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Let L be a divergence form operator with Lipschitz continuous coefficients in a domain
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free boundaries in two-phase problems.
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1. Introduction and main results

In the study of the regularity of two-phase elliptic and parabolic problems, a key role is
played by certain continuous perturbations of the solution, constructed as supremum of
the solution itself over balls of variable radius. The crucial fact is that if the radius satisfies
a suitable differential inequality, modulus a small correcting term, the perturbations turn
out to be subsolutions of the problem, suitable for comparison purposes.

This kind of subsolutions have been introduced for the first time by Caffarelli in the
classical paper [1] in order to prove that, in a general class of two-phase problems for the
laplacian, Lipschitz free boundaries are indeed C"9.

This result has been subsequently extended to more general operators: Feldman [2]
considers linear anisotropic operators with constant coefficients, Wang [3] a class of con-
cave fully nonlinear operators of the type F(D*u), and again Feldman [4] fully nonlinear
operators, not necessary concave, of the type F (D*u,Du). In [5], Cerutti et al. consider
variable coefficients operators in nondivergence form and Ferrari [6] a class of fully non-
linear operators F(D?u,x), Holder continuous in the space variable.

The important case of linear or semilinear operators in divergence form with non-
smooth coefficients (less than C'*, e.g.) is not included in the above results and it is
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precisely the subject of this paper. Once again, the key point is the construction of the
previously mentioned family of subsolutions. Unlike the case of nondivergence or fully
nonlinear operators, in the case of divergence form operators, the construction turns out
to be rather delicate due to the fact that in this case not only the quadratic part of a
function controls in average the action of the operator but also the linear part has an
equivalent influence. Here we require Lipschitz continuous coefficients.

To state our first result we introduce the class £(A, A, w) of elliptic operators

L=div(A(x)V) (1.1)
defined in a domain Q C R”, with symmetric and uniformly elliptic matrix, that is,
Ax) = AT (x), M < A(x) < AI (1.2)
and modulus of continuity of the coefficients given by

w(r)= sup |A(x)—A(y)]. (1.3)

[x—yl<r

Tueorem 1.1. Let u be a continuous function in Q. Assume that in {u >0} u is a C*>-weak
solution of Lu =0, L € L(A,A,w), w(r) < cor. Let ¢ be a positive C?-function such that
0 < Pmin < ¢ < Pmax and

vg(x) = sup u = sup u(x+d(x)v) (1.4)
Bg(x) (%) [v|=1

is well defined in Q). There exist positive constants py = po(n,A,A) and C = C(n,A, A), such
that, if |V | < o, wo = 0(Pmax), and

oLg = C(| Vo) |” +w}), (1.5)

then v is a weak subsolution of Lu = 0 in {v > 0}.

We now introduce the class of free boundary problems we are going to study and the
appropriate notion of weak solution.
Let By = Bg(0) be the ball of radius R in R""!. In g = Bz(0) X (—R,R) we are given a
continuous H}. . function u satisfying the following.
(i)
Lu=div(A(x)Vu) =0 (1.6)

in Q" (1) = {x €6r:u(x) >0}, and in Q (1) = {x € Gz : u(x) <0} in the
weak sense.
We call F(u) = 0Q (u) N By the free boundary. We say that a point xo € F(u) is regular
from the right (left) if there exists a ball B:

BcQ'(u) (cQ (), resp.),

BN F(u) = {x}. (17)
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(ii) Along F(u) the following conditions hold:
(a) if xo € F(u) is regular from the right, then, near xo,

ut(x) = a{x — x0,7) " — B{x—x0,7) +0(|x-x01), (1.8)

for some « >0, # > 0 with equality along every nontangential domain in both
cases, and

a < G(f); (1.9)

(b) if xo € F(u) is regular from the left, then, near xo,
ut (x) < alx —x0,7) " — Bl —x0,7) +o(|x—x0]), (1.10)

for some a > 0, § > 0 with equality along every nontangential domain in
both cases, and

a = G(p). (1.11)

The conditions (a) and (b), where v denotes the unit normal to 0B at xg, towards the
positive phase, express the free boundary relation u) = G(u; ) in a weak sense; accord-
ingly, we call u a weak solution of f.b.p.

Via an approximation argument it is possible to show that Theorem 1.1 holds for the
positive and negative parts of a solution of our f.b.p.

Here are our main results concerning the regularity of Lipschitz free boundaries.

TueoreMm 1.2. Let u be a weak solution to f.b.p. in €gr = Bg X (—R,R).
Suppose that 0 € F(u) and that
(1) Le LA w);

(if) Q(u) = {(x',x,) : % > f(x')} where f is a Lipschitz continuous function with
Lip(f) <

(ili) G = G(z) is continuous, strictly increasing and for some N > 0, z~NG(z) is decreasing
in (0,+00).

