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In this paper the definition of attractor of a dissipative dynamical system is introduced. The
classification of the existing types of attractors and the analysis of their characteristics are
presented. The discussed problems are illustrated by the results of numerical simulations
using a number of real examples that provides the possibility to understand easily the main
properties, similarities and differences of the considered types of attractors.
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1 INTRODUCTION

One of the main methods for investigation of self-
oscillatory systems is the statement of equations
describing their dynamics and analysis of their
solutions. Therefore, the study of the field of
mathematics named “Dynamical systems” is the
basic part of fundamental training on the theory of
nonlinear oscillations. In the classical theory of
oscillations the study of periodic and quasiperiodic
regimes which are important for the description of
the phenomena of generation and modulation of
oscillations was and remains the central problem.
From this point of view, the mathematical images
of these oscillatory regimes (a limit cycle and an
n-dimensional torus) were not the main objects for
investigation. They only provided an alternative
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representation of the above-mentioned regimes in
the phase space of the systems under consideration.
Really, one can define the main properties of
periodic oscillations using a segment of one of the
phase coordinates x(z) on a finite time interval
0 <t< T (T — period of oscillations) together
with the Fourier-spectrum or auto-correlation
function of initial regime. In this sense quasiperi-
odic oscillations are only slightly different. For the
observation time 7 of the realization x(¢) it is
necessary to choose the largest of the characteristic
times that corresponds to the minimal basic
frequency in the spectrum. In other words, the
availability of a good oscillograph and spectrum
analyzer allows investigators to get a complete
information about the properties of generators
including modulation effects.
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When the dynamical chaos was discovered the
situation dramatically changed (Schuster, 1984;
Lichtenberg and Lieberman, 1983; Anishchenko,
1990; 1995). Chaotic oscillations are not periodic
or quasiperiodic. Therefore, observation x(¢) dur-
ing any finite time interval does not provide
complete information. Moreover, it is very difficult
to predict the specific observation times during
which it is possible to determine the features of
oscillatory regime. In this situation it is useful to
analyze in detail the geometric image of a self-
oscillatory regime in the system phase space, i.e.,
attractor. Note, that analyzing of the geometric
structure of attractors being the images of self-
oscillations in dissipative dynamical systems can-
not provide full information about oscillations
being, however, substantially more effective com-
pared to the time series analysis.

As known, a so-called strange attractor (Lorenz,
1963; Ruelle and Takens, 1971) is associated with
the image of dynamical chaos. Originally all non-
trivial self-oscillatory regimes, whose general prop-
erty is the absence of periodicity in time, were
related with the image of the strange attractor.
Later there came the understanding that chaotic
self-oscillations may be substantially different in
their properties. And it definitely leads to the
difference in structure and properties of the
corresponding attractors. So, for example, it has
become clear that strange attractor is the image of
some “ideal” chaos satisfying a number of rigorous
mathematical requirements. It has been established
that in real systems the regime of strange attractor
in the strict sense of mathematical definition
cannot be realized. What we observe in experi-
ments is more often the regimes of a so-called
quasihyperbolic attractor or quasiattractor, which
are more complicated and cannot be rigorously
described in terms of mathematics (Afraimovich
and Shil’nikov, 1983; Afraimovich, 1989; 1990). A
distinctive feature of strange, quasihyperbolic and
quasiattractors is exponential instability of phase
trajectories and the fractal dimension. Exponential
instability is a criterium of chaotic behavior of the
system in time. The fractal metric dimension shows

that the attractor is a complex geometric object
which is not a manifold. Since our knowledge of
deterministic chaos is related just with these
properties, one does not pay a significant attention
to the differences between geometric characteristics
of the attractor and temporal characteristics of the
system’s dynamics. Nevertheless, recently the atten-
tion of researchers has been attracted by the fact
that non-periodic oscillations can possess asymp-
totic stability in the presence of complex geometry
of the attractor and, on the contrary, they can be
exponentially unstable and correspond to the
attractor which is a simple geometric object
(a manifold) (see, Farmer et al., 1983; Grebogi
et al., 1984).

It is appropriate to introduce a definition of
“strangeness” of the attractor in terms of its
geometric structure and without connection with
the system’s dynamics. In the paper by Grebogi
et al. (1984) such a definition is formulated:
“Strange attractor is an attractor which is not a
finite set of points and not piecewise differentiable.
We say that an attractor is piecewise differentiable
if it is a piecewise differentiable curve or surface, or
a volume bounded by a piecewise differentiable
closed surface”.

Taking into account the importance of the
analysis of complex non-periodic regimes of oscil-
lations in dynamical systems it is very useful to
classify in detail the types of attractors and
formulate their definitions and basic properties.

In this paper we present definitions, properties
and examples of non-trivial attractors of different
types which are realized in differential and discrete
dissipative nonlinear dynamical systems with finite
number of degrees of freedom.

The paper is organized as follows. We start with
a definition of a dynamical system attractor in
Section 1. Regular attractors are discussed in
Section 2. The main part of the work is Section 3
that is devoted to the analysis of strange chaotic
attractors. In this section we describe robust
hyperbolic strange attractors, quasi-hyperbolic
attractors (Lorenz type attractors) and quasiat-
tractors. In Section 4 chaotic nonstrange and
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strange nonchaotic attractors are analyzed. And
finally, in Section 5 we formulate conclusions.

The results presented in this paper have the aim
to provide the necessary information available for
researchers being specialists in the experiments
with nonlinear dynamical systems.

2 WHAT IS AN ATTRACTOR?

The time evolution of the state of a system with N/2
degrees of freedom is described by either a
deterministic system of differential equations or
N-dimensional maps:

dx i

717:5@=ﬁ(X1,...,xN,u1,...,uk), (1)

or

xﬁ,+1 :fi(x,l,,xﬁ,..

i=1,2,...,N.

