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We construct for every fixed n > 2 the metric g = h;(r)dt?> — hy(r)dr? — ki(w)dw?} —
o —ky(w)dw?_y, where hi(r), hy(r), ki(w), 1 < i < n— 1, are continuous functions,
r = |x|, for which we consider the Cauchy problem (u — Au), = f(u) +g(Ix[), where
x €R™ n =2 u(l,x) = u.(x) € LA(R™), ur(1,x) = ui(x) € H ' (R"), where f eGL(RY),
f(0) =0, alul < f’(u) < blul, g € 6(R*), g(r) =0, r = |x|, a and b are positive con-
stants. When g(r) = 0, we prove that the above Cauchy problem has a nontrivial solution
u(t,r) in the form u(t,r) = v(t)w(r) for which lim—ollull12([0,c0)) = 0. When g(r) # 0,
we prove that the above Cauchy problem has a nontrivial solution u(¢,r) in the form
u(t,r) = v(t)w(r) for which lim,_ollull2([0,00)) = 0.

Copyright © 2007 Svetlin Georgiev Georgiev. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we study the properties of the solutions of the Cauchy problem

(u”—Au)gS:f(u)+g(\x|), xeR", n=2, (1)
u(1,x) = u.(x) € L*(R"), u(1,x) = ui (x) € HH(R"), (2)

where g; is the metric

g =M (r)dt* — hy(r)dr* — ki (w)dw? — - - - — ky_1 (w)dw?:_,, (1.1)
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the functions h, (), hy(r) satisfy the conditions

hi(r),ha(r) € €1([0,00)), hi(r) >0, hy(r) =0 Vr € [0,00),

h( h S h()oo
Nigwi o [ EO [ s <,
2

([ (D s o) ar) ) ar <o,

C,, G, are arbitrary nonnegative constants,

(s <o

C,, G, are arbitrary nonnegative constants,

max |l (1)a(r) < e,

J r\/th)J \/hZdes dr < oo,
h2 b (O()dr)  ds) dr <o,
o (L es ) @)
NG hjﬁj’( 1)) dr <o

J th(s dr<oo
hi(s)

ki(w) € €1([0,27] X - -+ X [0,27]),i = 1,...,n— 1, f € 6L (RY), f(0) =0,alul < f'(u) <
blul, a and b are positive constants, g € 6(R!), g(|x|) > 0 for |x| € [0, 00). (In Section 2
we will give example for such metric g;.)

We search a solution u = u(t,r) to the Cauchy problem (1), (2). Therefore, if the
Cauchy problem (1), (2) has such solution, it will satisfy the Cauchy problem

(i1)

! 1 h(r) B
MG MGIG) r<\/h1(r)h2(r)ur> = flu) +g(r), (1.2)
u(lr) =u € L2(10,00)),  u(1,r) = € H([0,09)). (1.3)

In this paper, we will prove that the Cauchy problem (1), (2) has nontrivial solution
u = u(t,r) for which

ltil%lllullp([o,oo)) = oo, (1.4)

Our main results are the following.
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THEOREM 1.1. Suppose n = 2 is fixed, h(r), hy(r) satisfy the conditions (i1), g =0, f €
BL(RY), f(0) =0, alul < f'(u) < blul, a and b are positive constants. Then the homoge-
neous problem of Cauchy (1), (2) has nontrivial solution u = u(t,r) € 6((0,1]L*([0,)))
for which

ltig)lllullp([o,oo)) = oo, (1.5)

THEOREM 1.2. Suppose n = 2 is fixed, hi(r), hy(r) satisfy the conditions (il). Suppose also
that a and b are fixed positive constants, a < b, f € €1(R!), f(0) =0, alu| < f'(u) < blul,
b/2= f(1)=a/2, g #0, g €6([0,0)), g(r) =0 forevery r >0, g(r) < b/2— f(1) for ev-
eryr € [0,00). Then the nonhomogeneous problem of Cauchy (1), (2) has nontrivial solution
u=u(t,r) € 6((0,1]L*([0,0))) for which

1t1113||u||L2([o,oo)) = o0, (1.6)

When g is the Minkowski metric and uo, u; € 6§’ (R?) in [1] (see also [2, Section 6.3]),
it is proved that there exists T > 0 and a unique local solution u € 6%([0,T) x R?) for the
Cauchy problem

(un—Au)gs =f(u), fe€G(R),te(0,T], xR

(1.7)
“|t:0:“0) “t|z:o:“1’
for which
sup | u(t,x)| = oo. (1.8)
t<T,xeR3

When g; is the Minkowski metric, 1 < p < 5 and initial data are in 6§’ (R?) in [1] (see
also [2, Section 6.3]), it is proved that the initial value problem

(utt—Au)g =ulul’~!, tel0,T], x € R,
’ (1.9)

Ul = vo, Ur | oo =

admits a global smooth solution.

When g, is the Minkowski metric and initial data are in 6§’ (R?) in [3] (see also [2,
Section 6.3]) it is proved that there exists a number €, > 0 such that for any data (up,u;) €
€5 (R3) with E(u(0)) < €y, the initial value problem

o™ —Au)gs =4, te[0,T], xeR?
(1.10)
ul,_o = tho» |, =

admits a global smooth solution.
When g; is the Reissner-Nordstrom metric in [4], it is proved that the Cauchy problem

(u,t—Au)g+m2u=f(u), te[0,1], x € R?,
. . (1.11)
u(l,x) =ug € BZ,F(RS), u(l,x) =u; € Bg);,pl(Rs)a
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where m # 0 is constant and f € @2(RY), alul < If(”(u)l < blul,I=0,1,aand b are pos-
itive constants, has unique nontrivial solution u(t,r) € 6€((0, I]BZ,P(R’f)), r=lx|,p>1,
for which

ltifla”“”B;»MR*) = o, (1.12)

When g; is the Minkowski metric in [5], it is proved that the Cauchy problem

(une —Au), = f(w), te€[0,1], xeR’,

u(1,x) = u, u(1,x) = uy (1.13)
has global solution. Here f € €%(R), f(0) = f'(0) = f"(0) =
| f"(w) - f"(v)| <Blu—v|® (1.14)

for lul <1, [v[<1,B>0,V2—-1<q <1, up € €(R?), u; € €4(R?), up(x) = u1(x) =0
for |x —xo| > p, x9 and p are suitable chosen.