Then, on By,,, f isa CY function with y = y(n,, N,L, A, w).

By using of the monotonicity formula in [7] we can prove the following.

CoRrOLLARY 1.3. In f.b.p. let
Lu = div (A(x,u)Vu), (1.12)

where L is a uniformly elliptic divergence form operator. Assume (ii) and (iii) in Theorem 1.2
hold and replace (i) with the assumption that A is Lipschitz continuous with respect to x and
u. Then the same conclusion holds.

We can allow a dependence on x and » in the free boundary condition for G = G(j3,x,7)
assuming instead of (iii) in Theorem 1.1
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(iii") G = G(z,7,x) is continuous strictly increasing in z and, for some N > 0 indepen-

dent of v and x, zNG(z,,x) is decreasing in (0, ©);

(iii"’) log G is Lipschitz continuous with respect to v, x, uniformly with respect to its

first argument z € [0, o).

The proof of Theorem 1.2 goes along well-known guidelines and consists in the fol-
lowing three steps: to improve the Lipschitz constant of the level sets of u far from F(u),
to carry this interior gain to the free boundary, to rescale and iterate the first two steps.
This procedure gives a geometric decay of the Lipschitz constant of F(u) in dyadic balls
that corresponds to a C'7 regularity of F(u) for a suitable y.

The first step follows with some modifications [5, Sections 2 and 3] and everything
works with Holder continuous coefficients. We will describe the relevant differences in
Section 2.

The second step is the crucial one. At difference with [5] we use the particular struc-
ture of divergence and the fact that weak sub- (super-) solutions of operators in diver-
gence form with Holder coefficients can be characterized pointwise, through lower (su-
per) mean properties with respect to a base of regular neighborhoods of a point, involving
the L-harmonic measure. Section 3 contains the proof of the main result, Theorem 1.1,
and some consequences.

In Section 4 the above results are applied to our free boundary problem, preparing the
necessary tools for the final iteration.

The third step can be carried exactly as in [5, Sections 6 and 7], since here the particular
form of the operator does not play any role anymore. Actually the linear modulus of
continuity allows some simplifications.

2. Monotonicity properties of weak solutions

In this section we assume that w(r) < cor?, 0 <a < 1. Let u € H_(Q) be a weak solution
of Lu =01in Q, that is,

J;) (A(x)Vu(x),Vo(x))dx = 0, (2.1)

for every test function ¢ supported in Q. If L € £(A, A, w), u € CH(Q).
In this section we prove that if the domain ) is Lipschitz and u vanishes on a relatively
open portion F C dQ), then, near F, the level sets of u are uniformly Lipschitz surfaces.
Precisely, we consider domains of the form

Ts = {(x",xn) € R: X[ <5, f(x") <x,<2Is}, (2.2)

where f is a Lipschitz function with constant /.

THEOREM 2.1. Let u be a positive solution to Lu = 0 in Ty, vanishingon F = {x, = f(x)} N
0Ty. Then, there exists y such that in

Ny(F) ={f(x") <xp < f(x")+5} N T, (2.3)
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u is increasing along the directions T belonging to the cone I'(e,,0), with axis e, and opening
6 = (1/2) cot™' 1. Moreover, in N, (F),

< Dyu(x) < c%x), (2.4)

Sux)

dx

where d, = dist(x, F).
Proof of Theorem 2.1. Let z be the solution of the Dirichlet problem

div (A(0)Vz(x)) = 0, T,

2.
z=g, aTZ) ( 5)

where g is a smooth function vanishing on % and equal to 1 at points x with d, > 1/10.

Then, see [1], D,z >0 in Q,, with p = p(n,[). By rescaling the problem (if necessary),
we may assume p = 3/2. Since z(e,) = ¢ > 0, by Harnack inequality we have that, if y € T7,
d}/ = o,

z2(y) ~c(no), Dyz(y) ~ Zd_y) ~c(no). (2.6)
y

Clearly z,u € C%*(T)). O

LEmMA 2.2. Forr >0, let w, be the C“*(T,) weak solution to

div (A(rx) Vw,(x)) =0, T,

w, =z, oT,. (2.7)
Then, given no > 0, there exists ro = ro(1o), such that if r < ro,
Dyw,(y) 20 (2.8)
for every y € T\, with d,, > n.
Proof. Let
div (A(rx)(Vw,(x) — Vz(x))) = div ((A(rx) — A(0)) Vz(x)). (2.9)
For every o > 0, let
Q5 = {x € Ty, dist (x,0T,) >a}. (2.10)