N
'9~xn’/"'17""/j'k)a

Here, x;(¢) (or x') are variables uniquely describ-
ing the system’s state (its phase coordinates), u; are
system parameters, f;(x,u) are smooth and, in
general case, nonlinear functions. A solution of
the system (1) exists, it is unique for the given initial
conditions x;(0) (or x}) and smoothly depends on
the initial conditions (Cauchy theorem).

Time evolution of the system can be uniquely
related with the phase trajectory in N-dimensional
Cartesian space R”, whose coordinates are phase
variables. The trajectory starts from the given
initial condition x;(0) (or x}), i=1,2,...,N.

We will consider only self-oscillatory regimes of
the system motion. From the physical point of
view, the latter means that in the system there exist
some steady-state oscillations whose characteristics
do not depend, to a certain extent, on the choice of
initial state. We shall also consider the regime of a
stable equilibrium state being a limit case of self-
oscillatory regime. As we will see, the notion self-
oscillatory regime introduced by Andronov
(Andronov et al., 1981) is the classical physical

interpretation of the definition of a dynamical
system attractor.

Let us examine the phase space R” of system (1).
All the values of system’s parameters my, are fixed.
Let G be some finite (or infinite) region belonging
to R" and including a subregion G,. The regions G,
and G satisfy the following conditions: 1. For any
initial conditions x;(0) (or x}) from the region G,
all phase trajectories will reach sooner or later (in
theory as ¢ — oo (or n— 00)) the region Gy. 2. If a
phase trajectory belongs to the region G, at the
moment ¢ = t; (n=n,), then it will always belong to
Gy, i.e., for any t>1t; (or n>n;) the phase
trajectory will be in the region G, (Afraimovich,
1989; 1990).

If the conditions 1 and 2 are satisfied, then the
region Gy is called an attractor of a dynamical
system (1). In other words, the attractor Gy is the
invariant with respect to the law (1) bounded set of
system’s trajectories, which any trajectories from
G approach and remain in. The region G is called
the region (or basin) of attraction for the attractor
Gy. According to the definition, only transient
nonstationary types of motions can exist in the
region G. The region G, corresponds to the steady-
state (limit) types of motions. In this sense one can
say that the attractor Gy is the isolated limit set of
the phase trajectories of system (1). Any types of
the system motion in the vicinity of the attractor
have only a transient character and as a result, the
phase trajectories are attracted by the region Gy
as t— oo (n—o00). Hence, the name appears —
“attractor”.

The given definition of the attractor requires
some comments. Let us examine a stable ergodic
two-dimensional torus as an example of attractor.
Any point on the ergodic torus surface belongs to
the attractor. By varying the system’s parameter,
turn to the regime of the resonance structure on the
torus (let it be the resonance 1:1). In the Poincare
section the resonance 1:1 corresponds to the
closure of unstable separatrixes of a saddle on a
stable node. The problem is whether these separa-
trixes belong to the attractor or the attractor is a
stable point being an image of the resonant limit
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cycle. From the viewpoint of rigorous mathe-
matics, the first is correct! But in experiments we
will observe only the stable limit cycle that is
connected with the attractor in our understanding
(Andronov et al., 1981; Arnold et al., 1986).

3 REGULAR ATTRACTORS

Before deterministic chaos was discovered only
three types of stable steady-state solutions of the
dynamical system (1) were known: an equilibrium
state when after a transient process the system
reaches a stationary (non-changing in time) state; a
stable periodic solution and a stable quasiperiodic
solution. In these cases the corresponding attrac-
tors are a point in the phase space, a limit cycle and
a limit n-dimensional torus. The Lyapunov char-
acteristic exponents (LCE) signature of a phase
trajectory will be as follows (Anishchenko, 1990;
1995):

3 29 ¢ 29 3 1
s 90ty

— for an equilibrium state,

“0” 113 LEINT 29 13 9
> B LI

— for a limit cycle,

“0”, “0”, e, “0” , [ 79’ e, “o_

n

— for an n-dimensional torus, n > 2.

As we will see further, strange chaotic attractors
of a complex geometrical structure correspond to
non-periodic solutions of the system (1). They have
at least one positive Lyapunov exponent and, as a
consequence, a fractional dimension that can be
evaluated by using Kaplan—Yorke’s definition
(Kaplan and Yorke, 1979):

DY
D :j—i————-—zl:l l, (2)
[Aj1]

where j is the largest integer number for which the
sum Ay + Ay + - -+ A; > 0. The dimension D calcu-
lated from formula (2) is one of the fractal

dimensions of the set and is called Lyapunov’s
dimension. In general case, it is a lower bound for
the metric dimension of the attractor. If we apply
formula (2) to the three types of the attractors
indicated above, we will then have the dimension
that is equal to zero for the attractor being a point,
D =1 for the limit cycle attractor and D = for the
n-dimensional torus. It is very interesting to note
that in all cases the fractal dimension is strictly
equal to the metric dimension of the attractors. The
indicated types of the solutions are asymptotically
stable. The dimension D of the corresponding
attractors is defined by an integer number and
strongly coincides with the metric dimension. All
these facts allow us to say that the attractors
indicated above are regular. If one of the formu-
lated conditions is violated, then the attractor is
excluded from the group of regular attractors. As it
has become clear now non-regular (strange) attrac-
tors require special classification (Afraimovich,
1984; 1989; 1990; Shil’nikov, 1993).

4 STRANGE CHAOTIC ATTRACTORS

A new type of attractor of the dynamical system (1)
was first revealed by Lorenz in 1963 when he
was investigating numerically the Lorenz model
(Lorenz, 1963). A rigorous proof of the existence of
non-periodic solutions of system (1) was given by
Ruelle and Takens in 1971. They also introduced
the notion of strange attractor as the image of
deterministic chaos (Ruelle and Takens, 1971).
Since that time, very often the phenomenon of
deterministic chaos and the concept of strange
attractor are definitely connected to each other.
However, this is not always correct and needs some
explanations.