When g; is the Reissner-Nordstrom metric, n =3, p > 1, g =1, y € (0,1) are fixed
constants, f € €1(R'), f(0) =0, alul < f'(u) < blul, g € 6(R"), g(|x]) = 0, g(Ix]) =0
for |x| = r1, a and b are positive constants, r; > 0 is suitable chosen, in [6], it is proved
that the initial value problem (1), (2) has nontrivial solution u € 6((0, I]Bg,q([R’f)) in the
form

(1.15)

(t.r) v(Hw(r), forr=<ry, te]0,1],
u(t,r) =
0, forr=r, t€[0,1],

where r = | x|, for which lim;_ IIMIIB;M(W) = 0.

The paper is organized as follows. In Section 2, we will prove some preliminary results.
In Section 3, we will prove Theorem 1.1. In Section 4, we will prove Theorem 1.2. In the
appendix we will prove some results which are used for the proof of Theorems 1.1 and
1.2.

2. Preliminary results

ProprosITION 2.1. Let hi(r), hy(r) satisfy the conditions (il), f € €(—oc0,0), g =0. If
for every fixed t € [0,1] the function u(t,r) = v(t)w(r), where v(t) € €*([0,1]), v(t) #0
for every t € [0,1], w(r) € €2([0,0)), w(c0) = w'(c0) = 0, satisfies (1), then the function
u(t,r) = v(t)w(r) satisfies the integral equation

u(tr) = JJ’” ) (\/'“(T)V” (1) = (D) (1) f(u))drds (1%)

hi(7) v(t

for every fixed t € [0,1].

Proof. Suppose thatt € [0,1] is fixed and the function u(t,r) = v(f)w(r), v(t) € €*([0,1]),
v(t) # 0 for every t € [0,1], w(r) € €%([0,%)), w(c0) = w'(c0) = 0, satisfies (1). Then for
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every fixed t € [0,1] and for r € [0, 00) we have

v (1)

uy(t,r) = ) u(t,r),
1 v'(¢) 1 hy(r) -
() v 0 wzl(r)hz(r)a’(wzl(r)hz(r) ”r(“)) -,

(2.1)

1 h(r) 1Y B
\/hl(r)hz(r)ar(\/hl(f)hz(r)ur(t’r)>_hl(r u(t,r) = f ),

h(r) () v (@) B
ar(mmm) DY 4t = o) f 0

Now we integrate the last equality from r to co here we suppose that u,(t,r) = v(f)w’(r),
u,(t,00) = v(t)w’ () = 0, then we get

hl(T) . h2 T _
T momo B0 = J <\/ hl(r Vi (@ha(r) f (u )dT’
hy(r) (T ha(r) V' (2)
hz(r)ur(t,r)—ﬁ ( () v u(t,7) —+ 1(T)hz(T)f(u))dr, (2.2)

o T (B

Now we integrate the last equality from r to oo; we use that u(t, ) = v(f)w(o0) = 0, then
we get

—
<

—~
~

—

- BB (- oo
1

that is, for every fixed t € [0,1] if the function u(t,r) = v(t)w(r) satisfies (1), then the
function u(t,r) = v(t)w(r) satisfies the integral equation (1*). Here v(t) € €*([0,1]),
v(t) # 0 for every ¢ € [0,1], w(r) € €([0,)), w() = () = 0. O

ProrosITION 2.2. Let hy(r), hy(r) satisfy the conditions (i), f € €(—o0, ), g = 0. If for
every fixed t € [0,1] the function u(t,r) = v(t)w(r), where v(t) € 6([0,1]), v(t) # O for
every t € [0,1], w(r) € €2([0,)), w(o) = w' () = 0, satisfies the integral equation (1*)
then the function u(t,r) = v(t)w(r) satisfies (1) for every fixed t € [0,1].

Proof. Lett € [0,1] be fixed and let the function u(t,7) =v(t)w(r), where v(¢) € 64([0,1]),
v(t) # 0 for every t € [0,1], w(r) € 6%([0,2)), w(e) = w’(c0) = 0, satisfy the integral
equation (1*). From here and from f € €(—o0,0), for every fixed t € [0,1] we have
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u(t,r) € 62([0,00)) and

| ha(r) [ ha
ur(t,r) = hi(r) ( l(r) V(t) u(t,7) = (t)ha(r fu)>df

hi(r) hy(r)

e =], (\/ b i 1D - IO u))dr,
() o D )

Tontn == (\/ 0O ) et )

(2.4)
) T 0,
a( GOk )) () P) =\l (o) f (@),
hy(r) v (t) hy(r)
m v Ao~ ( OOk tr))—\/T(rf
1 v (t) 1 () -
mn v 7 ko (wl DR r(“))—f(“)
Since for every fixed ¢ € [0, 1] we have
vt = ule), 25)
we get
! 1 hu(r) )
) mmn <¢h1<r Vot “”) =fw, 20

that is, for every fixed t € [0,1] if the function u(t,r) = v(t)w(r), where v(t) € €*([0,1]),
v(t) # 0 for every t € [0,1], w(r) € €2([0,)), w(0) = w'(c0) = 0, satisfies (1*), then it
satisfies (1) for every fixed t € [0,1]. O

ProrosITION 2.3. Let hy(r), hy(r) satisfy the conditions (i1), f € €(—o0, ), g€€([0,0)),
g(r) = 0 for every r = 0. If for every fixed t € [0,1] the function u(t,r) = v(t)w(r), where
v(t) € €*([0,1]), v(t) # O for every t € [0,1], w(r) € €>([0,00)), w(o0) = w' (o) = 0, sat-
isfies (1), then the function u(t,r) = v(t)w(r) satisfies the integral equation

J \/hjg) < J Zvy((tg)u(t,r)— h1(T)h2(T)(f(u)+g(r))>deS

for every fixed t € [0,1].