Notice that h, = w, — z € C*(T,), and moreover /i, € C*(QY). Notice that ((A(rx) —
A(0))Vz(x)); € L*(Q9), and from standard estimates we have

|1/f’l

sup [wy —z| <sup |h [ +ClQS| " w(N)|| V2|~ 5)- (2.11)
(034 Q3
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Hence

sup | h, | sc<0“+£). (2.12)
Q

Choosing r = 0% we get that for every y € QJ,
b (p)| < erf, (2.13)

where 8 = a/(1 +a).
Lety € Ty, with dy > 1o, 1o < (1/3)17(1)/(”“), and p = 7o/3. It follows that

p|Duhe(3)| < C(r*2(3) +rllzllL=s,50) < C(rP +1)z(p)

_ (2.14)
= Cp(rP+ r)Z(;) < Cpr’D,z(3).

Henceifr <ry = min{(2c(110))‘1/5,(1/3);78“}, we get

2D2(7) < Dywi(7) < 3D,2(). (2.15)

The following two lemmas are similar to [5, Lemmas 2 and 3], respectively.
LEmMa 2.3. Let 1y > 0 be fixed and w and z as in Lemma 2.2. Then there exist ro = ro(#o)
and ty = to(A, A, n) > 1 such that, if r < ro,

w(y)
d)’

¢! M <D,w(y)<c
dy

(2.16)

for every y € Ty, dy, = ton.

Proof. The right-hand side inequality follows Schauder’s estimates and Harnack inequal-
ity. Let now y € Ty, with d,, > o1, to to be chosen. We may assume y = t#oe,,. From the
boundary Harnack principle (see, e.g., [8] or [9]) if ¥ = oe,, then

z(y) <ct %z(y) (2.17)

and, if t = (2¢)¥? = ¢, then

2(5) < %z(y). (2.18)

On the other hand, if d, > ty#o and r < ro(#0), from (2.6), (2.13), and (2.15) we have

1

W) =32(),  Dawl(y) = 2Duzly). (2.19)
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Thus, if tyro < d, < 10ty79, applying Harnack inequality to D, z, we get
1

w(y) < %z(y) <3(z(y)—z(») = SJ %z(sy+(1 —s)y)ds

0 (2.20)

< ctonoDpz(y) < cDyz(y)d, < cD,w(y)d,.

Repeating the argument with ¥ = 10t79, we get that (2.18) holds for 10fy5 < d, <
20ton. After a finite number of steps, (2.18) follows for d,, > too, y € T1. O

LEmMA 2.4. Let u be as in Theorem 2.1. Then there exists a positive 1, such that for every
xeT,dy<n,

D,u(x) > 0. (2.21)

Moreover, in the same set

< D,u(x) < c%. (2.22)

—1 u(x)
dx

Proof. Let ty be as in Lemma 2.3, and #y small to be chosen later. Set #; = 2#otp. It is
enough to show that if X = #yre, and r < r¢(7), then D,u(x) > 0. Consider a small box
Ty and define %(y) = u(ry). Then # satisfies div(A(x)Vii(x)) = div(A(rx) Vii(x)) = 0 in
T,, where f is replaced by f.(y") = f(ry’)/r.

We will show that D,(¥) > 0, where ¥ = #e,,, by comparing # with the function w
constructed in Lemma 2.2, normalized in order to get #(y) = w(¥). Notice that if we
choose ry = (1) according to Lemma 2.3, we have

C’IM <D,w(y) < CM

d, d, (2.23)

If d, > 1. From the comparison theorem (see [8] or [9]), we know that zi/w € C%%(T),)
so that in B, (y)

z(é )) - 1' < cnl, (2.24)
which implies
|ii(y) =w(y)| < engw(y) = engw(y). (2.25)
Moreover, since 79 ~ dy,
| Duti(y) = Duw(y) | < ey~ w(3) < ey Duw(3), (2.26)
from which we get
D,u(y) = (1 —cnl) Duw(3), (2.27)

and (2.21) holds if 7 is sufficiently small. Inequality (2.22) is now a consequence of (2.23)
and the fact that w(y) = u(y). O
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To complete the proof of Theorem 2.1, it is enough to observe that the above lemmas
hold if we replace e, by any unit vector 7 such that the angle between 7 and e, is less than
6 =1/2cot™ !l

Thus, we obtain a cone I'(e,,0) of monotonicity for u. Applying Theorem 2.1 to the
positive and negative parts of the solution u of our free boundary problem, we conclude
that in a #-neighborhood of F(u) the function u is increasing along the direction of a cone
I'(es,0). Far from the free boundary, the monotonicity cone can be enlarged improving
the Lipschitz constant of the level sets of u.