4.1 Robust Hyperbolic Attractors

If we read the work (Ruelle and Takens, 1971) very
carefully, we will realize that a proof of the strange
attractor existence was given under the strong
suggestion that the dynamical system (1) was
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robust hyperbolic. What does it mean? The system
is hyperbolic if all of its phase trajectories are
saddle. A point as an image of a trajectory in the
Poincare section is always a saddle. Robustness
means that when the right-hand parts in (1) are
slightly perturbed or control parameters are
slightly varied, all the trajectories remain saddle.

Speaking more strictly, hyberbolic attractors
should satisfy the following three conditions
(Afraimovich, 1989; 1990):

1. A hyperbolic attractor consists of a continuum
of “unstable leaves”, or curves, which are
dense in the attractor and along which close
trajectories exponentially diverge.

2. A hyperbolic attractor (in the neighborhood of
each point) has the same geometry defined as a
product of the Cantor set on an interval.

3. A hyperbolic attractor has a neighborhood
foliated into “stable leaves” along which the
close trajectories converge to the attractor.

Robustness means that properties 1-3 hold under
perturbations.

Figure 1 represents a saddle trajectory I and the
corresponding points Q; of its intersection with
the secant Poincare surface S and also illustrates
the local behavior of stable and unstable manifolds
of a saddle point Q;. But the condition that the
point Q; of intersection of T" with S is locally a
robust saddle is not enough for robust hyperboli-
city! Certain conditions upon global (non-local)
properties of stable and unstable manifolds are
needed. Let us consider Fig. 2. Due to the presence
of attractor, stable and unstable manifolds W and
W, are to be concentrated in the region of the
attractor Gy. At the same time they can intersect
with the appearance of homoclinic points (sur-
faces) by forming so-called homoclinic structures.
These structures in robust hyperbolic systems must
be robust. This means that from the topological
viewpoint, the intersection structure of W and W,
must correspond to Fig. 2(a) and should not
change qualitatively under perturbations! The
cases in Figs. 2(b) and (c) are excluded as they
characterize two non-robust phenomena, namely,

the phenomenon of closure of the manifolds with
the loop formation (Fig. 2(b)) and the phenomenon
of tangency of the stable and unstable manifolds

(Fig. 2(c)).

FIGURE 1 A saddle point Q; as the image of a hyperbolic
trajectory in the Poincare section.

To

FIGURE 2 Three possible cases of the intersection of the
stable and unstable separatrixes of the saddle point Q; in the
Poincare section.
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If non-local properties of the manifolds lead to
the non-robust situations shown in Figs. 2(b) and
(c) when the dynamical system is perturbed,
bifurcations of system’s solutions are possible
(Gavrilov and Shil’'nikov, 1972; 1973). In robust
hyperbolic systems no bifurcations should occur. If
small perturbations are introduced, the trajectory I'
always remains saddle, the latter corresponding
to the case shown in Fig. 2(a). As we will see later,
the non-robust cases (Figs. 2(b) and (c)) cause the
appearance of more complicated chaotic attracting
sets, i.e., quasiattractors (Afraimovich, 1984; 1989;
1990).

Therefore, it is necessary to understand that
strange (according to Ruelle —Takens) attractors
are always robust hyperbolic limit sets. The main
feature in which strange chaotic attractors differ
from regular ones is exponential instability of the
phase trajectory on the attractor. In this case the
LCE spectrum includes at least one positive
exponent:

13 99 e G 2 « 5
+ s 0 L R

D=2+ X\"/|\s] > 2.

As seen from Kaplan—Yorke’s formula, fractal
dimension of an attractor will always be more than
2 and, in general case, will not be defined by an
integer number. A minimal dimension of the phase
space in which a strange attractor can be
“embedded” equals 3. Therefore, the regime of
deterministic chaos can be observed in differential
dynamical systems which have the dimensionality
N >3.

In mathematics at least two examples of robust
hyberbolic attractors are known. These are
Smale ~Williams attractor (Smale, 1967) and
Plykin attractor (Plykin, 1980). Unfortunately, up
to now in real systems the regime of rigorously
hyperbolic robust chaos has not been revealed!
“Truly” strange attractors are an ideal but still
unattainable model of deterministic chaos. In real
life, as usual, everything is more complicated
compared with idealization.

4.2 Quasihyperbolic Attractors. Lorenz
Type Attractors

There is a finite number of dynamical systems that
have almost hyperbolic attractors (quasihyperbolic
attractors). Such attractors do not contain stable
regular trajectories (points, cycles etc.) and are
closest in their structure and properties to robust
hyperbolic attractors. As examples, we can
indicate here the Lorenz attractor (Lorenz, 1963;
Shil’'nikov, 1980), Belykh and Lozi attractors
(Lozi, 1978; Belykh, 1982; 1995). For quasihyper-
bolic attractors at least one of three conditions of
hyperbolicity is violated. In particular, for the
Lorenz attractor the second condition is not valid.
However, Lorenz type attractors were revealed in a
number of systems and from the experimental
point of view, we can treat them as the examples
of “truly” strange attractors (Shil’nikov, 1980;
Williams, 1977; Cook and Roberts, 1970).

It is surprising but it is a fact that it is the chaotic
attractor in the Lorenz model that is closest in its
properties and structure to robust hyperbolic
attractors. In the Lorenz attractor all trajectories
are saddle and when one varies parameters, no
stable points or cycles are born (Bykov and
Shil’nikov, 1989; Afraimovich, 1984; 1989; 1990).