Proof. Let t € [0,1] be fixed and let the function u(t,7) = v(t)w(r), v(t) € €*([0,1]),
v(t) # 0 for every t € [0,1], w(r) € €2([0,)), w() = w' () = 0, satisfy (1). Then for
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every fixed t € [0,1] and for r € [0, 00) we have

uy(t,r) = %u(t,r),

1 v'(¢) B 1 L(r) ~
m vin "7 T hz(f’)a<\/h Tl “”))—(f(“”g(’)%

(2.7)

1 1(r) 1 v
Vi ()hz(f’)a< 1(f)h2()u(tr))_ @ iy o0~ fure),

h] T'
( NGOIG) hz(r (5 )> ) (t VI ()ha(r) (£ () +g(r).

Now we integrate the last equality from r to oo; here we suppose that u,(t,7) = v(f)w’ (1),
u,(t,00) = v(t)w’ () = 0, then we get

hi(r) hy(7) v/ ()
Wur(t,r) L ( 7y (1) () —/h (T)hz(‘r)(f(u)Jrg(r)))dT

h * h i
- h;ﬁguru,r):jr( hjg;VV((tg)u(t,T)—\/h1(T)h2(T)(f(u)+g(r)))df

h h

(2.8)

Now we integrate the last equality from 7 to co; we suppose that u(t,c0) = v(t)w(o) = 0,
then we get

 ha(s) (T [ha(x) v (2)
u(t,r) = L h?(j) L ( h?(:) Vv(t) u(t,t) = \Jhi () ha(7) (f () +g(r))>drds,

(2.9)

that is, for every fixed t € [0, 1] if the function u(t,r) = v(t)w(r) satisfies (1), then the
function u(t,r) = v(t)w(r) satisfies the integral equation (1**). Here v(t) € €*([0,1]),
v(t) # 0 for every t € [0,1], w(r) € €([0,%)), w(®) = w’'(c0) = 0. O

ProrosITION 2.4. Let hy(r), hy(r) satisfy the conditions (i1), f € €(—o0,0), g€€([0,0)),
g(r) = 0 for every r = 0. If for every fixed t € [0,1] the function u(t,r) = v(t)w(r), where
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v(t) € €*([0,1]), v(t) # O for every t € [0,1], w(r) € €*([0,0)), w(o0) = w' () = 0, sat-
isfies the integral equation (1**), then the function u(t,r) = v(t)w(r) satisfies (1) for every
fixed t € [0,1].

Proof. Lett € [0,1] be fixed and let the function u(t,r) = v(t)w(r), where v(t) € €*([0,1]),
v(t) # 0 for every t € [0,1], w(r) € 6%([0,)), w() = w’(c0) = 0, satisfy the integral
equation (1**). From here and from f € €(—o0,00), g € 6([0,0)), for every fixed t €
[0,1] we have u(t,r) € €2([0,0)) and

)= [T 7 ([0 1) et a0 000
W), o [ [0
) == (| St = (o) £+ g0

hi(r) _ (T [y (0 B
I’ll(l’)hz(?’)ur(t)r)_ L ( h(r) v(0) u(t,7) \/hl(T)hZ(T)(f(u)+g(r))>d7’

) _ [ha(r) v (1) ~
8,( hl(f)hz(f)ur(t’r)) -\ () v(t) u(t,r) = \Jha(r)ha(r) (f (u) +g(r)),

ha(r) v (1) m(r) _
ROk u(t,r)—ar( hlmhz(r)”’(“’)‘ (o (1) (f () +g(1),

Gy ) 07 wn(rl)hz(r)ar(Jhll?rg&r)”*t’”) A
(2.10)
Sinee for every fixed ¢ € [0,1] we have
VV((t‘;) w(tyr) = un(t,7), 2.11)
we get
0~ ar(th?rng(n “r(”)) e, 242

that is, for every fixed t € [0,1] if the function u(t,r) = v(t)w(r), where v(t) € €*([0,1]),
v(t) # 0 for every £ € [0,1], w(r) € 62([0,)), w(0) = w’(c0) = 0, satisfies (1**), then it
satisfies (1) for every fixed t € [0,1]. O
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For fixed n = 2, hy(r), h2(r) which satisfy the conditions (i1) and fixed positive con-
stants a and b, we suppose that the positive constants ¢, d, A, B, A1, A; satisfy the condi-
tions

b
CSd, A =B, Al <Ay, Al_ﬁ>0’

A= ks 20 for every r € [0,0),

(H1)
I I
I N T(SJ (/hj(r 1/ (1) >d1d5>1 forr € [,d],
() ) A
L \ hl(s)L ( h (1) "ha(r )des 1010
max J J}”(S) (\/hZ(T;A2+ hl(T)hz(T)%)drdssl,
(H2)
hy(r) hy (1) f — b
rg[l(ii{w\/hl(r) L (\/h (T)A2+ m(@ha(7) ) r=b
) 00 h (S) 0 h (T) b 2 1/2 2 )
2 2
JO (J hl(s)<L < hl(T)Az-f-w/hl(T)hz(T)ﬁ) dr) ds) dr<,
(H3)