This is a consequence of the following strong Harnack principle, where the cone
I"(ey,0) is obtained from I'(e,,0) by deleting the “bad” directions, that is, those in a
neighborhood of the generatrix opposite to Vu(e,). Precisely, if 7 € I'(e,,6), denote by
w, the solid angle between the planes span{e,,V} and span{e,,7}. Delete from I'(e,,6)
the directions 7 such that (say) w, > (99/100)7 and call I (e,, ) the resulting set of di-
rections. If T € I" (e, 0), then

(V,1) = 30, (2.28)

where § = 77/2 — 0. We call § the defect angle.

LEMMA 2.5. Suppose u is a positive solution of div(A(rx)Vu(x)) = 0 in Ty vanishing on
F = {x, = f(x")}, increasing along every T € I'(e,,0). Assume furthermore that (2.4) holds
in Ty. There exist positive ry and h, depending only on n, I, and A, A, such that if r < 7y, for
every small vector T, T € I (e,,0/2), and for every x € Byss(en),

sup u(y—1) <u(x)— Cedulen), (2.29)

B(14nsye (x)
where € = || sin(6/2).
For the proof see [5, Section 3].

COROLLARY 2.6. In Bys(xo), u is increasing along every T € I(71,6,) with
— — — 7'[ —
508, (3:=7-81),
|§1 — €] | < C(S,

(2.30)

where b = b(n,a,1,A,A) < 1.

We now apply the above results to the solution of our free boundary problem in a
properly chosen neighborhood of the origin. Precisely, set for the moment

s= %min {Fo.n}, (2.31)

with # as in Theorem 2.1 and 7 as in Lemma 2.5. If we define

us(x) = ”(zx), (2.32)
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then u} satisfies Liu} = Lus(sx) = 0 in T, and falls under the hypothesis of Lemma 2.5.
Therefore, rescaling back we get the following result.

THEOREM 2.7. Let u be a solution of our free boundary problem. Then in Bys(sey),

sup u(y—1) <u(x)—cedule,) (2.33)

B(l+h6)c(x)

for every TE I“’(en,9/2),_|7| < s. As a consequence, in Bys(sey), u is monotone along every
T € T (%,6,1), where v, 0, satisfy (2.30).

3. Proof of the main theorem

Before proving Theorem 1.1, we need to introduce some notations and to recall a point-
wise characterization of weak subsolutions.

If O C Q is an open set, regular for the Dirichlet problem, we denote by Gg = Gg(x, y)
the Green function associated with the operator L in 0 and by wg, the L-harmonic mea-
sure for L in 0. In this way,

Wwix) = J@ gdwr - L Go(x, y)h(y)dy (3.1)

is the unique weak solution of Lu = hin O, h = 0 on 90.
A function v € H'(Q) is a weak subsolution in Q if

JQ (A(X)Vu(x), Vo(x))dx < 0 (3.2)

for every nonnegative test function ¢ supported in €}, while u is a weak supersolution in
Q if —u is a weak subsolution.

We need to recall a pointwise characterization. Indeed, see [10-14] for the details, we
say that a function v: Q — R is L-subharmonic in a set Q if it is upper semicontinuous in
Q, locally upper bounded in Q, and

(S) for every xo € Q there exists a basis of regular neighborhood &, associated with
v such that for every B € By,

v(xo) < LB W(o)dw. (3.3)

A function v is L-superharmonic if —v is L-subharmonic. Thus u is L-harmonic, or sim-
ply harmonic, whenever it is both L-subharmonic and L-superharmonic.

With such pointwise characterization, the definition of the Perron-Wiener-Brelot so-
lution of the Dirichlet problem can be stated as usual, see [10] or [11]. The Perron-
Wiener-Brelot solution of the Dirichlet problem coincides, in any reasonable case, with
the solution of the Dirichlet given by the variational approach. In general, L-subharmonic
functions and such subsolutions do not coincide. On the other hand, if v is locally Lips-
chitz, v is L-subharmonic if and only if v is locally a subsolution.
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Precisely, see [12, 13], if f is the trace on 0Q of a function f € C(Q) N H'(Q), then
the weak solution of the Dirichlet problem (even if L has just bounded measurable coef-
ficients)

Lu=0 1in(Q,

u=f onodQ (3-4)

and the parallel Perron-Wiener-Brelot one coincide. Moreover, in [15] Hervé also proved
that the same result holds when f is L-subharmonic and f € H (Q).

