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1. Introduction

In this paper, we will deal with equations involving an operator A : W;:Z(y, ©,Q) —
(W33 (n,p4,2))* of the form

Au= > (-DMDA,(x,V,u), (1.1)
|a|=1,2

where Q) is a bounded open set of R”, n > 4,2 < p < n/2, gnax(2p, Jn) < q<mn,vand y are
positive functions in Q with properties precised later, W;f,(v,y,ﬂ) is the Banach space
of all functions u: ) — R with the properties Iulq,le"‘ulq,leﬁuIP c L' (Q), |a| =1,
|8l = 2, and “zero” boundary values; V,u = {D%: |a| < 2}.

The functions A, satisfy growth and monotonicity conditions, and in particular, the
following strengthened ellipticity condition (for a.e. x € Q and & = {&,: |a| = 1,2}):

> Aa(x,E)EaZCz{ > o) [& T+ D u(x)lfalp}—gz(x), (1.2)

|la|=1,2 |lal=1 || =2

where ¢; >0, &2(x) € LY(Q).
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We will assume that the right-hand sides of our equations, depending on unknown
function, belong to L' (Q)).
A model representative of the given class of equations is the following:

(q-2)/2 (p-2)/2
-y D“[v( > |Dﬁu|2) D"‘u]+ D D“[y( > |Dﬁu|2> D“u}
lal=1 IBl=1 la]=2 IB1=2
=—lul'u+f inQ,
(1.3)

where 0 > 1 and f € LY(Q).

The assumed conditions and known results of the theory of monotone operators allow
us to prove existence of generalized solutions of the Dirichlet problem associated to our
operator (see, e.g., [1]), bounded on the sets G C Q) where the behavior of weights and of
the data of the problem is regular enough (see [2]).

In our paper, following the approach of [3], we establish on such sets a result on Holder
continuity of generalized solutions of the same Dirichlet problem.

We note that for one high-order equation with degenerate nonlinear operator satisfy-
ing a strengthened ellipticity condition, regularity of solutions was studied in [4, 5] (non-
degenerate case) and in [6, 7] (degenerate case). However, it has been made for equations
with right-hand sides in L with ¢ > 1.

2. Hypotheses

Let n € N, n >4, and let Q be a bounded open set of R”. Let p, g be two real numbers
such that 2 < p < n/2, max(2p,/n) < q < n.
Let v: Q) — R* be a measurable function such that

1 1/(q—1)
el @, (1) etho. (2.1)

Wt (»,Q) is the space of all functions u € L1(Q) such that their derivatives, in the
sense of distribution, D*u, |«| = 1, are functions for which the following properties hold:
YWDy € L1(Q) if |a| = 1; W4 (,Q) is a Banach space with respect to the norm

1/q
lull g = (Jﬂlulqu+ s IQV|D“u|qu> . (2.2)

la|=1

Vifl’q(v,ﬂ) is the closure of C3°(Q) in W4(, Q).
Let u(x) : QO — R* be a measurable function such that

11/(p—1)
pelbi@, () et (23)

1, . . ) .
Wz,g(v, u, Q) is the space of all functions u € W4(»,Q), such that their derivatives,
in the sense of distribution, D%, |a| = 2, are functions with the following properties:
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‘uVPD“u e LP(Q), |al =2; Wzl,’g(v,/,t,ﬂ) is a Banach space with respect to the norm

1/p
> JQy|D“u|pdx> ) (2.4)

lal=2

llull = llull1,qy+ (

Vi/;:?,(v,y,ﬂ) is the closure of C5’(Q2) in Wzlf(v,y,ﬂ).

Hypothesis 2.1. Let v(x) be a measurable positive function:

Ler@) withi> L
) 1 (2.5)
yell(Q) withi>

We put g = nqt/(n(1+1t) — gt). We can easily prove that a constant ¢y > 0 exists such
that if u € W4(»,Q), the following inequality holds:

t q/qt
J |H|‘7dXSC0{I <1> dx}
Q suppu \V

We set ¥ = pu@/(4-20) (1/v)?P/(4=2p),

aq
s JQVID“qudx} . (26)

lal=1

Hypothesis 2.2. v € L'(Q).

Hypothesis 2.3. There exists a real number r > g(q — 1)/(4(qg — 1)(p — 1) — q) such that
1
- eL'(Q). (2.7)
[

For more details about weight functions, see [8, 9].
Let Q; be a nonempty open set of R” such that Q; C Q.