2

T [hG) (T [ha(7) b

) (J \/ el (Jhl(r)“‘”:? ’“(T)’“(T)>MS) dr < oo,
Jw Joo e ro \/hZ(T)A +4/hi(1)h (T)é sz 1/2ds 2alr<1 (H4)
0 r hl(s) s hl(‘[’) 2 ! 2 B :

Example 2.5. Let 0 < € < 1/3 be enough small, n > 2 is fixed. We choose ¢ >0, d >0,
¢ < d < oo such that for every r € [¢,d] we have

% <arctg(d+1-r)% arctgd® < g (2.13)

Letalso b =8€3 a=14€3,A=60,B=40,A; = €3, A, =26€. Let

hi(r) = (

Sallles

2
Ab 144(d 411
<—1+ 1+2?>) s hy(r) = [(d+1_r)6+1]2. (2.14)
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We note that the functions h,(r) and h,(r) satisfy all conditions of (i1) and

Al b
\/hl(r) 2B

[ L (e
J‘dﬂ\/ijdﬂ(\/i 1__\/T>d1d5>1 forr € [c,d].

(2.15)

hl(?’) =1,

We note that +/h(r) ~ 1,6.

For fixed n = 2, h;(r), h,(r), which satisfy the conditions (i1), the constants a, b, ¢, d,
A, B, A;, A; are fixed which satisfy the conditions (H1), ..., (H4), then we suppose that
the function v(t) is fixed function and satisfies the conditions

v (t)

v(t) € €*([0,1]), 00 >0, v(t)>0, Vte[o0,1], (H5)
A <ZW _a =0, Y1) =0, (H6)
v(t)
. V'(t) a
123?( W) E) =0 (H7)

Example 2.6. Leta, b, ¢, d, A, Az, B, A be the constants from the above example. Then
a/2 = A, and

v(t) = C<e\/A>z(t*1)+e*\/A>2(t’l)), (2.16)

where C is arbitrary positive constant, satisfiing the hypotheses (H5), (H6), (H7).

Here and below we suppose that v(¢) is fixed function which satisfies the conditions
(H5),..., (H7).
When g(r) = 0 we put

Da(r)= j ,/hZ(SJ ( (t) 5 (D)= (Ohs(r) (D7) )drds,

(1)

In Section 3, we will prove that (1’) has unique nontrivial solution w(r) € L2([0, )).
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When g(r) # 0 we put

=v(Dw(r)
J \/hzz (J Egv”(l)w(r) hl(T)hz(T)(f(v(l)w(T))+g(T))>des,
u = 0.

(1)
In Section 4, we will prove that (1””) has unique nontrivial solution w(r) € L*([0,1)).

3. Proof of Theorem 1.1

3.1. Local existence of nontrivial solutions of homogeneous Cauchy problem (1), (2).
In this section, we will prove that the homogeneous Cauchy problem (1), (2) has non-
trivial solution in the form u(t,r) = v(t)w(r).

For fixed function v(t), which satisfies the conditions (H5), (H6), and (H7) we con-
sider the integral equation

u(t,r) = JJ’”E (J'“ET” u(t,7) =\ (1) oz fu))drds (1)

THEOREM 3.1. Let n > 2 be fixed, let hi(r), hy(r) fixed, which satisfy the conditions (il),
let the positive constants a, b be fixed, a < b, let the positive constants ¢, d. A, B, A, A; be
fixed which satisfy the conditions (H1), ..., (H4) and f € €1((—o0,)), f(0) =0, alu| <
f'(u) < blul. Let also v(t) be fixed function which satisfies the conditions (H5), ..., (H7).
Then (1*) has unique nontrivial solution u(t,r) = v(t)w(r) for which u(t,r) € 6([0,1] x
[0,00)), u(t,r) < 1/B for every t € [0,1] and for every r € [0,0), u(t,r) = 1/A for every
t € [0,1] and for every r € [c,d], u(t,r) = 0 for every t € [0,1] and for every r € [0, 00),
u(t,00) = u,(t,00) = 0 for every t € [0,1], u(t,r) € C((0,1]L*([0, ))).

Proof. Let M be the set
M= {u(t,r) cu(t,r) € 6([0,1] X [0,00)), u(t,o0) = u,(t,00) =0 V¢t € [0,1],
wtr) > % fort € [0,1], r € [e,d], ut,r) < % Ve [0,1], Vr € [0,00),

u(t,r) =0 Vte[0,1], Vr € [0,0), u(t,r) € L*([0,00)) for every t € (0,1]}.
(3.1)

Let t € [0, 1] be fixed. We define the operator L as follows:

L(u)(t,r):er,/Z?Ez;Jsm( Z?EgV;,((tg)u(t,‘r)—«/hl(r)hz(‘r)f(u))d‘rds (3.2)

for u € M. First we will see that L: M — M. Let u € M. Then the following holds.
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(1) Since v(t) € €*([0,1]), u(t,r) € €([0,1] X [0,0)), and f € €(—o0,) and from
(i1) we have that L(u) € 6([0,1] X [0,)). Also we have

Lw)|,_, =0,
o) (o @ v TR
"=\ J <V (o) v D D] (”))dT’ (3:3)
%L(”)L:w =0.

(2) Now we will prove that for every fixed ¢ € [0,1] and for every r € [0, %) we have
that L(u) = 0. Really,

ha(s) ho(T) v
J J m(s) Js (\/ (1) v(t) u= I @h(of (”)deS

h h -
J \/ e <\/ jg te[o1] VV ”_Wf ”))d‘rds (3.4)
J \/hz s) (\/hz(‘r \/Tf )deS.

