (e.g., TCN and PYN), on
the other hand, do not require the ER participation.
These bursters seem to utilize the ER only under
unusual circumstances (e.g., coma) by releasing the
neurotransmitters/hormones involved in the two
signaling pathways.

Our view that there are two classifications for the
bursting structure contrasts that of Wang and
Rinzel (1995), who classified the bursters according
to the ion channels involved in the bursters. The
gating kinetics of ion channels are very fast
processes which occur within a few hundred
milliseconds at most. Therefore, it is not possible
that the channel kinetics can generate such slow
bursters.

As shown in MLN and f-cells, the ER can also
communicate with a “capacitative” channel in the
plasma membrane, in that this channel allows

extracellular Ca®" to enter the cell when the luminal
Ca®" concentration is lowered. This capacitative
current may be a voltage-independent Ca®* channel
as in MLN or a non-selective cationic channel as
in pancreatic 3-cells. The latter channel indirectly
allows extracellular Ca®" to enter the cell by
activating a voltage-dependent Ca®* channel in
the plasma membrane.

Bursting cells in the central nervous system and
oscillating sinus nodal cells in the heart also utilize a
cationic NS current in order to generate rhythms.
However, this current known as I, or , is activated
by hyperpolarization. This raises a question
whether I, or I, is also modulated by [Ca®"]gg
and the hyperpolarization activation is merely a
consequence of the ER modulation. This hypothesis
based on the observation that the NS channel in 3-
cells is indirectly modulated by hyperpolarization,
in that [Ca®"]gg becomes low when V' becomes
hyperpolarized and it becomes high when V is
depolarized (Chay, 1996b,c).

Earlier, Traub et al. (1991) have formulated a
19-compartment cable model for the pyramidal
cells of CA3 and CA1 regions of guinea-pig hippo-
campus. A network of this model was able to
simulate several important aspects of the experi-
mental recordings made on hippocampal slices
(Traub et al., 1991; 1992; 1993; 1994). With this
multi-compartmental model, we can learn how the
soma and dendrites communicate. However, with
our one-compartment model we can explore the
behavior of a very large network more efficiently. In
addition, the one-compartment model will allow us
to reformulate the model that is applicable to the
pyramidal cells of CA3 and CA1 in more efficient
way. Traub et al.’s model in current form (and our
one-compartment model) is not able to simulate
traces ¢ and d of Fig. 1B. The fact that these two
models cannot simulate the crucial experimental
features of Wong et al. (1981) should be taken as an
indication that the mechanisms assumed in these
models may not even describe the actual events
taking place in single pyramidal neurons.

Understanding the cellular mechanisms involved
in endogenous rhythms is important in elucidating
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how the brain gets various rhythms (e.g., 7-14 Hz
spindle waves, 4—7 Hz theta waves, 0.5-4 Hz delta
waves, 40 Hz gamma waves) and why it can pervert
into abnormal rhythms (e.g., epileptic seizures)
under diseased conditions. The study of the brain
is complex. In this review, the islet cells of
Langerhans is used as an exmaple to gain insights
into how a neural net utilizes endogenous rhythm.
In the central nervous system, the d-cells corre-
spond to inhibitory neurons (e.g., the reticular
thalamic nucleus) whereas the a-cells correspond
to excitatory neurons (e.g., thalamocortical neu-
rons). The bottom trace of Fig. 17 reminds one of
the low-amplitude, high-frequency activity in the
neocortex characteristic of the awake state, and the
top trace reminds of high-amplitude, low-frequncy
rhythms during sleep (Steriade et al., 1993).

To gain a deeper understanding of the interaction
among islet cells, one should consider the fact that
both «a- and é-cells exhibit oscillations in cytosolic
Ca’" concentration when they sense glucose (Berts
et al., 1996a,b). The oscillatory a- and d-cells may
induce oscillation in cAMP in 3-cells. Thus, further
studies of interaction among «-, (-, and é-cells
might explain why 30% of 3-cells exhibit a mixture
of oscillation consisting of slow oscillation of
frequency ranging from 0.05 to 0.5min "' and
superimposed faster oscillations of frequency of
about 3min~' (Henquin et al., 1982; Cook, 1983;
Valdeolmillos et al., 1989).

Constructing a mathematical model that is
applicable to real neural nets is a hard task. Even
in a single cell level, it requires numerous testing
and refining before one can finally produce a
mathematical model that can simulate most of
the crucial experiments. The study of pancreatic
islet offers a way of understanding how various
types of the neurons interact to achieve an ideal
environment. We have shown that in the islet of
Langerhans the neighboring glucagon secreting
a-cells are required for insulin secreting S-cells to
function effectively (see Figs. 16, 17 and 19). We
hope that our effort toward unraveling endogenous
rhythm of single neurons and interaction among
them will someday lead to clearer understanding

of how and why the brain gets various rhythms
and how they can pervert into abnormal rhythms
under diseased conditions.
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APPENDIX I: IONIC CURRENTS AND
PARAMETERS INVOLVED IN THREE
TYPES OF NEURONS

Thalamocortical Neuron

This model is adopted from the model that
appeared in Chay and Fan (1993). To be applicable
to TCN, we have lowered the potential by —20mV
and raised the kinetic parameters by 100. There are
four currents in this model:

Ica = geadf(V = Vea)s  Ina = gnamooh(V = V),
Ix = gxn(V—"Vk), I=gu(V—-"VL).

