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This work is concerned with the relaxation-time limit of the multidimensional isothermal
Euler equations with relaxation. We show that Coulombel-Goudon’s results (2007) can
hold in the weaker and more general Sobolev space of fractional order. The method of
proof used is the Littlewood-Paley decomposition.
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1. Introduction

The multidimensional isothermal Euler equation with relaxation describing the perfect
gas flow is given by

ny+V - (nu) =0,

(1.1)

(ma);+V - (mueu)+Vp(n) = —%nu

for (t,x) € [0,+00) X RY, d > 3, where n, u = (u',u?,...,u?)” (T represents transpose)
denote the density and velocity of the flow, respectively, and the constant 7 is the mo-
mentum relaxation time for some physical flow. Here, we assume that 0 < 7 < 1. The
pressure p(n) satisfies p(n) = An, and A > 0 is a physical constant. The symbols V, ® are
the gradient operator and the symbol for the tensor products of two vectors, respectively.
The system is supplemented with the initial data

(n,u)(x,0) = (ng,up) (x), x &R (1.2)
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To be concerned with the small relaxation-time analysis, we define the scaled variables

T 4T _ S
(n*,u”) (x,s) = (n,u)<x,T). (1.3)

Then the new variables satisfy the following equations:

T T
nS’+V-(nu >=0,

T
n"u’ nu’ ®u’ n'u’ (14)
T2< ) +12< ; )+ =—AVnT
T /s T T
with initial data

(n7,u") (x,0) = (n0,u9). (1.5)

Let 7 — 0, formally, we obtain the heat equation

N, —AAN =0,
1.

N(x,0) = ny. (1.6)

The above formal derivation of heat equation has been justified by many authors, see
[1-3] and the references therein. In [2], Junca and Rascle studied the convergence of the
solutions to (1.1) towards those of (1.6) for arbitrary large initial data in BV(R) space.
Marcati and Milani [3] showed the derivation of the porous media equation as the limit of
the isentropic Euler equations in one space dimension. Recently, Coulombel and Goudon
[1] constructed the uniform smooth solutions to (1.1) in the multidimensional case and
proved this relaxation-time limit in some Sobolev space H*(R9) (k > 1+d/2, k € N). In
this paper, we weaken the regularity assumptions on the initial data and establish a similar
relaxation result in the more general Sobolev space of fractional order (H?*¢(R%), o =
1+4d/2, £ > 0) with the aid of Littlewood-Paley decomposition theory.

If fixed 7 > 0, there are some efforts on the global existence of smooth solutions to the
system (1.1)-(1.2) for the isentropic gas or the general hyperbolic system, the interested
readers can refer to [4-7]. Now, we state main results as follows.

TuEOREM 1.1. Let 71 be a constant reference density. Suppose that no—n and ug € H7+¢(R9),
there exist two positive constants &y and Cy independent of T such that if

||(7l0 _ﬁ)uo)H?—IUH(Rd) = 60) (17)
then the system (1.1)-(1.2) admits a unique global solution (n,u) satisfying

(n—T7,u) € €([0,0),H"*(R?)). (1.8)
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Moreover, the uniform energy inequality holds:

1 t t
?‘I””([Rd) + ; J() ||u('7g)||§{a+e(Rd)dg+TJ0 ||(vn> Vu)(,§)| i[uflﬂ([Rd)dg

< Goll(no — 7, up) |

[|[(n—7,u)(-,1)]

2
Hn+£(|Rd)) t = 0
(1.9)

Based on Theorem 1.1, using the standard weak convergence method and compact-
ness theorem [8], we can obtain the following relaxation-time limit immediately.

CoroLLARY 1.2. Let (n,u) be the global solution of Theorem 1.1, then

n" — 7 is uniformly bounded in 6 ([0, ), H**¢(R?)),

Tyt (1.10)
LN uniformly bounded in L* ([0,0), H**¢ (R?)).

Furthermore, there exists some function N € 6([0,00),7+ H*¢(R%)) which is a global
weak solution of (1.6). For any time T >0, we have n”(x,s) strongly converges to N'(x,s)
in6([0,T],(H" **(R"))ioc) (0" < @) as 7 — 0.