The Lorenz equations were first obtained from
the Navier—Stokes’s equations while solving the
problem of thermal convection and have the
following form:

xX=-o(x—y), y=rx—y—xz, zZ=xy-—bz

3)

where o, b and r are control parameters. Some laser
models as well as the model of disc dynamo can be
reduced to the equations of the type (3) (Shil’nikov,
1980; Cook and Roberts, 1970).

System (3) is invariant with respect to the
transformation (—x, —y,z)— (x,y,z) and is char-
acterized by three equilibrium states. Let us fix the
values of the parameters as o =10, b =8/3. While
studying the behavior of system’s trajectories when
the parameter r is varied, over the critical point
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re- 224,74 the only chaotic attractor, i.e., the
Lorenz attractor, is realized. The basin of its
attraction is the entire phase space. The Lorenz
attractor is the attracting set consisting of the phase
trajectories which are characterized by the indi-
vidual exponential instability. The properties indi-
cated above do not change when one varies the
parameters in a finite range of their values and do
not depend on initial conditions. Figure 3 shows a
projection of the Lorenz attractor on the plane
(x,z) and the basin of its attraction.

The Lorenz attractor demonstrates practically
all properties and qualities of robust hyperbolic
attractors:

1. The presence of a denumerable set of separa-
trix loops of equilibrium states of the Lorenz
system does not lead to the birth of stable
regular attractors when any perturbations are
added.

2. When the parameters of the system (3) are
varied in a finite range of their values, no
bifurcations occur in the Lorenz attractor and
no other stable attracting subsets appear.

3. When the equations are slightly perturbed or
external noise of small intensity is added, the

FIGURE 3 Projection of the Lorenz attractor on the plane
(x,z) (black color) and the basin of its attraction (grey color)
in the Poincare section y =0 for r =28, 0 =10, b=8/3.

changes in the attractor’s structure are also
small. The own dynamical nature of the chaotic
behavior is much stronger than that of the
nondynamical chaos added from outside.

4, For the Lorenz attractor it is possible to
construct a smooth function of distribution
density p(x,y,z), i.e., the probability measure
of the attractor. Small perturbations of the flow
(3) cause small changes in the probability
measure according to the theoretical results
which were formulated for hyperbolic systems
by Kifer (1974).

The Lorenz attractor has the classical spectrum
of the Lyapunov characteristic exponents (LCE):

A =09, =0,

4
s = —14.57 @

(r =26).

It gives Lyapunov’s dimension D =2.06. The fact
that the fractal part of dimension is close to 0 is
explained by the strong contraction of the flow in
dissipative system (3)

divF=—(c+b+1). (5)

This circumstance explains the fact that the
Poincare map of the Lorenz attractor is very close
to a one-dimensional map. Due to the fact that
div F(see (5)) does not depend on phase variables,
the birth of the regime of two-frequency quasipe-
riodic oscillations in system (3) is impossible.
Therefore, the set of non-singular phase trajec-
tories of the system includes only points, cycles and
the Lorenz attractor.

Note that from experimental viewpoint, system
(3) displays practically robust hyperbolic chaos in a
finite range of values of its control parameters. The
bifurcation diagram of system (3) is shown in Fig. 4
(Bykov and Shil’'nikov, 1989). The shaded region in
the parametric space corresponds to the existence
of Lorenz attractor, while outside of this region the
properties of the chaotic attractor will be essen-
tially different. In particular, bifurcation line /5 in
Fig. 4 corresponds to the transition “Lorenz
attractor — quasiattractor”.
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Let us illustrate the typical characteristics and
properties of Lorenz attractor. The LCE spectrum
does not change under variation of initial condi-
tions because the Lorenz attractor is the only one
and the basin of its attraction is the entire phase
space (see Figs. 4 and 5).

The LCE spectrum does not practically change
as one varies the system’s control parameters in
the region of Lorenz attractor existence (see
Fig. 4). These properties visually illustrate the
robustness of Lorenz attractor in experiments:

o
20
Lorenz
attractor Quastattractor
10-
0 L 1 1
10 20 30 40 »

FIGURE 4 Bifurcation diagram of the Lorenz system on
the plane of parameters z, o for b=8/3. I, is the line of the
existence of a symmetrical separatrix loop of zero equilibrium
state; [, is the line of the birth of the Lorenz attractor; L is
the line of the bifurcation transition to quasiattractor.

A A,
o Az
-5]
-10
]
1
] A3
-15 T T T T 3
0 5 10 15 20 25 30

FIGURE 5 Dependence of the LCE spectrum of the Lorenz
attractor on the values of x coordinate for r=28, 0=10,
b= 8/3.

general properties of the attractor hold under
variation of the parameters and initial conditions;
no bifurcations of the attractor occur.
Autocorrelation function and power spectrum of
Lorenz attractor presented in Fig. 6 are typical for
intermixing systems. The autocorrelation function
almost exponentially decreases without oscillations
with the increase of time (see Fig. 6(a)). The power
spectrum is a continuous decreasing function of
frequency and does not contain pronounced peaks
at any characteristic frequencies (see Fig. 6(b)).
All the characteristics and properties of the
Lorenz attractor do not practically change in the
presence of additive (or multiplicative) noise with
small intensity. Figure 7 represents the plots for the
stationary two-dimensional probability density
p(x,z) of Lorenz attractor in the absence and in
the presence of additive noise introduced into the
three equations of system (3) (Anishchenko, 1995).