Definition 2.4. Tt is said that G closed set of R" is a “regular set” if G is nonempty and
G C Q.

Denote by R™? the space of all sets & = {&, € R: |a| = 1,2} of real numbers; if a func-
tion u € LIIOC(Q) has the weak derivatives D%u, |a| = 1,2 then V,u = {D%u: |a| = 1,2}.
Suppose that A, : Q X R™? — R are Carathéodory functions.

Hypothesis 2.5. There exist ¢;,¢; >0 and g1(x), g&2(x) nonnegative functions such that
9,9 € L'(Q) and, for almost every x € Q, for every & € R™2 the following inequalities
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hold:

> ] A 17+ 3 ] A 7Y

o o (2.8)
< 61{ MZZIV(x) |l + ‘%zﬂ(x)lfa |P} +g1(x),
| %2Aa(x,f)fa > Cz{zzlﬂx) | & |1 +|%2#(x) | fa|"} — g (x). (2.9)
Moreover, we will assume that for almost every x € Q and every §,& € R™2, & + &',
> [Au(x,8) — Au(x,8)] (8. — &) >0. (2.10)

lal=1,2

Let F: O X R — R be a Carathéodory function such that
(a) for almost every x € Q, the function F(x, -) is nonincreasing in R;
(b) forceveryx e, theo function F(+,s) belongs to L'(Q). .
LetA: W;:Z(v,‘u, Q)— (Wéjg (v,4,Q))* be the operator such that for every u,v e W;:Z(v,
#Q),

(Au,v) = J

Q

{ Z Aa(x,Vzu)D“v}dx. (2.11)

la|=1,2

We consider the following Dirichlet problem:

Au = F(x,u) in Q

P) = 2.12
P) {D“u=0, la] =0,1, on oQ. ( )

Definition 2.6. A W-solution of problem (P) is a function u € Viﬂ’l (Q) such that
(i) F(x,u) € L'(Q);

(ii) Ag(x, Vou) € L1(Q), for every a: |ae| = 1,2;

(iii) (Au,¢) = (F(x,u),¢) in distributional sense.

It is well known that Hypotheses 2.1-2.3, 2.5, and assumptions on F(x,s) imply the
existence of a W-solution of problem (P) (see [1]). Moreover, a boundedness local result
for such solution has been established in [2] under more restrictive hypotheses on data
and weight functions.

More precisely, the following holds (see [2, Theorem 5.1]).

TueOREM 2.7. Suppose that Hypotheses 2.1-2.3 and 2.5 are satisfied. Let q; € (g,q(q —
1)/q), T > §/(§ — q1). Assume that restrictions of the functions v1/@ =9, %, ¢\, ¢, and |F(,
0)|2/(0 =V on G belong to L*(G), for every “regular set” G.

Then there exists i W -solution of problem (P) such that for every G, essgsup |u| < Mg <
+00, with Mg positive constant depending only on known values.
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3. Main result

In the sequel of paper, G will be a “regular set” In order to obtain our regularity result on
G, we need the following further hypotheses.

Hypothesis 3.1. There exists a constant ¢’ > 0 such that forall y € G and for all p >0, with
B(y,p) C G, we have

1 t 1/t 1/7
- 1 dx} { -"J‘ v’dx} < (3.1)
{p J B(y,p) ( v ) P B(y:p)

With regard to this assumption, see [3].

Hpypothesis 3.2. There exist a real positive number ¢ and two real functions h(x)(= 0),
f(x)(>0) defined on G, such that

|F(x,s)| <h(x)|s|”+ f(x), foralmosteveryx € Gand everys € R. (3.2)
Moreover, we assume that
h(x), f (x) € L(G), (3.3)

with 7 defined as above.

Using considerations stated in [1], following the approach of [3], we establish the fol-
lowing result.

TaeoreM 3.3. Let all above-stated hypotheses hold and let conditions of Theorem 2.7 be
satisfied. Then, the W -solution u of Dirichlet problem (P), essentially bounded on G, is also
locally Holderian on G.