Now we suppose that for every fixed ¢t € [0,1] and for every r € [0, c0) we have u(t,r) > 0;
from here f'(u) < bu, since f(0) = 0 and u(t,r) < 1/B for every t € [0,1] and for every
r € [0,00) we get

f(u)<é 2<iu(tr

2

J . /hjgz (1/ ; Aju— —\/hl(r hy (7 u)d‘rds
J ,/hjg J ( hzz 1/ e )ud‘rds
J w/h?g L TE[Ooo ( hz: 1——w/ T)hy (1 )udrds.

From (H1) we have that

TE[O oc)(

(3.5)

JT) (3.6)
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and since u(t,r) = 0 for every fixed t € [0, 1] and for every r € [0, ) we get

ha(s hy(t
J \/:L TE[Ooo (\/71 1__\/T(T>ud‘rds>0 (3.7)

that is, for every fixed t € [0, 1] and for every r € [0, c0) we have

L(u) = 0. (3.8)

(3) Now we will see that for every fixed t € [0,1] and for every r € [c,d] we have
L(u) = 1/A. Really, for every r € [¢,d] we have

0= [N (i - oo

1(5

(3.9)
J \/hzg) <\/ I(T;A _% hl(T)hz(T)>deszo,
(See (H1).) From here, since for every r € [c,d] we have u(t,r) = 1/A, we get
L(u) >L J \/hjﬁ J z \/Tf< ))MS
J hZ(SJ h2 DA @) ) drd
hi(s) (1) A 2A2 1(T)hy (1) |drds
(3.10)

Lt e (o @, b
_AL hl(s)L ( P 2Aw/h1(T)hz(T)>des
AJ A h2 J (1[}12(: 1——\ 1(T)h2 )deSZK

(Here we use (H1).) Consequently, for every fixed t € [0,1] and for every r € [¢,d] we
have that

L(u) = (3.11)

o | =

(4) Now we will prove that for every fixed ¢ € [0,1] and for every r € [0, %) we have
that

L(u) < (3.12)

|-
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Really, for every fixed t € [0, 1] and for every r € [0, o) we have

ha(s hy () v'' (t)
JHJ (\/> ) V(1) _\/Tf u))drds
I \/TJ ( i \/7|f(u)|>dfds (3.13)

hZ hz
I \/:J <\/7te[ou v(t) |u|+W|f ”)|>dfds.

Now we suppose that

| fw)| < bu < iu max 0]
2 2B tef01] v(t)

J \/hzz (\/ 1( )A2M+ h1(T)h2( ) b >de5 (314)

1 G (7 [ b ,
_L /hl(s) J ( /hl(T)Az+«/h1(1)h2(1)23>udrds,
,/’12 J (JZZET A+l (D7) )drds

= B2 EOOO)J \/hz‘; (\/ A2+ hi (7 )hZ(T) )d‘rds<—,

In the last inequality, we use (H2). Consequently, for every fixed t € [0,1] and for every
r € [0,00) we have

= AZ)

here we use

I/\

Ud \

(3.15)

L(u) < (3.16)

|~

(5) Now we will prove that for every fixed ¢ € [0,1] we have that L(u) € L*([0c0)).
Really, for every fixed ¢ € [0,1] after we use the inequality (3.13) we get

[NECIKE
0

2
(T (s (7 ha (1) b
_Jo (L \/;(S)J's <MA2+ h1(T)h2(T)£>|u|d'rds> dr

(3.17)
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Now we use the Holder inequality

J: (Jw 218 (r (mA2+w/hl(T)h2(T)%>sz>
x(J:O |u|2d1> 1/zds)zdr
w© / nco - 2 (12
_L (J Zi%({ <\/?E:;Az+w/hl(r)h2('r)2l;> dr)
0 1/2 2
x (L |u|2d1> ds) dr

1/2

172 2

2
(G ( (7 @ b
= Il |, ( : hfé)(L (\/ hf(;)A”Vhl(”hZ(”ﬁ) "’T) ds) dr
1
= ||u||%2([0,m));-
(3.18)

(In the last inequality, we use the condition (H3).) Consequently, for every fixed t € [0, 1]
we have L(u) € L*([0, )).
From (1), (2), (3), (4), and (5) we get that for every fixed ¢ € [0,1] we have

L:M— M. (3.19)

Now we will prove that the operator L : M — M is contractive operator. Let u; and u,
be two elements of the set M. Then, for every fixed t € [0,1] we have

| L(u1) —
hz(S T )
(VI ) o) ()~ ) ) s
J \/hz (s) (\/hjg; v;’ (*) —ty |+ (D)ha () | f (1) )drds,

(3.20)
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then from the middle—point theorem we have | f(u1) — f(u2)l = | f(E)llug —ual, 1€] <
max{|ul,|uzl}, | f' (&) < blé| < b/B,

| FJ (Jm” D s ] + () |u1—u2|>drds
[ m f( OV L )|u1_u2|d1ds
B (B 0 -l
<Lm\/?8f<m&+mz>|u1—u2|d1ds,

that is, for every fixed t € [0,1] and for every r € [0, c0) we have

|L( L(u, |<J ,hzjj (/hZ;AZ \Vh (D)ha(7) >|u1—u2|d1d5

(3.22)

(3.21)

From here

2
[IL (1) = L(142) |12 (0,00

2
A IO N hy (1) b
_,[o («[‘ \/;(S)L <\/;A2+ hl(T)hZ(T)E) |u1—u2|d7ds) dr.

(3.23)

Now we will use the Holder inequality

IR YY)
AT () (T ha(7) b
VR (L (i momosg) «)
. 12 2
X(J |u1—u2|2d‘r> ds) dr
(2 [ha(s) (% [ha(7) )\
< 2 2 el
_Jo (Jr hi(s) (L < hl(T)A2+ hl(T)hZ(T)B) dT) (3.24)
. 12 |2
X (J |u1—u2|2dr> ds) dr

= ||u1 u2||L2 [0,00))