4.3 Quasiattractors

The so-called quasiattractors (Afraimovich and
Shil’nikov 1983; Shil’nikov, 1993) are most typical
in experiments. They illustrate experimentally
observed chaos in the majority of dynamical systems
(Schuster, 1984; Lichtenberg and Lieberman, 1983;
Anishchenko, 1990; 1995; Neimark and Landa,
1989; Rabinovich and Trubetskov, 1984). In the
systems with quasiattractors the regimes of deter-
ministic chaos, which are characterized by the
exponential instability of trajectories and a fractal
geometry of the attractor, are realized. From this
point of view, the characteristics of the indicated
regimes of self-oscillations are identical to the
general ones of robust hyperbolic attractors and
Lorenz type attractors. However, there are very
essential and principal differences which it is
necessary to take into consideration to avoid
incorrect explanations of experimental results. A
feature of quasiattractors is the co-existence of a
denumerable set of different chaotic and regular
attractors in a bounded element of the system phase
space volume when the system’s parameters are
fixed. This set of all co-existing limit subsets of
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FIGURE 6 Autocorrelation function and power spectrum for the Lorenz attractor (a,c) and for Anishchenko—Astakhov’s

oscillator (b, d).

trajectories in the bounded region Gy of phase space,
which all or almost all the trajectories from the
region G, including G, approach, is called the
quasiattractor of the dynamical system.
Quasiattractors are characterized by a very
complex structure of embedded basins of attrac-
tion. But the complexity is wider than this fact.
Under variation of system’s parameters in a finite
range of their values the cascades of different
bifurcations of both regular and chaotic attractors
are realized. Accordingly, the bifurcational re-
organization of their basins of attraction takes
place. The reason for such a complexity of
quasiattractors is the effects of homoclinic tan-
gency of stable and unstable manifolds of saddle
points in the Poincare section which take place on
the set of parameter values of non-zero measure

(Gavrilov and Shil’'nikov, 1972; 1973; Afraimovich,
1984; 1989; 1990).

If one takes into account that the basins of
attraction of co-existing limit sets can have fractal
boundaries and occupy very narrow regions in
phase space, then it becomes clear how important
the role of accuracy in numerical experiments and
the influence of external noises is. Let us demon-
strate the properties of quasiattractors using a
series of examples.

Let us explore a typical system whose chaotic
dynamics fully illustrates Shilnikov’s theorem
about the properties of dynamical systems with a
saddle-focus separatrix loop of the equilibrium
state (Anishchenko, 1990; 1995). This system is
called a modified oscillator with intertial nonlin-
earity (Anishchenko—Astakhov’s oscillator) and is
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Let us fix the parameters as m=1.42, g
and calculate the exponents of the LCE spectrum

as a function of initial conditions. The results are
shown in Fig. 8 and represent the co-existence of
chaotic and periodic oscillatory regimes. The more
detailed analysis of the results in Fig. 8 shows that
for —2.0 < x <0 we can observe the regime of one
of the limit cycles and the chaotic regime, while for
—4.0 < x < —2.0 a limit cycle of another family is
added (compare the values of the third exponent of
the LCE spectrum). More visually this situation

system described by the following equations:

a three-dimensional two-parametric differential
where

p(x, z) of the Lorenz attractor in the absence of noise (a) and in

FIGURE 7 Stationary two-dimensional probability density
the presence of additive white noise with intensity ¢
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which demonstrate the cascades of period doubling
bifurcations. With this, A\; equals to 0, while \,
takes different negative values. Bifurcations of the
attractors are accompanied by the changes in the
structure of their basins of attraction whose
boundaries become fractal.

The presence of stable and saddle cycles in a
quasiattractor together with chaotic limit subsets
manifests itself in the structures of autocorrelation
function (ACF) and power spectrum. The results

FIGURE 9 Projections of the co-existing attractors in sys-
tem (6) for m=1.42, g=0.097 and the structure of the basins
of their attraction in the Poincare section z= 1.

[T pm—
L I L A W M S N )

mn

FIGURE 10 Lyapunov exponents A; and A, as a function
of parameter m (g =0.2) for system (6).

calculated for the chaotic regime of system (6) at
m=1.5, g=0.2 are presented in Figs. 6(b) and (d).
The ACF decreases exponentially in average with
time and the power spectrum is continuous.
However, under a more careful consideration we
can notice a periodic component in the ACF and
sudden peaks at certain characteristic frequencies
in the spectrum. Quasiattractor differs from
Lorenz attractor by these peculiarities of ACF and
power spectrum of chaotic regime, the latter being
typical (compare the results presented in Fig. 6).
Fractality and riddling of the basin boundaries
of the set of co-existing regular and chaotic
attractors of the system cause a high sensitivity to
noise perturbations. Let us consider the regime of
the chaotic attractor in system (6) where m=1.5,
g=0.2. Figure 11 represents the plots of the two-
dimensional probability density p(x,y) in the
absence of noise and in the case when Gaussian
noise is introduced additively to the right-hand

FIGURE 11 Probability distribution density p(x,y) for the
chaotic regime in  Anishchenko-Astakhov’s  oscillator
(m=1.5, g=0.2) in the absence of noise (a) and in the pres-

ence of additive noise with intensity d= 10"~ introduced to all
the system (6) equations (b).
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parts of the three system equations. As seen from
the figures, the introduction of the noise of small
intensity leads to explicit changes in the structure of
probability function.

We have chosen the regime where the finite
number of attractors co-exist as a visual illustration
of complexity of a quasiattractor. Theoretically a
quasiattractor includes an infinite number of co-
existing limit regimes which undergo an infinite
sequence of different bifurcations when parameters
are varied slightly. Also there can be the ranges of
parameter values where (from the experimental
point of view) the system has only one chaotic
attractor that attracts all trajectories in the phase
space. If we are able to observe such a regime in
experiments and determine the region of param-
eters where it exists, we can then speak about the
regime that is close to robust hyperbolic attractor.