LemMma 3.1. Let C > 2 and ¢ be a C* weak solution of
2
. | V(x)]2+wj
$(x)

inQ, 0 < Pmin < @ < max. Then for any x € Q) there exists a positive number 7(x, Ymax> Pmin>
C) such that, for every r < ¥(x) and every ball B, = B.(x) C Q,

div (A(x)V(x)) = D(x) (3.5)

L [(a — X, V() + % (D2(x) (0 x), (0 — x)) - <D(a)]dw§(0) >0 (36)

-

Proof. From Lemma A.5, for every ball B, = B,(x) C Q,

Ve | (0-xdai(o) +%i,jZ-1Dij¢(x) J,, (=) (0, = x)dui (o) .

. jB G, (%, ))O(y)dy +o(r?),

the proof follows easily. O
We are now ready for the proof of the main theorem.

Proof of Theorem 1.1. We have

vg(x) = u(x+¢(x)n(x)), (3.8)

for some #(x), where |7(x)| = 1. To prove that vy is an L-subsolution we just check con-
dition (), since by straightforward calculations vy is locally Lipschitz continuous. In par-
ticular we will prove that for every x € Q" (v) there exists a positive constant ry = ro(x)
such that for every ball B, = B,(x) C Q*(v), r < ry, and for every x; € By,

LB v6(@)dw? (0) 2 v (x0). (3.9)

Let {ey,...,e,} be an orthonormal basis of R” where e, = 7(x) and let & be the following
vectorfield:

n—1

E(h) =e,+ > (Vi,hes, (3.10)
i=1
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where {V1,...,V,_1} € R" will be chosen later. Let (k) = £(h)/|&(h)], so that

n—1 n—1
y(h) = ent S (Vih)ei— % S (Vi) e, +0(IhP). (3.11)
i=1

i=1
Let xo € B;(x) and h = 0 — xo. Then, letting
do=¢(x0),  Vdo=Vd(x), D¢ =D*¢(x0), (3.12)

we have
1
¢(0):¢0+(V¢0,h>+§(9D2¢0h,h)+o(|h|2) (313)
as h — 0, uniformly in a neighborhood of x. As a consequence,

o+ ¢(0)v(o—x0) = y*+h+L+]5 (3.14)

where y* = xo + ¢(x0)en,

1= |:<V¢03h>en+h+¢onzl (Vi,h>ei],

i=1
n—1 el
= [(v%,h) > (Vi,hyei+ = (gb dohh) e, — % S Vl,h>2en}, (3.15)
=1 i=1

= o(|hI?)

uniformly as h — 0.
Let ] = J1 + ]2+ J5. Then for every o € 0B, (xp),

1
(o) = u(y* +]) =u(y*) + (Vuly*).J) + S (D*u(y*).]) +o(IhI?), (3.16)
as h — 0, uniformly in a neighborhood of y*. We have

(Vu(y*),h1) = [Vu(y*) [ ((hen) + (h,V o)),

ol (3.17)
(Vuly i) = 19ty | (- B3 (v + S @ gub) ).

i=1



12 Boundary Value Problems

Asa consequence,

J v(o)dwy (0) = v(xo)
3B,

n—1

[ Vuly |f [thbo “;0201,,11) +1 (@2¢ohh)}dw§‘j

i=1

e (Tl + S @)L +ol 1) |daiy = vis)

+|Vu(y*)|LB [ (h, Vo) —%_i Vih) + 1 (@ goh, h)}da)g‘:

3] L@l ey + Tul) | hdag +o(r?),
2 dB, ’ 0B, '
uniformly with respect to xy in a neighborhood of x.
Let
| @t nmdey = X Dguty®) | aajday
aB l,] aBI’
with

ai = ¢o(Vi,h) + (h,ei), i=1,...,n,
where the V; are still to be chosen, and

an = (Vo,h) + (h,ey).

Fori=1,...,nand j=1,...,n, let

dij = dij (x0,x0) = LBr hihdw df = dij (7, y") = LB, hihjdal) .,

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

be the entries, of the matrix of the moments (see the appendix), respectively, evaluated in

X and y*.
Fori=1,...,n,and j=1,...,n—1, let

m,-j = J- a,-ajdwg‘:,
0B,

Mun = > DpdoDyodpg+2 > Dppodpn + .
pq=1 p=1

(3.23)
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Then

z 3V Vidyg+ o Z Vid,+¢o Z Vidig+d, (3.24)
pq=1

Min = My = LB, ((Vgo,h) + ) (¢o ,,Z vih, +h,-> dwy, (0)
(3.25)

n

=¢o > VIDpodpg+ > Dydodpi+ o >, Vidpn+din.
pq=1 p=1 p=1

Suppose now we can find Vi,...,V,_; and a real number «y, such that for every i =
l,...,n—1andforevery j =1,...,n,

mij = (1 +K0)dl], Mpn = (1 +x0)d,. (3.26)
Then
n—1 n
Z D,]u mz] +ZZDmu )min +Dnnu(y*)mnn = (1+K0) z Dl]u(y*)d:;
i,j=1 i=1 i,j=1
(3.27)