2 1/2 2
(J m(s) ( (/Z?Ez;Az-h/hl(T)hz('r)%) dT) ds) dr
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that is, for every fixed t € [0,1] we have

[|L(u1) —L(uz)HiZ([o,oo))

2 172 2
(1 |h “( [h b
<llur=inl oo | (j J ;8(] (,/ hjgﬁAm/hl(r)hz(r)E) dr) ds> ar,

(3.25)

from (H4) we have

2 172 2
(J hzj ( < /Z?E:;A2+ hl(T)hZ(T)%) dr) ds) dr<l.  (3.26)

From here and from (3.25) we get

2
IL(1) — L(u2) ||L2([o,oo)) < — ”2||L2([o,oo))- (3.27)

Consequently, the operator L : M — M is contractive operator. We note that the set M is
closed subset of the space 6((0,1]L*([0,0))) (for the proof see Lemma A.1 in the appen-
dix of this paper). Therefore, (1*) has unique nontrivial solution in the set M. O

Let u be the solution from Theorem 3.1, that is, % is a solution to the integral equation
(1*). From Proposition 2.2, we have that # satisfies (1). Consequently, i is solution to the
Cauchy problem (1), (2) with initial data

. = v(Da(r) = J‘/}”(SJ (‘/ ) (De(r) = @m0 f (D )drds,

(3.28)

We have i € 6((0,1]L%([0,))), 4. € L2([0,00)), u; € H1([0,0)).

3.2. Blow up of the solutions of homogeneous Cauchy problem (1), (2). Let v(t) be the
same function as in Theorem 3.1.

THEOREM 3.2. Let n = 2 be fixed, let hy(r), hy(r) fixed, which satisfy the conditions (i1), be
the positive constants a, b be fixed, let the positive constants ¢, d, A, B, A1, A, be fixed which
satisfy the conditions (H1), ..., (H4) and f € €'((—,)), f(0) = 0, alu| < f'(u) < blul.
Then for the solution U of the Cauchy problem (1), (2) one has

lim 22112 0,00)) = 0. (3.29)

Proof. For every fixed t € (0,1] and for every r € [0, c0) we have

J\/hz(s) (\/hjg)vv”(t)N — I () (2) £ (i) )dfds_ (3.30)
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Since for every fixed t € (0,1] and for every r € [c,d] we have that & > 1/A follows that
there exists subinterval A in [0, o) such that

forr € A. (3.31)

Let us fix the subinterval A. From here

181122 0,00

(I th & (\/hZ(T \/T(Tf(u)>d‘rds) dr

hi(7)
) dr ds) dr

oo NG (0
t,7) =\ (D)l (1) £ (i )drds)z

AT

h (1)ha (7

Let

th t)N
he= [Ooo)\A< \ by SJ (\/ 1(T vt u(t,7) - \/KTT]( u))drds)

<J th : (\/hZ(T 1) = (1) ha(0) f (i )drds)zdr_

hi(s) Js hi(7) V(t)

(3.33)

Then

||ﬁ||iz([o,m)) =L +DL. (3.34)

For I; we have the following estimate:

(g
(J ﬁj (\/Ttem i)+l ()| £ @) )dtds)zdr
(J \/TJ (FAZ (1) + () (7) | £ (3D )drds)z r

(3.35)
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Now we suppose that f (%) < b, f(0) =
r € [0,0). Therefore | f(%1)| < (b/2)0i* <
r € [0,00).

1/B for every fixed t € [0,1] and for every
2B)1i for every fixed t € [0,1] and for every

ml/\

2

(J \/?J (\/WA2 (, T)+ l(T)hz(T)ﬁ)des> dr
2

(T (7 [h(s) (T [ha(r) b N

JO (Jr \/?(S)L ( hl(T)A2+ZB hl(T)hz(T))udrds) dr.

Now we apply the Holder inequality
2 1/2 1/2 2
L [ha(s)( (T hy (1) b | * i~
J; (J; hl(s) <JS < hl(T)Az + E hl(T)hz(T)> dT) <JS |M|2d‘[) dS) dr
(0 () ((*( [m(x) . b PNV 2N
2 2 ~
JO (J o (J ( hl(T)Az-l—Ew/hl(T)hz(T)) dT) (L Iulzdr) ds) dr

1

2 /2 2
- (% [haG) (2 [m() b
:||u||%2[o,w)ﬁ) (I hj(j)(L ( hj(:)A2+ﬁw/h1(T)h2(T)> dT) ds) dr.

(3.37)

2 1/2 2
(T (T [ ([T hy(7) b
L (j h1(S)<L (‘/hl T)A2+23w/h1(r)h2(r)) dT> ds) dr. (3.38)

I < QUIEHIE: (p,c0))- (3.39)

(3.36)

Let

Then

Now we consider I,. For it we have

B L (Iwmr ( Z?Eg Vvé? wt,T) - Wf(ﬁ))drds)zdr
(70 (B Ot s )
(J EJ (WV Wiite,r) — i (ha(r) G )drds
J\/WJ[OM\A(\/TV ) I (@ (0) f G )drds)2

(3.40)
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Let
I \/mj (\/m \/Wf u))drds
hi(s) hi(7)
(3.41)
I’lz(S
'[ \/:J[Ooo (\/; 1/ (t )_\/I(TTJC u))deS
Consequently,
L= JA (I +122)2dr < ZJAlgldr+2JAI%2dr. (3.42)

Also we have

J I3dr
A

ha(s) hy(1) v

(J \/ xel (\/ i - (k0 @ )dfds)
2
LS b )M) ;
l
2

fals) L v (g,

<J \/7JA Te I(T h2 )(TE[Oa())(o) ]’11(‘[) V(t) f(u )deS) dr.

