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1. INTRODUCTION

Oscillation and comparison theorems for the linear
difference equation

n=12,..., (L1)

CnXntl + Cne1Xn—1 = bpXa,

has been investigated intensively [1-5].

Equation (1.1) is equivalent to the self adjoint
equation

Aey1Axy—1) +anx, =0, n=12,..., (1.2)
where a,=c,+c,_1 — b,.

A nontrivial solution {x,} of Eq. (1.1) is said to
be oscillatory, if the terms x, of the solution are
neither eventually all positive nor eventually all
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negative. Otherwise, the solution is called non-
oscillatory. It is well known that if one nontrivial
solution of (1.1) is oscillatory, then all solutions are
oscillatory, and so we can say that (1.1) is
oscillatory.

In Section 2, we want to show some further
results on the comparison theorem and oscillation
criteria for (1.1), which improve some known
results. In Section 3, we consider the forced
oscillation.

2. COMPARISON THEOREMS AND
OSCILLATION

We assume that a,, > 0 and b,, > 0 for all large n. Let
{x,} be an eventually positive solution of (1.1),
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say x,>0 for mn>N. Taking Riccati type
transformation

Sp = (bn+1xn+l)/(cnxn)» n>N, (2'1)
(1.1) becomes
GnSn + 1/sp1 =1, for n>N+1, (2.2)

where g, = ¢2/(byby11).
It is known [1] that (1.1) is nonoscillatory if and
only if (2.2) has an eventually positive solution.
We consider (1.1) and (2.2) together with

Cnyn-l—l + Cn—lyn—l == Bnyn, n= 1,2, ey (23)
and
QnSn + 1/Sn—l =1,

where 0, = C2/(B,Byi1)-

(2.4)

THEOREM 2.1 Suppose that 0,0, 11> Gugn+1

and Qn+ Qni12> G+ qn+1 for all large n. If (2.3)
is nonoscillatory, so is Eq. (1.1).

Proof To prove that (1.1) has a positive solu-
tion, it is sufficient to prove that (2.2) has a
positive solution {s,} for n> N. Since ¢, + ¢, 1<
Q.+ Q0,4 for all large n, then there exists a posi-
tive integer n; > N such that Q, 4+1 > gp,+1. From
(2.4), S, >1 for n>n;. Choose s,, > Sy, > 1 and
define sy,41 by (2.2). In view of (2.2) and (2.4), we
have

Gm+18m+1 =1 — I/Snl
= Qn1+1Sn1+1 + I/Sm
- 1/Sn1 2 Qn1+ISn1+1-

Hence

and Sy, 8p,+1 > Sy, Sn+1. By induction, we can
prove that (2.2) has a positive solution {s,},
n>n;, which implies that (1.1) has a nonoscilla-
tory solution. The proof is complete.

Remark 2.1 Theorem 2.1 improves Theorem
6.8.4 in [1].

We write (1.1) in the form

Cn—1

by
Xnt1 — 'C_xn + Xp-1 =0

and let y, = [[]/-x(ci/bi)] Xn. Then (1.1) becomes

Va1 = Yn+ @nyn-1 = 0. (25)

The oscillation of (1.1) and (2.5) is equivalent. By
known results [1, Theorems 6.20.3 and 6.20.4] or
(2], if

liminfg, >, (2.6)
then (1.1) is oscillatory and if
limsupg, <1, (2.7)

n—0o0

then (1.1) is nonoscillatory. In particular, the
equation

Vnrt = Yn+3yac1=0 (2.8)

is nonoscillatory.
Combining the above results and Theorem 2.1,
we obtain the following corollaries.

COROLLARY 2.1 If g, +¢qn1<1/2 for all large
n. Then (1.1) is nonoscillatory.

In fact, let 0, = 1/4, Corollary 2.1 follows from
Theorem 2.1.

Remark 2.2 Corollary 2.1 improves Theorem
6.5.5in [1].

COROLLARY 2.2 If ¢ngn+1>1/16+ €y, for some
€0 >0 and all large n, then (1.1) is oscillatory.

Proof Let € be a positive number such that

1/(4—€)<+/1/16 + ¢ and Q, =1/(4 —¢;) for
all large n. Then

7= 0nOnt1

1
n4n Z_'_+6 Z————
qn9n+1 TR 4—e)

and

2
Gn + Gnt1 2 2\/ Indni1 = '4‘__61 = O+ On11
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for all large n. Since Q,=1/(4—¢;) implies that
(2.3) is oscillatory. By Theorem 2.1, (1.1) is
oscillatory also.

Remark 2.3 Corollary 2.2 improves Theorem
6.5.3 in [1].

Example 2.1 Consider the difference equation

CnXntl + Cn—1Xn—1 = Xp, (29)
where
{ \14.1/15, n:even,
Cp—1 =
V1/15, n:odd.
Then
14.1/15, n:even,
_ 2
Gn = Cpy =
1/15, n: odd.

Hence ¢,q,41=14.1/(15)2>>1/16. By Corollary
2.2, every solution of (2.9) is oscillatory.

Oscillation criteria in [1] are not valid for (2.9).
Define two sequences {R,} and {r,} as follows:

Ry, = qu + qu-1 + qngni1 + Gn-1gn-2 + qnq;21_|.1
+ @ngn+149n+2 + qn—lqﬁ_z + anﬁ+1‘7n+2

+ @2y Gn-1Gn-3 + Gn-1Gn-2qn-3, 1 >4,
(2.10)

and

'n = qn + qn-1 + quqne1 + Gn-1qgn-2, 0 > 3. (211)

THEOREM 2.2 Assume that there exists an
increasing sequence {n;} such that R, > 1. Then
(1.1) is oscillatory.