As an example, examine a discrete dynamical
system in the form of two coupled logistic maps
(Strelkova and Anishchenko, 1997):

Xpyr =1 — O‘xi +Y(n = Xn)s

Ynp1 =1~ 04)’% + 'Y(xn _yn)~
The only regime of hyperchaos can be realized in
system (7) whose basin of attraction is a bounded
rhombus on the parameter plane (x,, y,). However,
if we change the control parameters, the number of
co-existing attractors increases abruptly and the
structure of basins of their attraction becomes more
complicated. The results are shown in Fig. 12.
Figure 12(b), in particular, visually illustrates the
influence of uncertainty in the choice of initial
conditions on the system’s behavior. For this pur-
pose choose a small box denoted by 2 in
Fig. 12(b) as a region of uncertainty in initial
conditions from the basin of attraction of the
quasiattractor and examine its evolution in time.
We will obtain a combination of all three attractors
of the system as the stationary regime! In experi-
ments, in the presence of noise one of the three co-
existing regimes will dominate randomly in the
system’s dynamics. This means that by choosing
initial conditions with a finite accuracy the general
property of dynamical chaos, i.e. the reproduc-

(7)

FIGURE 12 Hyperchaos in system (7) for parameters
a=0.9, v=0.285 (a), the regime of the co-existence of attrac-
tors and the structure of the basins of their attraction in sys-
tem (7) as «=0.78, g =0.2876 (b) in phase space (x,, y,). The
numbers 1,2,3 denote the regions of uncertainty in initial
conditions leading to the corresponding limit sets indicated by
arrows.

ibility from initial conditions, will be violated in
such systems.

5 STRANGE NONCHAOTIC AND CHAOTIC
NONSTRANGE ATTRACTORS

Chaotic attractors of the three types described
above have two common principal properties.
The first one is the complex geometric structure
of an attractor (and, as a consequence, fractality of
its metric dimension). The second property is the
exponential instability of individual trajectories on
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the attractor. It is these properties that are used by
researchers as a criterium for diagnostics of the
regimes of deterministic chaos.

However, nonregular attractors as the mathe-
matical images of complex dynamics are not
restricted by the chaotic attractors described
above. It has become clear that chaotic behavior
in the sense of intermixing and the geometric
“strangeness” of an attractor cannot be related
with each other. Strange attractors in terms of their
geometry can be nonchaotic due to the absence of
exponential instability of phase trajectories. On the
other hand, there are examples of intermixing
dissipative systems whose attractors are not strange
in a strict sense, that is, they are not characterized
by the fractal structure and the fractal metric
dimension.

In other words, there are examples of concrete
dissipative dynamical systems whose attractors are
characterized by the following properties:

1. An attractor has a regular geometric structure
from the viewpoint of integer metric dimen-
sion. In addition, individual phase trajectories
on the attractor are exponentially unstable in
average.

2. An attractor is characterized by a complicated
geometric structure. Here, trajectories on it are
asymptotically stable. There is no intermixing.

The first type is called a chaotic nonstrange
attractor (CNA). The second one is called a strange
nonchaotic attractor (SNA).

5.1 Chaotic Nonstrange Attractors

Chaotic attractors which are not strange from the
viewpoint of their geometry have been known for a
long time (Farmer et al., 1983; Grebogi et al., 1984,
1985), but by now they nave been studied insuffi-
ciently. The modified Arnold’s map (Farmer et al.,
1983) is an example of a dynamical system with
CNA. This map is a well-known “cat map” with a
nonlinear periodic term:

Xpi1l = Xp + yu + 6cos2my,, modl,
Yn+1l = Xp + 2y, modl. (8)

If 6 < 1/2m, then map (8) is a diffeomorphism on
a torus. In other words, map (8) is one-to-one
(reversible) and transforms a unit square on the
plane (x,, y,) into itself. Map (8) is dissipative, that
is an area element contracts with each iteration.
This property is proved easily if one calculates the
Jacobian:

1 1—2nésin2my, 1
1 ) #0, 6< e 9)

The average (in time) value |J|< 1. The LCE
spectrum is “+ 7, “—”, i.e., there is intermixing.

It might seem that we are dealing with an
ordinary chaotic strange attractor, but it is not
so. A distinctive feature of the considered case is
that, despite the contraction, the motion of a
representative point of the map (8) is ergodic! As
n— 00, the point visits any element of the unit
square! The evidence of this fact is that the metric
dimension of the attractor (the capacity according
to Kolmogorov) equals 2. Although the density of
points of the attractor is not uniform in the unit
square but it is nowhere equal to 0. Therefore,
inspite of the contraction, the attractor of the
system (8) is the whole unit square. In this sense
Arnold’s attractor is not strange as its geometry is
not fractal.

Let us consider how the attractor is formed in
order to understand in more detail the peculiarities
of its structure. Let us choose a small element of the
area as a region of initial conditions (0 <x, <0.2,
0<y,<0.2) and observe the evolution of this
element while iterating map (8).

Figure 13 represents the sequential images of the
initial small square that display the following. Due
to the contraction along one direction and the
extension along another the initial square evolves
into a finite set of “bands” which tend to cover the
entire surface of the unit square when iterating. As
n— oo we have “the black square”.

But as seen from the phase diagram of the
attractor shown in Fig. 14, although the points
cover the square practically entirely its distribution
density is explicitly inhomogeneous! As a quanti-
tative measure of such an inhomogeneity we use the

J=
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FIGURE 13 Evolution of an initial square element in Arnold’s map (8) in 1, 3 and 5 iterations, respectively.

FIGURE 14 Phase diagram of the chaotic nonstrange
attractor in the Arnold map (8) for §=0.15.

information dimension 1< D;<2. For instance,
for 6=0.05, D;~1.96, for 6=0.10, D;~1.84. In
addition, as we have said, the capacity Dc=2.0
(this is a rigorous result of Y. Sinai). As a
consequence of inhomogeneity of the probability
distribution density of the points on the attractor,
the values of an probability-metric dimensions of
the Arnold’s attractor will lie in the interval
1 <D<2. These dimensions take into account
not only geometric but also dynamical properties
of the attractor.