2. Preliminary lemmas

On the Littlewood-Paley decomposition and the definitions of Besov space, for brevity,
we omit the details, see [9] or [7]. Here, we only present some useful lemmas.

Lemma 2.1 ([9,7]). Lets>0and1 < p,r < . Then By, NL® isan algebra and one has

I fgllsy, SUflle-ligllss, +lgle=1lfllg, if f.g €By, NL”. (2.1)
LEMMA 2.2 [9,7]. Let1 < p,r < oo, and I be open interval of R. Let s > 0 and € be the small-
est integer such that £ > s. Let F : I — R satisfy F(0) = 0 and F' € W5 (I;R). Assume that

vEB;, takes values in ] CC I. Then F(v) € Bj,, and there exists a constant C depending
onlyons, I, J, and d such that

€
IEW)llgs, < CQ+VIlL=) 1F e n 1Vl 53, (2.2)

LEmMaA 2.3 [7]. Lets >0, 1 < p < oo, the following inequalities hold.
I g=-1:

( d
Ceqll By, IgliB;,>  fr8 €Bpars=1+ » +e(e>0),

d
29| £, 80190l < Ceqll fllms, glpss  f € By g€ By, s = ot (e >0),

d
Ceqll fllgylglny,»  f€ B, gEB,, 5= » +¢e(e>0).
) (2.3)
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If f =g, then

29[ f,Aq]54g] s < CegllV fll=lIglisg,, s >0.

(I) g=-1:

=S S d
27 ILf Aglstgllppani = Ceal fllgs, Iglns.o  fo8 € By s =1+ 5 +2(e>0),

(2.4)

(2.5)

where the operator 4 = div or V, the commutator [ f,h] = fh—hf, C is a harmless con-
stant, and c, denotes a sequence such that ||(cy)|lp < 1. (In particular, Besov space B, =

H*.)

3. Reformulation and local existence

Let us introduce the enthalpy #(p) = Alnp (¢ >0), and set
m(t,x) = A~ (H (n(t,x)) - H (7).

Then (1.1) can be transformed into the symmetric hyperbolic form

d 1(0
U+ > Aj(n)dy, U= - ( )

i1 "
where

m w  JAel
) (5 )

The initial data (1.2) become into

Uy = (VA(Inng —In7),u,) .

(3.1)

(3.2)

(3.3)

(3.4)

Remark 1. The variable change is from the open set {(n,u) € (0,+00) x R4} to the whole
space {(m,u) € R? x R}, It is easy to show that the system (1.1)-(1.2) is equivalent to

(3.2)—(3.4) for classical solutions (n,u) away from vacuum.

First, we recall a local existence and uniqueness result of classical solutions to (3.2)—

(3.4) which has been obtained in [7].

ProrosiTioN 3.1. For any fixed relaxation time T >0, assume that Uy € B ;, then there
exist a time Ty > 0 (only depending on the initial data Uy) and a unique solution U(t,x) to
(3.2)~(3.4) such that U € €' ([0, To] X RY) and U € 6([0,To],B3,) N6 ([0, To],BI").
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4. A priori estimate and global existence

In this section, we will establish a uniform a priori estimate, which is used to derive the
global existence of classical solutions to (3.2)—(3.4). Defining the energy function

bt (4.1)

1 T T
E.(T)? = sup ||U(t)||i1m+;L ||u(t)|;mdt+rjo V.U

0<t<T
then we have the following a priori estimate.

ProrosiTioN 4.1. For any given time T >0, if U € €([0,T],H°*®) is a solution to the
system (3.2)—(3.4), then the following inequality holds:

E.(T)* < C(S(T)) (E-(0)* + E-(T)* + E-(T)*), (4.2)

where S(T) = supy_, .7 IU(-,t)l|go+e, C(S(T)) denotes an increasing function from R* to
R*, which is independent of 7, T, U.