Proof Suppose to the contrary, let (1.1) be non-
oscillatory. Then (2.2) has a positive solution {s,}
defined for n> N. From (2.2), by the iterating

substitution, we have

1 = gngnr1SnSnt1 + Gn + Gni1 + 1/ (Sn-152-2)

= qnGn+15nSn+1(gn+25n+2 + 1/Sn41)
X (qni1Sns1 + 1/sn) + gn + gn1
+ (gn-15n-1 + 1/s5-2)(qn-25n—2 + 1/5n-3)
/(Sn-15n-2)

= qn+ Gn-1 + qnqni1 + Gn-14n-2
+ QnQﬁ+1snSn+1 + GnGn19n125n+15n42
+ qnq;21+1qn+25nsi+1sn+2 + gn-2/(Sn-15n-2)
+ g1/ (Sn-25n-3) + 1/ (Sn-15>_25-3)

> Gn + Gnt + Gudne1 T Gn-19n-2 + Gndiyy
+ Gnnt 19012 + Gnoy19ni2 + Gn-145 2

+ gn-19n-29n-3 + C]n—lQﬁ_2(Jn—3
=R,

which contradicts the assumption. The proof is
complete.

COROLLARY 2.3 Iflim sup,, _, oo R, > 1, then (1.1)
is oscillatory.

It is easy to see that limsup, _, o 7,>1, then
lim sup,, _, oo R, > 1.
Example 2.1 satisfies conditions of Corollary 2.3.

Remark 2.3 Corollary 2.3 improves Corollary
6.5.11in [1].

3. FORCED OSCILLATION

We consider the forced equation

A%y 4 puXps1 =fu, n=0,1,..., (3.1)
and the homogeneous equation
A?x, + PuXuy1 = 0. (3.2)

LEmMMA 3.1 Let {¢,} be a solution of (3.2) and
{x,} be a solution of (3.1). Let x,,= ¢yn, then {y,}
satisfies

A(¢n¢n+lAyn) = ¢n+1fw (33)
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Proof Clearly,

GuDXy = PpAPpyn + GnPui1AYn.

Hence

A(Gnbnr1Dyn)
= A(¢nAxn) — A(PnApnyn)
= Gui1 A2Xn + AGAXy — Gs1 Apus1 Ayn
— A(¢nAdn)yn
= Gni1(fo = PnPu1Yn+1)
+ Apu(Aduyn + i1 Ayn)
— Gui1AGus1 Ay — (1 A%, +
= Gns1fn — ¢’;21+IJ’n+1Pn
+ Gni1Ayn(Agy — Adny1)
= Gni1fo — o1 Yns1Pn
- A2</>,,¢,,+1(y,,+1 — ¥n)
= Gni1/n
= Gni1fn-

The proof is complete.

(An)*)n
- ¢n+1 A2¢nyn

- ¢’n+lA2¢nyn
- yn+1¢n+l (pn¢n+l + A2(]5n)

THEOREM 3.1 Let {¢,} be a positive solution of
(3.2). Assume that there exists a positive integer N
such that

@)
lim inf Z i fi=—
* =N

and

lim sup Y st fi = oo,

o0 =N
(i1)
> 1

:OO’

(ii)

11211 g.lf Z

i=N ¢i

ZN ¢t¢l+ z ¢j+1]§

Then every solution of (3.1) is oscillatory.

¢t+1 Z¢J+1f

lim sup

n—00

Proof Suppose to the contrary, let {x,} be a
positive solution of (3.1) and x,=¢,y, By
Lemma 3.1, y, satisfies (3.3).

Summing (3.3) from N to n— 1, we obtain

n—1
Gnbns1Dyn — ONON11AYN = Z bir1fi- (34)
=N
Condition (i) implies that
hrtzn g}f¢n¢n+lAyn = —00

Let N; be a large integer that ¢n,dn,+18yN, <
—M, M > 0. From (3.4), we obtain

PN, PN +1AJ’N
A = 1 1 1
Y ¢n¢n+l ¢n¢n+l Z_ZN1 ¢l+1f
M
_ 3.5
P e ; diif (33)
Summing (3.5) from N; to n—1, we obtain
n—1 1
— <-M
YIS ,% Pidit1
n—1
3.6
2 ¢,+1,ZM inifi (3.6)

Condition (iii) and (3.6) imply that there exists a
sequence {n;} such that y,, < 0 for all large i, which
is a contradiction.

We can prove this theorem in a similar manner
for negative solutions of (3.1).

From (3.6), we obtain the following result.

THEOREM 3.2 Let {¢,} be a positive solution of
(3.2) with Y25 1/(ditpir1) < 00. Assume that (iii)
of Theorem 3.1 holds. Then every solution of (3.1)
is oscillatory.

Example 3.1 Consider

St x
A n+(n+1)2(n+3) n+1
_ Ly @rmDe+)

=12,...
nt1 , B )
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It is easy to see that the equation

Azxn+——2——— =0

n+ )2t 3) " (38)

has a solution {¢,=n/(n+ 1)}, which satisfies (ii).
On the other hand,

S i fi= S (1Y Qi 1) = (-1t e, (39)
=N N

i=

where ¢ is a constant. Then (3.9) implies that (i) is
satisfied. Also, (iii) is satisfied. By Theorem 3.1,
every solution of (3.7) is oscillatory.

Remark 3.1 Theorems 3.1 and 3.2 treat the oscil-
lation of (3.1), which is caused by the forced term.
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