More precisely, there exist positive constant C and A (0 <A < 1) such that for every open
set O, Q0 C G, and every x,y € Q'

|a(x) —a(y) | < Cld(Q,3G)] x— yI, (3.4)

where C and A depend only on ¢y, ¢, o, ¢, 1, ¢, p, t, T, 0, Mg, diamG, measG, || f [lz-(q)
18l ey Ngille oy 1@ llim (6> 1Pl Le(G)> and [11/9]111q)-

Proof. For every | € N, we define the function F;: Q X R — R by

-1 if F(x,0) — F(x,s) < =1,
Fi(x,s) = { F(x,0) — F(x,s) if |F(x,0) — F(x,s)| <1, (3.5)
I if F(x,0) — F(x,s) > 1,

and the function f;: Q — R by

ﬂm:{m%m if |F(x,0)] <1, 56

0 if |F(x,0)| >1.
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By Lebesgue’s theorem and property (b) of F(x,s), we have that f;(x) goes to F(x,0) in
LY(Q).

Next, inequalities (2.6), (2.8)—(2.10), property (a) of F(x,s), and known results of the
tloleory of monotone operators (see, e.g., [10]) imply that for any | € N, there exists u; €

W;:Z(v,y,ﬂ) such that

L){ Z Aa(x,Vzul)D“v+Fl(x,u1)v}dx= Jﬂﬁvdx, (3.7)

|la|=1,2

for every v € W;f,(v,‘u, Q).
From considerations stated in [1, Section 3], we deduce that there exists a W-solution

u of problem (P) such that
u— u a.e.in Q. (3.8)

Moreover, see proof of Theorem 2.7,

esssup |u;| <Mg, foreveryle N. (3.9)

We set7i = q*/(q — 2p), a = (1/7)(q — n/t — n/7).
Letus fix y € G, p >0and B(y,2p) C G. Let us put

wyy = ess infu, Wy = ess supuy,
By.20) By.20) (3.10)
W] = W2,] — Wy,
We will show that
osc {1, B(y,p)} < Cwr +p7, (3.11)

with ¢ €]0,1[ independent of ] € N.
To this aim, we fix I € N and we set

O = > v|Du|T+ > u| D%y |7,
ol =1 =2 (3.12)
v(x)=p (14 f(x)+h(x)+g1(x) + g(x) +Y(x)) +p 9.
Obviously, we will assume that
w; = p* (otherwise, it is clear that (3.11) is true). (3.13)
We introduce now the following functions:

ui(x) — wy +p* (3.14)

Fuue) _ Zewr if x € B(y,2p),
1,1(x) =
e ifx € Q\ B(y,2p);
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peCr(Q):0=<¢9=<1inQ, ¢ =0inQ\ B(y,2p) and satisfying
|D%| <cp™ ', lal=1,2, (3.15)

where the positive constant ¢ depends only on .
Let us fix s > g and r = 0 and define

vi=(IgF.)) Fl; ' ¢,
1 (3.16)

r—1 r B
z1 = _m[r(lgFl,l) +(q—1)(IgF) 1F] ¢".

From Hypothesis 2.2 and (3.15), we have that v; € I/oV;Z(v,‘u, Q) and the next inequal-
ities are true:

| D% — ziD"uy | <csp*! (lgFl,l)rqujlp’1 if |a| = 1 a.e. in B(y,2p), (3.17)
reg- By |?
| D% — ziD%uy | < 5q*s(r+1)*(1gFy,) qu)l l(ps{ Z %}
p=t (w = w1 +p9) (3.18)
+2;1qszfzp*2(lgFl,z)rFﬁl_lgos*2 if |a| = 2 a.e. in B(y,2p).
Since u;(x) satisfies (3.7), for v = v;, we obtain
J { Z Ay (x,Vou) D*vi+ Fy (x,ul)vl}dx = [ Sfividx. (3.19)
Q Uig=1,2 Q
From this, taking into account (3.9) and Hypothesis 3.2, we have
j S Au(% Vaur) Dvidx < (3+M5) J 14 f(x) + h(x) | vidx. (3.20)
Qla=1,2 0
Hence

JQ S {Aa(x, Vou) D¥ur} (— 21)dx = (3 -+ MZ) JQ{1+f(x)+h(x)}vldx+Il+12,
lal=1,2

(3.21)

where

I = J > |Aa(x,Vow) | |D* — zD%y | dx, i=1,2. (3.22)
Q

lal=i

Using Hypothesis 2.5 and definition of z;, we have
@=Dex (g (1gF, ) Fgdx < (3+M2) | {1 h(x)} (IgFy ) FY  o'd
" 2ew Jo 1(IgF1) Fy p'dx < (3+Mg) 0 + f(x)+h(x)} (1gF1) Fy; ¢'dx