(3.43)

Case 1. Let

max —— < —. (3.44)

rel0,0) (1)

| =

Then, after we suppose that for every fixed ¢ € [0,1] and for every r € A we have f (i) >
(a/2)u?* > (a/2A)1, we get

~ [ha(s) 1v(1) ?
Jo (07t e oo g iy = S

2
hy(s) ) a\e
(J B ATI;}(?Z(O) (D) (T )—( e 2)udrds> dr.

(3.45)
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Now we suppose that for every fixed ¢ € [0,1] and for every r € A we have o > 1/A,

Au>1,
1 h(
s i j ﬁ [ i)
1 lhz(S e 1 2
= (Tg[l(?:i(o) m(t)ha(r )Z( J J i des

ﬂﬁgﬁﬁﬁﬁaﬂﬁfﬂ'ﬁvaﬁgrwﬁﬁm
= 1o s i (50 - 4)) [ ([ g )

(3. 46)
that is,
h ~ 1 /v (t) hy(s)
[ <1800 s g (=) [ ()7 ) o
(3.47)

Let

F:Az( max /h(1)hy(7 _(

(J hzs ) (3.48)
S

7€[0,00)
Then
JAlzzldr = F”a”%z[o,w)- (3.49)
Case 2. Let
1 1
= 3.50
e () A (3.50)
Let
max L G (3.51)
rel0,00) ]’ll(f’) o )
Then

'[121 r<2 (J ijme[()oo )(<G__)V;,((t§)ﬁ(t T)-f(ﬁ))drds>2dr
(J \/TJATE[OOO )Ii(V;,((t;)ﬁ(tﬂ)—;ﬁ>d'rds>2dr,

(3.52)




22 Boundary Value Problems
As mentioned above
2QUE1 (g,0y) + 2F N0

that is,

JAlfldr < 2QUHIZ: (g0 + 2F N 200

From (3.49) and (3.54) we have

[ Bidr < 2QU o, + 2P

As in the estimate for I; we have

L Bydr < QI
From (3.42), (3.55), and (3.56) we get
12 = 4F||ﬁ||22([0)00)) +6Q||ﬁ||%2[0)00)-

From the last inequality and from (3.34), (3.39) we have

||a||]%2([0)w)) =< 4F||m|j7{2([0,w)) + 7Q|W”i2([0,w)):

(1- 7Q)||ﬁ||%2([0,oo)) = 4F|WH%2([O)M))-

From (H3) we have

from here

~ 1-7Q
2
||u||L2([0,oo)) = 4F .

From (H7) we have
limF = +0.
£~0
Therefore

lim 221122 0,00)) = 0.

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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4. Proof of Theorem 1.2

4.1. Local existence of nontrivial solutions of nonhomogeneous Cauchy problem (1),
(2). In this section we will prove that the nonhomogeneous Cauchy problem (1), (2) has
nontrivial solution in the form u(t,r) = v(t)w(r).

Let us consider the integral equation

uttr) = [ [t j(,/’”(’ Dute,e hl(f)hz(r)(f(u)+g(f))>dfd5-

(=)

THEOREM 4.1. Let n > 2 be fixed, let hy(r), hy(r) be fixed, which satisfy the conditions (il),
the positive constants a, b, a < b are fixed, and let the positive constants ¢, d, A, B, A,
A, be fixed which satisfy the conditions (H1), ..., (H4) and f € 6'((—,)), f(0) =0,
alul < f"(u) <blul, b/2= f(1) = a/2, g € 6([0,0)), g(r) = 0 foreveryr € [0,00), g(r) <
b/2 — f(1) for every r € [0,00). Let also v(t) be fixed function which satisfies the conditions
(H5), ..., (H7). Then (1**) has unique nontrivial solution u(t,r) = v(t)w(r) for which
u(t,r) € 6([0,1] x [0,00)), u(t,r) < 1/B for every t € [0,1] and for every r € [0, ), for
every t € [0,1] and for every r € [¢,d], u(t,r) = 1/A, u(t,r) = 0 for every t € [0,1] and for
everyr € [0,00), u(t,00) = u,(t,00) = 0 for every t € [0,1], u(t,r) € C((0,1]L*([0, ))).

Proof. Let M be the set of the proof of Theorem 3.1. Let t € [0,1] be fixed. We define the
operator R as follows:

hy(s) 2(T) v (t)
Ruoter) = J \/ 1(s (J (o) v 00 ’“(T)hz“)(f(u)+g(r)))drds

(4.1)

for u € M. First we will see that R: M — M. Let u € M. Then the following holds.
(1) Since v(t) € €*([0,1]), u(t,r) € €([0,1] X [0,00)) and f € 6(—o0,00) and from
(i1) we have that R(u) € 6([0,1] X [0,0)). Also we have

R(u)|r:oo20a

ha( ha( (1)

Ve (,/ ot S - x/h1(r)hz(r)(f(u)+g(T)))dT,
0
gR(u”r:oo =0.

(4.2)



24 Boundary Value Problems

(2) Now we will prove that for every fixed ¢ € [0,1] and for every r € [0, ) we have
that R(u) = 0. Really,

)—J thzj ( ha(r) v \/h1(r)hz(r)(f(u)+g(r)))dfds

hi (1)

ha( (it
J \/TZJ (\/>)te o) V(E‘))um(f(”)”Lg(T)))deS
J ﬁj (\/ Al” h(7)ha(7) (f(u +g(T)))des.