Proof. The proof of Proposition 4.1 is divided into two steps. First, we estimate the
L*([0,T],H°") norm of U, and the L?([0,T],H°"¢) one of u. Then, we estimate the
L2([0,T],H®~1*¢) norm of VU.

Step 1. Applying the operator A, to (3.2), multiplying the resulting equations by A;m
and Agu, respectively, and then integrating them over RY, we get

1 t 1 t
2 (g + agulls) [+ | l1agu(o)l.ds
1 (! .
= 5.[0 JW d1vu<|Aqm|2+ |Aqu|2)dxdg (4.3)

t
+J J Al Ag] - VmAgm+[u,Aq] - VuAguldxds.
0 JR

In what follows, we first deal with the low-frequency case. By performing integration by
parts, then using Holder- and Gagliardo-Nirenberg-Sobolev inequality, we have (d = 3)

(18-l haswl [+ [ o
< [ (olalla s 1 9l [l 14wl de
+2Lt (1w AT+ Il oaiaen | Ayl s +] [, A1 ] - V|| [A-rull: ) de
< [ lulllla 1wl + [ ol 1o 1l )de

t
#2 (w811 Tl |81 Tl [ 8] - V][4l ).
(4.4)
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Multiplying the factor 272(°*®) on both sides of (4.4), from Lemma 2.3 and Young in-

equality, we obtain

273 <||A*lm||iz + ||A,1u||iz> ‘;+ % J;2_2(0+8)||A71u(€)||izd§
= Lt (%llul\wz’z("*””llmlleliz T HVuIILmTZ("”)||A,1u||i2>dg

*CK (corllullzos lmllzzes 2™ |AL o+ ey o2 [A- vl dg
< [ (S22l T+ 19wl Ul ) dg

f 1
+C [l (S Dl + 727240l i}, ) de
0

f 1 1 1
+cj HuIIHau(ch_lllull%{m+72’2("+€>||A_1u||i2>dg (Ts 7),
0 T T T
(4.5)

where C is some positive constant independent of 7. For the high-frequency case, we can
also achieve the similar inequality:

2 2yt 2 (! 2
22q(0+e) (”Aqm”Lz + ||Aqu||L2) ‘0 + L 2200079 | A u(o) |7, dg
t
<C j 1Vull s (2200715916, |, + 2209 |l 2, ) g
. | 2 (4.6)
+CJ’0 [l pgove (;céllull%{m +122‘1("‘”5)||Aqu||Lz>dg

t
1 2 2 1 2q(o+e) 2 1
+C [ Ml (el + 12909 8l )ds (7<),

where we have taken the advantage of the fact [|A;Vm||1> = 29(|Ayml[12 (g = 0).
By summing (4.6) on g € N U {0} and adding (4.5) together, then according to the
imbedding property in Sobolev space, we have

t 2 t 2
+= ul|%:ed
‘ TLII Bporede

(1 e + [l Zgove)
-cf L2 Vil Vderc [ Lz .d
< Il pose | = llallgore + TN Vil gro-ree | dg+ [lall grove = ||l gove dg

0 T 0 T (4.7)
‘ 1 2 2 .
+C 0||m|\Hﬁ+r ;||ll||Ha+s+T||Vm||Hafl+s dg

t 1 1
+CJ [lal| o+ (fllull%{m + fllull%{m)dg.
0 T T
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Therefore, for any t € [0, T], the following inequality holds:

v

2 t
st 2 JO 1l de < C(S() (Ex(0)2 + Eo(£)?). (4.8)
Step 2. Thanks to the important skew-symmetric lemma developed in [1, 6, 10], we are
going to estimate the L2([0, T], H°~!*¢) norm of VU.