+ J 2(x)(—z)dx+1 + L.
Q
(3.23)



8 Boundary Value Problems

Note that

FU' < (diam G)* (2ew;) ' p4,
! ot P (3.24)
—z1=<(q—1)(r+1)(2ew;)” p*¢*(1gF1;) a.e. in B(y,2p),

consequently, from (3.23), we obtain

(%) g s
— ®;(lgF,;) F d
2ew; JB(y,2p) 1(1gFu) Fi g
<ca(r+ 1)(2ecul)‘r1 JB( , )p’“q{l + f(x)+h(x)+g(x)} (lgFl,l)rgosdx-kIl +1,
y.2p

(3.25)

where ¢3 = (g — 1)(3+MZ)(diam G +1).
Let us fix |a| = 1. Let € > 0, then, applying Young’s inequality and using (2.8) and
(3.17), we establish

1€

L < —— OF! (1gFy ;) ¢*dx
1 2ewr J50y20) 1 1,1( gFu1) ¢

+61€(26a)1)q71J’
B(y,2p

+61_q(2ew1)q71n(fs)q‘[ p Iv(1gFy ;) ¢* 1dx.
B(y,2p)

)P‘“qgl (x) (IgF1) p*dx (3.26)

Let us fix |a| = 2 and estimate I,. To this aim, it will be useful to observe that the following
equalities are true:

p-1. 2 49-2p _

-1). 3.27
p q qp ) (327

1, q-1= Tq + (
Moreover,
p iy < p™ 54+ p79y  in Q. (3.28)
Furthermore, due to (2.8), (3.18), and Young’s inequality, we have

C4€
2ew;

vesea) e (14 1) 17 [ g0 +3(0) +p 0o} (8P 9
€ B(y:2p) (329)

L <

J CD,Fﬁl(lgFu)rgosdx
B(y,2p)

where ¢4 depends only on ¢, #, g; and ¢s depends only on ¢y, #, g, p, ¢, and diam G.
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From (3.25), (3.26), and (3.29), we get

Q2

= O;(lgFy ;) Fl o'dx
2ew; JB(y,Zp) 1(IgF11) Fiyg

< (c1+ca)e

OF! (1gFy ;) ¢'dx
rewr JB(M) IF (IgF1) ¢ (3.30)

7+l
+ (Zewl)q71c6(r+ l)ﬁsﬁ<1+e+—) J y(IgFy ;) ¢* dx,
€ B(y,2p)
where the constant ¢s depends only on ¢y, ¢, 1, g, p, Mg, 0, and diamG.
Setting
(%)

€= m, (331)

from the last inequality, we deduce

J ®;(IgFy;) FLp*dx < c7(2ew;) (r + l)ﬁsﬁj v(IgF ;) ¢*dx, (3.32)
B(y.2p) ’ B(y.2p)
where the constant ¢; depends only on ¢y, ¢, ¢, 1, q, p, Mg, 0, and diam G.

Now, if we choose ¢ such that ¢ = 1 in B(y,(4/3)p), from (3.32), with r =0 and s =
q+1, we get

J { > | Dy q}Ffldx < c7(2ew;) (g + l)ﬁj vdx. (3.33)
B(y,(4/3)p) lal=1 ? B(y,2p)

Moreover, if we take in (3.32) instead of ¢ the function ¢, € Cy’ (Q)) with the properties

0<¢;<1inQ, ¢, =0in Q\B(y,(4/3)p), ¢1 = 1 in B(y,p), and |D%p| <cp~'* in Q,
|al = 1,2, we obtain that for every r >0 and s > ¢,

J { Z v|D“u1|q}(lgF1,1)rFfldxs C7(26w1)qsﬁ(r+l)ﬁj v(lgFy) ¢y Tdx.
B(y.2p) ’

lal=1 B(y,2p)
(3.34)
We fix arbitrary r >0 and s > ¢, and let
/q s/q
z1=(1gF ;) o7 (3.35)
By means of Hypothesis 2.1, we establish that z; € V(i/'l’q(v,ﬂ) and for || =1,
q ~ 1 ~
v| D% |1 < 207! (;) (lgFlJ)(r/q 1)q(Fu)qiq | D% | quslq/q
q (2ew;) (3.36)