In particular this means that Vi,...,V,_;, and ky must solve the following system, for
i=1,...,n—landj=1,...,n—1,

$o > Vidip+¢o > Vidig+¢5 > dpgVIV] = —dij+ (1 +x0)d5,
P 4=1 =1

o Z Vi dpn+ ¢o Z VI Dyodpg = —din+ D> Dyodip+ (1+x0)dfs,, (3.28)
pq=1 p=1

z Dp¢qu¢odpq +2 Z Dq¢0dpn tdu = (1+ KO)d:,n'
pg=1

From the last equations and Lemma A.3, since d, > cAr?, for small r and |V ¢y |, there
exists a positive constant C = C(A, A) such that

d*

|K0| <C|v¢0|+TS

C(|Véo| + Pmax)- (3.29)

We now start an iteration process to solve the above system (see [4, 6]).
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Let (V))°=0,i=1,...,n— 1, and for [ > 0, define recursively (V) as the solution
of thesystem (i=1,...,n—1;j=1,...,n—1):

¢oz<°w’>’*”d]p+¢oz< N+ 82 S dpg (VDD = —dij+ (140,

q=1 pg=1
i (I+1) - Py (D z
Z O‘/‘p dpn + ¢0 Z ( ) Dp¢0dpq = _di,n + Z Dq(/)od,‘p + (1 + Ko)d;fn.
p=1 =1 p=1

(3.30)

Notice that the sequence is well defined, since the matrix D(x, o) is nonsingular (Lemma
A.3 in the appendix). Moreover, if | V$(xp)| is kept small, denoting by d; and df the vec-
tors (di,...,diy) and (djf,...,d}), from the estimates in Lemma A.3, we get, by induction,

di-di| [Vl |d |
iy sC(' Ly +
v r2go ¢

with C = C(n,A,A). Since the sequences (°V,(-I))ZGN are bounded for everyi e {1,...,n — 1},
there exist subsequences (that we still call) (“Vl(-l) )ien, converging to V'; with

‘Po) < C¢y (¢ + | Veol) (3.31)

|OV1| = C(ﬂ,A,A)¢61(¢0+ |V¢0|) (332)

Now, from (3.18), (1.11), and Lemma A.5, we get

J v(0)dwy (0) = v(xo)
0B
+ | Vu( *)|j (h,V¢ —@§<v- h>2+1<@2¢hh> dw®
y 3B, > 0 2 - i> 2 0’k B,

e ATulr ) mdeg 4 [ L@l R dais + o) = vii)

0B,

+ [ Vu(y*)| LB [(h,V(po - % _i Vi,h)’ sz(poh h)]dwﬁ“

1+xp
2

— v(x0) + Viuly U hdw 1+K0)L’Br(}’*)h der(y]

* Xo 2 *\ 7,k Ik r* 2
+LB (Vu(y*),hydw) + LBM[@ u(y Vit 1) daly ) +0(r)

n—1
19l [ [T =5 SR+ 500k ) |awi o)
(3.33)

Consider

T - [ hdw (o) — (1+K0)J
0B, 0B, (

Y

hda) e (@) (3.34)
*) r
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From Lemma A.3 and (3.29), we get
IT| < Kr. (3.35)

Thus, from (3.32), we deduce that

J v(o)dwy (o)
3B,
n—1
V(o) + | Vuly) | [ (Vo) 23 (Vi) + 2 (@b, h) —Kﬁ}dwgg
9B, i=1
V0|’ + 48
>v(x) + | Vu(y*) | I [ (h, Vo) + = (QD $oh,h) — (O(Po)rzKrﬂdwg‘:.
0
(3.36)
From Lemma 2.5, if r is small, and C large depending on x, and ¢, we have
V0| + %
j (h, Vo) + E (D ¢poh,h) — CMF - Kr? |dwy =0, (3.37)
3B, 2 o) '
so that vy is a weak L-subsolution in its positivity set. O

Remark 3.2. We emphasize that the construction of the vectors Vj,i = 1,...,n — 1, involves
only the Lipschitz continuity of A.

4. Construction of the family of subsolutions and
application to the free boundary problem

For the application to our free boundary problem we need a slightly different version of
Theorem 1.1. Indeed consider a small vector 7 and the function

ve(x) = sup u(y—1) =supu(x—71+¢(x)). (4.1)
By(x) (%) [v|=1

The proof of Theorem 1.1 holds, with minor changes, also in this case. In particular the
following result holds.