CNAs were revealed in a number of other maps
on a torus. One can assume that ergodic chaotic
motions are typical for diffeomorphisms on a

torus. A proof of the existence of CNA in such
maps gives the possibility to state that there are
flow (differential) system in R, N >4 which have
the regimes of CNA. However, by the present time
CNAs have not been discovered in differential
dynamical systems. In this connection, in particu-
lar, by now a problem of the possibility of the
existence of the chaotic attractor on a three-
dimensional torus surface embedded into phase
space with the dimensionality N >4 is still open.

Let us pay attention to the following important
fact. As seen from Fig. 14, the chaotic set of the
points of map (8) cover densely the unit square of
the surface with some continuous probability
measure. Therefore, the attractor is the entire unit
square! Then how is this fact adjusted with the
definition of the attractor as the isolated limit set?
What is the region of attraction in this case? Such
questions arise because map (8) describes only the
attractor and does not contain any information
about transient processes. Here we should discuss as
follows. Let us choose some differential system in
A (N > 4) that has a three-dimensional torus T3 as
its attractor (the system is dissipative!). Consider the
structure of phase trajectories on 7. In order to do
that let us introduce the Poincare section on it. In
this case we have a map on a two-dimensional torus
7. System (8) is such a map. It models the
properties of the limit trajectories lying in the
original system on 77, i.c., on the attractor. There-
fore, Fig. 14 illustrates the structure of the attractor
and the region of its attraction is outside of the limits
of possibilities described by the discrete model.
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5.2 Strange Nonchaotic Attractors

As we have said, strange chaotic attractors possess
geometric “strangeness” and intermixing. In other
words, complex dynamics of an intermixing system
is the reason for the geometric complexity of the
corresponding attractor. Nevertheless, in the case
of CNA we had to divide these properties, since
intermixing cannot always lead to geometrical
“strangeness” of the attractor. In this part we will
consider the possibility of realizing the opposite
situation when the system demonstrates compli-
cated non-periodical oscillatory regime that is
asymptotically stable (without intermixing) but
the attractor is not regular from the viewpoint of
its geometric structure.

One can easily think of examples of nonrobust
SNAs. Any strange chaotic attractor at the critical
point of its transition to chaos is an example of
SNA. Indeed, let us explore, for instance, the
Feigenbaum attractor in the well-known logistic
map:

Xn1 = rxu(1 — xp). (10)

At the critical point r* =3.569945 there appears a
limit set of points that has the fractal dimension
Dc=0.548 ... (a so-called Feigenbaum attractor).
In addition, the Lyapunov exponent is equal to
zero (there is no chaos!). According to the
definition, such an attractor is strange nonchaotic.
But it is nonrobust. From the physical point of
view, it is interesting to study robust attractors
which exist on the set of parameter values of non-
zero measure and hold their structure under
perturbations. As it has become clear, robust
SNAs exist both in differential and discrete
dynamical systems (Grebogi et al., 1984,
Kapitaniak and Wojewoda, 1993; Anishchenko
et al., 1996).

SNAs are typical for dynamical systems driven
by quasiperiodic force. Here it is useful to elucidate
what the attractor of a non-autonomous system
means in our understanding. Assume that an
autonomous dynamical system in R” is driven by
a periodic force with period Ty=2m/w,. We will

analyze the Poincare section in a period of the
external force. In a secant surface t =nT, each time
(for any n) we will observe some set of points. In
this case the attractor is a projection of the set of
points in the secant planes, which was obtained for
a sequence n — oo, on the initial secant surface for
n=0. It is also possible to use the following
method. The original non-autonomous system
can be reduced to an autonomous system by
introducing new variables and limiting the regions
of new variable values by the period duration.
Thus, the phase space is expanded and one can use
the attractor definition introduced in Section 2.

A feature of the systems with quasiperiodic force
is that the introduction of two new independent
variables means that we take into consideration
two time scales which are not related with the state
variables of the original autonomous system and
are independent of each other.

In the simplest case, a map where SNA is realized
can be written in the form

xn+1 =f(xn7 ¢n’ r),

modl,

(11)

Gnt1 = W+ Pn,

where X, is a dynamical variable, ¢, is a phase of
external force, r is a system parameter (or param-
eters), f is a nonlinear function that is periodic
with respect to ¢, with the period 1, w is an
irrational number. If w is irrational, then the
forcing will be quasiperiodic because there is no
period k such that f(¢, 1) =f(¢$,). Thus, the maps
in the form (11) model the dynamics of differential
systems with quasiperiodic (two-frequency) exter-
nal force. There are two characteristic time scales,
namely, k; =1 (a map iteration) and k= l/w, w is
a phase shift during one iteration. Therefore, w is
called the rotation number that is characterized by
the ratio of two frequencies of the quasiperiodic
force.

SNA was first revealed and studied in the
following map (Grebogi et al., 1984):

modl.

(12)

Xnt1 = Mh(x,) cos2wd,, Gni1 = w + On,
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An irrational value of the parameter w is more
often chosen to be equal to the so-called “golden
mean”: w = 0.5(v/5 — 1). For the values A>1 in
the map (12) the existence of SNA was rigorously
proved. Besides system (12), SNAs were revealed
when quasiperiodic excitation had been applied to
the circle map, logistic map, Henon map, etc. The
examples of SNA in map (12) and in Feigenbaum
map (Heagy and Hammel, 1994)

Xnyl = a(l — §COS 27T¢n)xn(1 - xn)a

Onr1 = ¢u +w, (13)

modl
are presented in Fig. 15.