“»

q ~ N
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Now, it is convenient to observe that §/(4 — q1) > nt/(qt — n), then 7 > nt/(qt — n);
moreover, ¥(x) € L7(G). From (3.34) and (3.36), we deduce

J v|D%| dx
Q
B v @) (&gDaere) , \ T
S(:8$n(r_+_1)n+q<J II/TdX) (J (lgFl,l)r q/q)(t/(1— (Pls g-1)q(t/(7— ))dx> ,
B(y,2p) B(y,2p)
(3.37)
where the constant ¢s depends only on ¢, ¢, ¢, 1, g, p, Mg, 0, and diamG.
We set
gt —1
p-dt=1 . _ 4T (3.38)
qt T—1
and for every r,s > 0, we define
I(r,s) = I (IgF1,) pidx. (3.39)
B(y,2p)

Consequently, last inequality can be rewritten in this manner:

1/ (r-1)/7
J v| D% | dx < cgs"(r + 1)1 (J w’dx) [1(1, S m)] ) (3.40)
Q B(y,2p) 6" 6

Due to Hypothesis 2.1,

~ 1 t q/qt
I(r,s) =J zlqusco[J (7> dx] [
B(y.2p) B(y.2p) \V

Let us denote by [ ] the norm of (1 + f(x) +h(x) + g1 (x) + &2(x) + ¥(x)) in L*(G). By
simple computation, we have

1/t 1/t
de) <p1 (J dex) + —an, 3.42
<J(B(,V,Zp) 4 P B(y,2p) HGP ( )

Now, it is convenient to observe that (g — n/t — n/7)(g/q) = n(6 — 1).
Then, from (3.40)—(3.42), using Hypothesis 3.1, we get

4/q
z J v| D%z | qu] ) (3.41)
Q

la|=1

0
I(r,s) < M(r+s)mp"(1_0) [I(g,% - m)] , foreveryr>0,s>q, (3.43)

where 7 = 2(q + %) and the positive constant M depends only on ¢, ¢, €, ¢, ¢/, 1, ¢, P,
t, 11/v] (q), Mg, 0, measG, diam G, and [ [¢.
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We set fori=0,1,2,... that

t_qgi . m

i+l
SO, 5= g (671, (3.44)

ri =
Then by (3.43), it is trivial to establish the following iterative relation:
I(r;s:) < M@p”“’e)Gim[l(r,v_l,si_l)]9 for everyi e N, (3.45)

where ¢y depends only on #, g, p, t, and .
Using this recurrent relation, we obtain that for every i € N,

i

I(ri,si) < [(Mc9 + 1)1/(1_9)65m(diamG+ 1)”p*”I(ro,so)] , (3.46)

where S is a positive constant depending only on #, g, t, and 7.
Now, we assume that

meas {x S B(y,%p) Tu(x) > W} % easB(y, %p) (3.47)

We observe that if x € B(y, (4/3)p) satisfies u;(x) = (w1, + wy,)/2, then Fy j(x) < 4e, so
by [11, Lemma 4], we deduce

Cpro ro—1
(IgF ,l)rodx <cp"+ 7J’ { D%u;| (1gF ,l) F ,l}dx,
L;(y,(4/3)p) g1 P 2ew; JB(y,(4/3)p) szl | | g !
(3.48)

where ¢ depends only on #.
Then, using Young’s inequality, we get

L]
J (lgFl)l)rodx < CrOPn+rO(ﬂ> J { Z |D ul|} l?ld.x. (3.49)
B(y,(4/3)p) B(y,(4/3)p)

2ew w21
Last inequality, using Holder’s inequality and (3.33), gives

o

) ]t/ t+1)P

t/(t+1) 1 t 1/(t+1)
o) oy G )
B(y,2p) B(y,2p) \V

Observe that due to (3.42) and Hypothesis 3.1,

t/(t+1) 1 t 1/(t+1)
(J 1//dx> (J (—) dx) <co(L+Mp™™,  (3.51)
B(y.2p) B(y.2p) \V

where ¢;9 depends only on measure of the unit ball in R”.