COROLLARY 4.1. Let u be a continuous function in Q. Assume that in {u >0} u is a C*-weak
solution of Lu = 0, L € £(A, A, w). For any vector 7 let ¢ be a positive C>-function such that

0< ¢min =< ¢ = (/)ma)u

ve(x) = sup u(y—7)=supu(x—1+¢d(x)v), (4.2)
By(x) (x) [v|=1

is well defined in Q. There exist positive constants po, po = o(n,A,A) and C = C(n,A,A),
such that if [V @| < po, 17| < po, wo = w(Pmax), and

Lo > C(| V()| "+ i), (4.3)

then v, is a weak subsolution of Lu = 0 in {v, > 0}.
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Remark 4.2. The key point in Corollary 4.1 is that the estimates (3.29) and (3.32) for
the vectors V;, i = 1,...,n — 1, and k¢ depend only on the distance between the matrices
D(x9,x0) and D(y*, y*).

We now construct a family of radii, with the right properties to be used in the final
comparison theorem.

Let D = B,(0)\By/s(e,). We may assume with out loss of generality that A(0) = I and
that

sup |A(x) —I| <w; < 1. (4.4)
B;

By a slight modification of [5, Lemma 7] we can construct a family of functions satisfying
the properties expressed in the following lemma.

LemMA 4.3. Let C > 0. There exist positive numbers ¢,7j, @ < 7ju/2 and a family of func-
tions ¢, 0 < t < 1, such that g, € C*(D) and
(H0<l-w=<d¢, <1+ut,
(ii) ¢¢ <1 —w in B,\Bsy3,
(iii) ¢t >1- w +7ut in By,
(iv) [Vé| < c(ut + ),
(v)

Lo = C(| V| +w(maxgy)?). (4.5)

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. We first observe that Theorem 1.1 (and Corollary 4.1) holds for
weak solutions, not necessarily C2. In fact let u]i be the functions constructed as solu-
tions of the following problems:

Ljuf =0 in Q% (u),
. . (4.6)
uj =uj on O* (u),

and set u; = u;r —uj. Then u; converges locally in C**(Q*(u)) to u and it is not difficult
to check that (suppressing for clarity the index t)

vj(x) = sup u; (4.7)
B¢(X)(x)

converges locally in CH4(Q*(u) N D) to

ve(x) = sup u. (4.8)
By(x) (%)

From Theorem 1.1, v; is a weak subsolution for L; in Q*(u;) N D. But then vy is a weak
L-subsolution in Q*(u) N D.

With this result at hand, the proof goes as in [5, Section 7]. Indeed, the particular
form of the operator does not play any role anymore. Actually observe that if ¢, satisfies
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inequality (4.5) also €¢, satisfies the same inequality for every € > 0. Therefore, we can
simplify the proof given in [5] avoiding, in the iteration process, to go through the im-

provement of the e-monotonicity and prove directly that in a sequence of dyadic balls
By« u is monotone along every 7 € I'(vk, 6) with

St < by (50 —6,0=7 - ek), [ vesr = | < cB. (4.9)

These conditions imply that F(u) is C'7, y = y(b), at the origin. O

Proof of Corollary 1.3. Since F(u) is Lipschitz, u is Holder continuous in 6;. We only need
to show that u is Lipschitz in €,/3 across the free boundary. This follows from a simple
application of the monotonicity formula in [16, Lemma 1] and a barrier argument. Pre-
cisely, let xo € Q" (1) N €3, dy = dist(x, F(u)), and u(xp) = A. From Harnack inequality

u(x) ~A (4.10)
in Bg,/2(xo). Let w be the solution of
div (A(x,u)Vw) =0 (4.11)

in By, (x0)\Bu,/2(x0) such that w = 0 on 9B, (xo), w = A on 9By, /2(xo). By maximum prin-
ciple

u>cw in By, (x0)\Bay,2(x0) (4.12)
and, from the C? nature of A and C* estimates, if yo € 0B, (xo) N F(u),
A +
w(x) = c=(x — y0,7) (4.13)
do
with v = (xo — ¥0)/1x0 — yo|. Thus, near yy, u has the asymptotic behavior
u(x) = alx — yo,7) " = Blx = yo,7) " +o(|x—yo]) (4.14)
with
A
c— <a<G(P). (4.15)
do

Then, the monotonicity formula gives

A (A
d—OG-1<cd—O) < Cllulue,,) (4.16)

so that, from interior estimates,

|Vt (x0) |G (| Vi (x0) | ) < Cillulle e, - (4.17)
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This gives the Lipschitz continuity of u*. Similarly, we get

G(|Vu (x0)]) [ Vu (x0) | < Cillull}eq, (4.18)
and the proof is complete. O
Appendix
Auxiliary lemmas

We collect here some estimates on the L-harmonic measure and its moments that are
used in the paper. Here w(r) < ¢or?,0<a < 1.