The main features of SNA which allow us to
extract these objects as a separate class are as
follows:

1. Geometric characteristics of SNA. The attrac-
tor (for example, on the phase plane) is formed
by a curve of an infinite length that is non-
differentiable on the dense set of points. This
curve like Peano’s curve covers densely a part
of the phase plane so that the metric dimen-
sion (the capacity) of SNA is strongly equal
to 2. But unlike the map (8), in this case one
cannot consider that a part of the plane is the
attractor since the total measure of points
belonging to the attractor is equal to 0. The
fact that information dimension D; equals 1
(the latter corresponding to the line but not to
the plane) indicates this circumstance. Since
there is no positive exponent in the LCE
spectrum, the Lyapunov dimension of SNA
equals 1. Despite the integer metric dimension,
SNA demonstrates as a rule a self-similarity of
the structure and, as a consequence, the prop-
erties of scaling. All the properties indicated
above allow us to speak about the “strange”
geometry of SNA.

2. The LCE spectrum of the strange nonchaotic
attractor. The system dynamics in the SNA
regime is not chaotic as there is no intermixing.
In average there is no exponential instability of
trajectories on the attractor. The LCE spectrum
does not contain a positive exponent. The LCE

spectrum signature of phase trajectories on
SNA does not differ from the corresponding
one of a quasiperiodic motion. However, SNA
cannot be considered as a quasiperiodic attrac-
tor because, in particular, the local (calculated
on an finite time interval) largest LCE spectrum
exponent of a trajectory on SNA will be
positive. Particularly, it has been proved that
the probability that the largest local Lyapunov
exponent will be positive is not equal to zero.

3. Spectrum and autocorrelation function. As there
is no intermixing in the regime of SNA, the
power spectrum does not contain in a rigorous
sense the continuous component. At the same
time, the spectrum of a trajectory on SNA is
not discrete! The spectrum of SNA that is
intermediate between discrete and continu-
ous cases has a specific name: a singular con-
tinuous spectrum. A feature of the singular
continuous spectrum is that it includes a dense
set of §-peaks of the self-similar structure and
has the properties of fractals.

Since the spectrum of SNA is not continuous,
the autocorrelation function ¥(7) does not tend
to zero as 7 — oo. For the trajectories on SNA,
W(7)decreases to some limit nonzero level. More-
over, ¥(7) will demonstrate the scale-invariant
properties in the same way as spectrum.

As an example, Fig. 16 represents the spectrum
of SNA in system (12) calculated for the coordinate
x(n) of the attractor shown in Fig. 15(a) (Pikovsky
and Feudel, 1995). As seen from the graph, the
spectrum is really an everywhere-dense set of
6-peaks and does not contain a pronounced
continuous component. Looking at the shape of
the spectrum function |Sy] it is difficult to get sure
that the distribution of spectrum components
obeys the scale-invariant properties. For this
purpose let us consider the autocorrelation func-
tion ¥(r) for the attractor in Fig. 15(a) which is
shown in Fig. 17 (Pikovsky and Feudel, 1994).

If we compare the dependencies ¥(7) the time
intervals —1000 <7<1000 and 1584 <71 <3584,
then we can conclude about the complete
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FIGURE 15 Phase diagrams of strange nonchaotic attractors in the map (12) for A==1.5 (a) and in the map (13) for s=0.1,
a=3277,w=10.5(/5-1) (b).
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FIGURE 17 Self-similarity of the autocorrelation function
of SNA in the system (12).

correspondence of the autocorrelation function
structure. The plot for ¥(7) presented in Fig. 17(a)
is fully reproduced in Fig. 17(b). This is a con-
sequence of the property of scale invariance. The
envelop |U(7)| in the SNA regime is a decreasing
function that tends to some nonzero limit as
T — OQ.

It is important to note that the diagnostics of the
SNA regime in numeric simulations is a very

difficult and nonstandard task and needs precise
calculations to be carried out using a good modern
equipment. Otherwise, it is impossible to distin-
guish the SNA regime and a quasiperiodic regime
with a large number of combinative frequencies in
the spectrum.

6 CONCLUSIONS

The analysis of the structure and properties of
attractors of nonlinear dissipative systems as the
images of nonperiodic self-oscillations presented in
this paper allows us to make the following
conclusions:

1. Robust hyperbolic systems and Lorenz type
systems demonstrate classical properties of
deterministic chaos as nonperiodic exponen-
tially unstable solutions of the corresponding
dynamical systems. Strange (or practically
strange) attractors are their mathematical
images. Their distinctive feature is the fractality
of their geometrical structure, the fractal metric
dimension and the presence of at least one
positive exponent in the LCE spectrum that is a
consequence of the intermixing. Robust hyper-
bolic attractors and Lorenz type attractors are
less sensitive to the influence of noise. The
basins or attraction of such attractors are
smooth and homogeneous. The attractor’s
properties are not sensitive to the variation of
initial conditions.

2. Quasiattractors which include a finite or infinite
set of regular and chaotic attracting subsets co-
existing for the fixed values of system param-
eters are more complicated objects. Variation of
system parameters can lead to bifurcations of
these subsets, whose number may be infinite
while there is a finite variation of parameters.
The basins of attraction of the co-existing attrac-
tors have a fractal geometry. As a result, quasi-
attractors demonstrate high sensitivity to the
changes in initial conditions and the influence of
noise.
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3. Exponential instability of individual trajectories
and “strange” geometry of an attractor cannot
be connected uniquely. There exist the regimes
of chaotic (unstable) self-oscillations to which
regular, in geometrical sense, attractors corre-
spond. These are the so-called chaotic non-
strange attractors. On the other hand, it is
possible to observe nonperiodic stable, accord-
ing to Lyapunov, oscillations whose corre-
sponding attractor is a strange geometrical
object. Here, we deal with the strange noncha-
otic attractors.

The ideas and concepts presented in this paper
cannot be considered as absolutely noncontradic-
tory and generally accepted. A number of problems
described here is up to the present moment a
subject of detailed studies and scientific discus-
sions, the latter proving a fundamental significance
of the subject under investigation.
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