LEMMA 4.2 (Shizuta-Kawashima). For all £ € R?, & # 0, the system (3.2) admits a real
skew-symmetric smooth matrix K (€) which is defined in the unit sphere $%':

fT
0 2
ko= ¢ 1, (49)
-2 0
€]
then
d VAIE] 0
K& §4;0=| _yated | (4.10)
j=1 €]
The system (3.2) can be written as the linearized form
d d 0
U+ > Aj(0)0,, U Z 1(0)—Aj(w)}o,, U-— (u> (4.11)
j=1 =
Let
d
Z {A;(0) - Aj(w)}oy, U. (4.12)
From Lemma 2.1, we have
16| go-1+¢ < Cllull gro-1+e [| VU || pro-rse. (4.13)
Apply the operator A, to the system (4.11) to get
0:A U + ZA (0)0x,A0U = A4 — (A0u> (4.14)

j=1

By performing the Fourier transform with respect to the space variable x for (4.14) and

multiplying the resulting equation by —iT(@ )*K (&), “x” represents transpose and
conjugator, then taking the real part of each term in the equality, we can obtain

TIm((@)*K(f)%A/q\>+T AU (Zf, 0)>A U
(4.15)

~ 1 (&) &) + 7 (85,0) K(O)(3,9)).
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Using the skew-symmetry of K (&), we have

1d s .
m((AqU) K(f)—A U) I ((8,0) K(O)8,0). (4.16)
Substituting (4.10) into the second term on the left-hand side of (4.15), it is not difficult
to get

TIm((@)*K(E)%@>+T A,0)* (ij O))A U
(4.17)
= T 1 (80) " KOB) + VG 8,01 - 2/l | B

With the help of Young inequality, the right-hand side of (4.15) can be estimated as

m (&) 55 &) + 11m (85,0) K(O)(5,9))
/i - (4.18)
<T—\g||A U+ |£||Au| +|€||(chg)|2,

where the positive constant C is independent of 7. Combining with the equality (4.15)
and the inequalities (4.17)-(4.18), we deduce

A8 < 161+ L) 18l A8 - Tt (8,0) K(©8,0),

2 dt
(4.19)

Multiplying (4.19) by |¢| and integrating it over [0,¢] X R?, from Plancherel’s theorem,
we reach

t C t t
[ 18,9 Ulds = [ (180l + 118, 7ullh s+ Cr | 12,15 dg

_zlmj E(ED) KO
C

(4.20)
R e NI

+C122‘1<||A Ut ||Lz+||A u(o ||L2>

where we have used the uniform boundedness of the matrix K (&) (& # 0).
Multiplying the factor 224(°=1+9) (g > —1) on both sides of (4.20) and summing it on
q> we have

t C t t
o[ IVUBds < 5 | Tulleds+ Cr [ 1913 dg+ Cr(IUO ]+ [U(0)

< C(8(1)) (E(0)* + E¢(t)* + E-(1)*).

2
Ho+e

(4.21)
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Together with the inequalities (4.8) and (4.21), (4.2) follows immediately, which com-
pletes the proof of Proposition 4.1. O

Proof of Theorem 1.1. In fact, Proposition 3.1 also holds on the framework of the func-
tional space H?"(= BJ}°). There exists a sufficiently small number €, independent of 7
such that E;(T) < €g < 1 from (4.1), we have

E.(T)? < C(E-(0)2+E.(T)?), (4.22)

where the constant C is independent of 7. Without loss of generality, we may assume
C = 1. Similar to that in [1], we achieve that

Ex(1) < min [, 2%,\/%5,(0)} (4.23)
forany t = 0 if
[|Uol| gose < L (4.24)
2(2C)32
Note that the density
n—n=rn{exp(AV*m) -1} (4.25)

from Lemma 2.2, the definition of E;(t), and the standard continuity argument, we can
obtain the following result: there exist two positive constants &y, Cy independent of 7 if
the initial data satisfy

e < 00, (4.26)

trove + [Juol

llno =7l

then the system (1.1)-(1.2) exists as a unique global solution (#,u). Moreover, the uni-
form energy estimate holds:

_ 1t ) t )
(n—m,u)(,1) 2a+s+*J u(-,¢) md§+rj (Vi, Vu) (-, ¢)|[Fro 1o dc
[ G+ 2 [ a0 e [ | i .
< Coll(no = Aup) [30e 120,
which completes the proof of Theorem 1.1. 0

The proof of Corollary 1.2 is similar to that in [1]; here, we omit the details, the inter-
ested readers can refer to [1].
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