Definition A.1. For any x¢,x,y € Q,and r >0, B,(x9) C Q, let d;(xo, y) be, fori=1,...,n,

d00y) = [ (0= x)da) (@) (A1)

9B, (xo)

and let d;;(xo, y) be, for every i, j, 1 <i, j <n,

dij (xo,y) = J:}B 5) (O',‘ —X()i) (O'j —xoj)dwér(xn)(a). (A.Z)

We call, respectively, (di(xo,y))1<i<n the vector of the first moment of the L-harmonic
measure in B,(x), and D(xo, y) = (d;j(x0, ¥))1=i,j<n the matrix of the second moment of
the L-harmonic measure in B, (x).

Denote by Ly = div(A(xo) V) and by G? = GY(x, y) the Green function for Ly in B, =
B, (xo). We have the following.

LemmA A.2. Let Lyw, = —1 in B,(xg), wr = 0 on 0B, (xy). Then

r2

2TrA(xy) (A.3)

wy(x0) =

Proof. Suppose xp = 0. Let g;j(x) = x;x; and let v;; be the solution of Lyv;j = 0 in B,,
vij = gij on 0B,. Since Log;; = 24a,;(0) and g;;(0) = 0, we have

V,‘j(O) = Zaij(O)wr(O). (A4)
On the other hand, >, v;;(0) = % and (A.3) follows. O

LEmMA A.3. Let By, (xo) C Q. Then:
(1) foreveryi=1,...,n,

sup |d(x0,y) — yi| < CA, A, n)r'™%; (A.5)
B (0)

(2) foreveryi,j=1,...,n,
| dij (x0,x0) — 2wy (x0) aij (x0) | < Cr**e, (A.6)

where w;, is defined in Lemma A.2.
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Proof. Let xo =0 and
di(y) = di(0, y) = L 0dul, (0), (A7)
Then di(y) — yi = 0 on 9B, and
Lo(di(y) — yi) = div ((A(0) — A(y))e;) inB,. (A.8)
From standard estimates, we get
i = yill 15,y < CrlI(A(0) = A(p))eill o5,y < Cr'*e. (A.9)
Consider now
dij(y) = dij(0, ) = LB' Gi0;dw (o). (A.10)
If v;; is as in Lemma 2.2, we have h;j — v;j = 0 on 0B, and
Lo(dij(y) = vij(y)) = ((A(0) = A(y)) Vvij) in B,. (A.11)
Therefore,
\ldij = vijll =5,y < CrlI(A(0) = A(Y)) Vvijll 1ws,) < ClIVijll s, 7 < Cr2Te.
(A.12)
Hence, from Lemma 2.2, we get
|dij(0) = 2a;;(0)w,(0)| = |di;(0) —v;j(0)| < Cr**e. (A.13)
O
COROLLARY A.4. Forr < ry(n,A,A,a), the matrix (d;j(0)/r?) is nonsingular.
LemMA A.5. Let w be a weak solution of
div (A(x)Vw(x)) = f (A.14)
in Q, where f is continuous. Then for every x € B,(xo) C Q,
Vw(x) - LB,(XO)(G — x)dwi, ) (0) + L,(m G (6 9) f(P)dy = R(xo,x),  (A.15)
where
1
R(xp,x) = LBV(XO) (L (Vw(x+s(o—x)) — Vw(x),0 —x)ds) dwy (o).  (A.16)



20 Boundary Value Problems

Moreover, if u € C*(Q),
1

Vw(x) - (0 —x)dwy () (0)+ LB o (D*w(x)(0 = x), (0 — x))dw} (,.,(0)

3B, (x0) 2

t], . Grey) sy = o(r?).

Proof. Let div(A(x)Vw(x)) = f, then w € C*(Q) and for any o,x € B, (xp) C Q,

w(o) = w(x) +J0 (Vw(x+s(o—x)),0 —x)ds = w(x) + (Vw(x),0 — x)

+ Jl (Vw(x+s(o—x)) — Vw(x),0 — x)ds.
0

On the other hand,

W= [ 0wl @)= [ Ga NS0y,
9B, (xo) B (x0)
hence

Vw(x) - J

0B (x0)

(0 = x)dw}, ) (0) + |
B, (x

The rest of the proof follows from Taylor expansion.

COROLLARY A.6. Let u € C*(Q) be a weak solution of
div (A(x)Vu(x)) =0
in Q. Then

(0 —x0)dwg (o) = O(r?).

Vulx) - |

9B:(xo)

Proof. It is enough to observe that

J (01 = x01) (07 — x0)) dw ) (@) = O(r2).
0B, (x0)
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