J (IgF1;) " dx < crop” +ro[cro] 27 er (g +1
B(y,(4/3)
(3.50)
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Consequently, from (3.50), we obtain

JB()/ “/3)p) (IgF11)"dx < (cio(1+M)ro[ero] *2° 7 [es(q +1)"] ey cro)p”. (352)

Taking into account that

I(ros0) < J (IgF1,)" dx, (3.53)
B(y,(4/3)p)
from (3.46) we get
I(r;,s;) < [cn]ei, for every i € N. (3.54)

Last inequality allow us to conclude that

ess supFy(x) < (1+¢1y), (3.55)
B(y,p)
and so
osc{upB(y,p)} < (1 —2e 1) w;+ p“. (3.56)

Recall that we proved (3.11) under assumption (3.47). If (3.47) is not true, we take
instead of Fy; the function F,;: Q — R” such that F,; = 2ew;(w; — up+p%) =" in B(y,2p),
and arguing as above, we establish (3.11) again.

It is important to observe that the positive constant ¢;; depends only on ¢1, ¢, ¢, G, co,
¢, n,q, py b, 11/2M1q), Mg, 0, diam G, and [ ], and is independent of [ € N.

Now from (3.11), taking into account [12, Chapter 2, Lemma 4.8], we deduce that
there exist positive constant C and A(< 1) depending on ¢;; and a but independent of
I € N such that

osc{u,B(y,p)} < C[d(y,aé)]_lpl, for every p € ]O,d(y,aé)]. (3.57)

This and (3.8) imply that

osc{w,B(y,p)} < C[d(y,aé)]_lpl, for every p € ]O,d(y,aé)]. (3.58)
The proof is complete. U
4. An example

Let QO = {x € R": |x| < 1}, 0 < y < min(q — n/q,q/2), and let v, u be the restriction in
Q\ {0} of real functions

|x[7, |x|?P7/4, (4.1)
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According to considerations stated in [3, Section 7], we have that functions v, y satisty
Hypotheses 2.1 and 2.3.

Now, we will verify that v(x) satisfies Hypothesis 3.1, for all t: nq/(q* — n) <t < n/y.To
this aim, let G € Q\ {0} be a “regular set,” and fix y € G, p >0: B(y,p) C G.

If | y| < 2p, it follows that B(y,p) C B(0,3p). Hence, we have

1 1 3p 3n—yt
J cdx < J cdx = n)(n[ I dr = ny, P,
B(yp) 1XIY B(0,3p) |x]7 0 n—yt

n+yt

3
J IxIVdesJ [x""dx = ny, P
B(y,p) B(0,3p) n+yt

(4.2)

n+yt

From (4.2), taking into account that 7 > nt/(qt — n), we get

1 1/t 1/t 1
" dx) ( _”J xVde> < nn+13”( +1> if [y] < 2p.
<P J‘B(y,p) |x ]t P B(y»p)| | (gt 1) n—yt <2
(4.3)
Instead if | y| = 2p, we denote by E that

5={keN:' |zk}. (4.4)

Note that E # @ and is bounded from above. Consequently, if we denote k = max&,
we obtain

Eps [yl <p(E+1). (4.5)
Last inequality implies that for every x € B(y,p), it results that
(k-1)p < |x| < (k+2)p. (4.6)

From (4.6), we obtain

1 Xn _
d < — n ya
JB(y,p) it (k - I)WP

(4.7)

J x| dx < yu(k+2)p"T,
B(y,p)

where y, is the measure of the unit ball in R".
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Therefore, we get

vt 1/t
h h |x|”dx) <4"(g,+1) iyl = 2p. (4.8)
(P JB()’,p) |x|yt) (P JB(J’)P) (X ) y p

We can conclude that (3.1) holds with ¢’ = 4" (ny, +1)(1/(n — yt) + 1).
Next, let f : QO — R be the function such that for every x € Q\ {0},

lx| " 1

(x) = + . (4.9)
SO = gy -
Observe that f(x) € L'(Q) but f(x) does not belong to LY(Q), for every y > 1.
Let 0 > 1, we consider the following Dirichlet problem:
(q-2)/2 (p-2)/2
- Z D“[v( Z IDﬁuIZ) D“u]+ z D“[y( Z |Dﬁu|2> D“u}
Jal=1 IBl=1 la]=2 IBl=2
=—lullu+f inQ,
D*u=0, |a|=0,1, onoQ.
(4.10)

By Theorem 2.7, we establish that there exists a W-solution # of problem (4.10),
bounded in every “regular set” G Q\ {0}, and moreover, applying our result, Holderian
in every openset A: A C Q\ {0}.
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