The basic parametric values in the model are as
follows: Cp=1pF/cm? gc.=1.4 mS/cm?, gna=
80 mS/cm?, gx =50 mS/em?, g =2mS/em?, Ve, =
130mV,Vna=70mV, Vi =—-85mV,V =-80mV,
Vy=—-60mV, S,=7mV, V,=-65mV, §,=
—10mV, Vy=-45mV, S,,=5mV, V,=-60mV,
Spy=-9mV, V,=5mV, S,=15mV, ;' = 10ms,
)\f‘-‘ =400ms, A\;'=2ms, \;' =3ms, @,=0.5,
ays=0.5,a,=0.5,a,=0.

Pyramidal Neurons

This is unpublished work of Chay and Lee. This
model contains six currents:

ICz\:gCadz(V_ VC"\)» INa:gNamcz,oh(V_ VNa)s
Ix=ggn(V—="Vg), IL=g.(V—-VL),
Ix (cay =gx (caP(V = V).
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Here, the gating variables d, s, and n are voltage
dependent (and the equations given by Eqgs. 2—4 in
the text), while p in the Ca®"-sensitive K* channel
depends on Ca>" such that

_ [Caz+]i
B Kgc + [Ca”]i

[ee]

and

_ [Ca> )
TKC = )\Kc(l + Koo >
The basic parametric values in the model are
as follows: Cp=3puF/cm? gca=10mS/cm?,
gna=20mS/cm?,  gx =15mS/cm?, g =0.2m$/
em?,  Vea=100mV,  Vaa=40mV, Vg=
=75mV, V= -60mV, V;=-20mV, S;=9mV,
Vm=-35mV, S,=7.5mV, V,=—-40mV, S,=
—4mV, V,= —18mV, S,=7.5mV, \;! = 5ms,
Nl =15ms, A1 =9ms, A\t =800ms, a,=0.5,
a4=0.5, a,=0.5, Kxc=50uM, ¢=0.13, kc,=
0.0l ms ', and [Ca®*],=0.1 uM.

Molluse Neurons

This model has appeared in Chay (1996a). The
model contains the following four currents:

Ica = gead SV = Vea), Ik = gxn*(V = V),
I, = gL(V— VL), Lrac = gcracpoo(V“‘ VK)~

Here, the gating variables, d, f, and n follows Egs. (2)
and (3) in the text, and p., in Ik cy) is expressed as

Kcrac

Poo = <37 -
= Kerae + [Caz+]ER

The reversal potential V¢, takes a Nernst potential
of the following form:

RT, [Ca’"],
2F [C32+]i ’

Ca —

where [Ca®'], is the extracellular calcium con-
centration.

The basic parametric values in the model are
as follows: Cp, =1 pF/em?, gco = 600 uS/cm?, g =

500 uS/em?, gL =6pS/em?,  gerac= 1.5 puS/cm?,
Vi=-75mV, Vy=—-60mV, V,=-25mV, S;=
9mV, V;=-47mV, S;=-7TmV, V,= —18mV,
S,=14mV, A, =165 ', )\, =255"", 4,=0.5, a,=
0, Keae=7uM, K,=10uM, K,=0.5uM,
kca=5.08"", kpump=30s"", k= 035!, 9=
0.02, p=0.2, [Ca’"],=0, [Ca*"],= 2.5mM, and
T=37°C.

APPENDIX II: PANCREATIC B-CELL
MODEL

This model appeared in Chay (1997). It consists of
the following two differential equations:

d[Ca?*],
dt
= — ¢lca — kca [C32+]i + kl'el([caH]lum - [C32+]i)
= Kpump [Caer]i’
d[Caz+]lum
dt

= 'krel([Caz+]1um - [C32+]i) + kpump[Ca”]i.
There are seven ionic components as shown below:

Ing = gNamgoh(V‘ VNa),
Ic, = PCadfoo%]%/
(-t ery /)
1 —exp((2FV)/(RT)) ’

foo = _ Kea
¥ Keat [Ca®*];
KZ
Ins = Zns NS

3
K} + [Ca™]

lum

X ( V= Tns — 10>
1 —exp(0.1(Vns — V) ’
Ixor) = groryi* (V = Vi),
[Ca™ ]}
K, + [Ca]]
Igatey = gx(atey(V = V),
IL=gL(V—11).

Ik (ca) = gK(Ca) V=)
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The gating variables, d, f, and n follow Egs. (2) and
(3) in the text. The basic parametric values in the
model are as follows: Cy, = 1 pF/em?, gna = 600 pS/

em?,  pea=2.0nAjcm?, gK(DR) = 600 nS/cm?,

gk(cay=>5.0 pS/em’, gns=35.0pS/em’, grate) =
2.0pS/em?, gp =0.3uS/em?, Vo= 80mV, Vi =
~75mV, Vns=-20mV, V. =80mV, Vn,=
—20mV, S,=9mV, V,=-48mV, S,=-7mV,
Vy=—-10mV, S;=5mV, V,=18mV, S,=14mV,
A= 0.08s", Al =045, A1 =0.085s, a,=0.5,
a;=0.5, a,=0.5, Kc,=1.0uM, Kns=50uM,
kca=7.08"", kpump=30s"", kq=02s"", f=
0.2, [Ca*"], =2500 pM, and T'=37°C.
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