Now we suppose that for every fixed t € [0,1] and for every r € [0, o) we have u(t,r) = 0,
from here f'(u) < bu after integration from 1 to u then we get that

(4.3)

b b
f f(l) E 2_§>
b b
f(u)s§u2—§+f(1), (4.4)

b b
fu)+g(r) < Euz -3 + f(1)+g(r).
From the conditions of Theorem 4.1 we have that
b
g(r) < 5 f(). (4.5)
Therefore

(4.6)

NI@‘

fw)+g(r) <

From here and from u(¢,7) < 1/B for every fixed ¢ € [0,1] and for every r € [0, o) we get

flu)+g(r) < %u. (4.7)

Consequently, from (4.3) we get

R(u) = J ﬁj (\/> el (O )d‘rds

J /hzz ( M ( 1/ (Dt )udrds (4.8)

J \/h2 Lre[om(\/@ 1__\/T)udrds.
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From (H1) we have that

and since u(t,r) = 0 for every fixed ¢ € [0, 1] and for every r € [0, ) from (4.8) we get

J hzz (\/hzg 1——W>udrds>0 (4.10)
r hy

hy( s TE[O °°)
that is, for every fixed t € [0,1] and for every r € [0, o) we have
R(u) = 0. (4.11)

(3) Now we will see that for every fixed t € [0,1] and for every r € [¢,d] we have
R(u) = 1/A. Really, after we use (4.7),

J\/hfﬁ <\/ 2‘4‘_% hl(f)hZ(T))udrdS. (4.12)

Let

(T k() (% hy (1) b
Rl(u)_L ‘/hl(s) I ( hl(T)Al—ZB,/hl(T)hz(T))udrds. (4.13)

From here

R (u )—J ,/hz(sf (,/hz(: 1——,/ (D) (z )drds>0 (4.14)

Since for every r € [c,d] we have u(t,r) = 1/A, we get

u)>R1 J ‘/h2 J (‘/hjg A — w/ 1(T)h2(T> drds
L (s

(4.15)

D> |
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(in the last inequality we use (H1)). Consequently, for every fixed t € [0,1] and for every
r € [c,d] we have that

R(u) = (4.16)

>

(4) Now we will prove that for every fixed ¢ € [0,1] and for every r € [0, ) we have
that

R(u) < (4.17)

| =

Really, for every fixed t € [0, 1] and for every r € [0, o) we have
J ‘/h2 J ( hZ(T)V st = i (@) (F () + g(2) ))drds

J FJ (mvv hl(f)hz(f)(f(u)+g(r)))drds
J\/?J (\/7 O e (DR () + ()))ms
h (1) ielon) v(t) I4Q :

(4.18)
Now we use (4.7)
J \/h2 ) (\/ZTE:;AZM+w/hﬂr)hﬂr)%u)d‘rds
(4.19)
* Tha(s) (T [ha(7) b
:L hj(i)J; ( hj(z)Az+‘/h1(7)h2(T)ﬁ>”des'
here we use
]’lz hz(‘[
SESE I(SJ (/h( Ay + I (Dha(r 2B>drds
(4.20)

1 “ [hy(s) hy (1)
= ma}ﬁ)L \/hl(s)L (Jhl( a Il (Dha(r) 5 )d‘rd SE
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In the last inequality, we use (H2). Consequently, for every fixed t € [0,1] and for every
r € [0,00) we have

R(u) < (4.21)

&=

(5) Now we will prove that for every fixed ¢ € [0,1] we have that R(u) € L?([0c0)).
Really, for every fixed t € [0, 1] after we use the inequality (4.18) we get

JW|R(u)|2dr
0
2
- ST [ha(s) [T hy (1) b
<[ (VRO (Ve it 3 ) wideas) ar

Now we use the Holder inequality

ol e e 5 2 1/2
2 2
JO (J /hl(s)“s ( /hl(T)Az-i—w/h](T)hz(T)ﬁ) dT)
© 2
X (J Iulzdr) 1/2ds> dr
. - o 2
= (j m ( | (1/ngiAm/hl(r)hz(r)%) dr)

) (4.23)

) 1/2
X (J Iulzdr) ds) dr
0

— 2
= ||u||L2([0)°Q))

2
AT (s [ (T [ha(7) b
<), (I \ hl(s)(L (\/ hl(T)A2+\/hl(T)h2(T)ZB) d’)

1
0,00)) 7"

(4.22)

1/2

1/2 2

ds) dr

< lull?

(In the last inequality, we use the condition (H3).) Consequently, for every fixed t € [0, 1]
we have R(u) € L2([0, )).
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From (1), (2), (3), (4), and (5) we get that for every fixed t € [0, 1] we have
R:M— M. (4.24)

Now we will prove that the operator R: M — M is contractive operator. Let u; and u,
be two elements of the set M. Then for every fixed t € [0, 1] we have

|R(uy) —

hz (5

By (s) < : u1—u2)— h1(T)h2(T)(f(u1)—f(uz)))d.[ds
T T

(4.25)

then from the middle-point theorem we have | f(u;) — f(u2)| = | f'(E)luy — ual, €] <
max{|u |, luzl}, | f(§)] < bI€] < b/B,

j FJ (ﬁ”% 1—u2|+W |u1—uz|)drds
G (s e e e
(2 gy 0 ) -l
sf\/?gf(mfxﬁm%)|u1—u2|drds,

that is, for every fixed t € [0, 1] and for every r € [0, c0) we have

| R( R(u; |_J M?EZJ </ :A2+1/h1(1 Yo (T )|u1—u2|d1ds

(4.27)

(4.26)
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From here

2
[[R(u1) = R(u2) [[12((0,00))

< N ® ha(s) (7 hy (1) b 2
_,[o (J'r \/T(S)L <\/7(T)A2+ hl(T)hz(T)E)|u1—u2|des) dr.

(4.28)
Now we will use the Holder inequality
ol e e b, 2 12
2 2
Jo (J \ h1<s><L (\/ ()7 hl(f)hzmﬁ) dT)
o 12\ 2
X(J |u1—u2|2d1> ds) dr
ol e e . 2 1/2
< 2 2 =z
S (TR (I (Ve ooz o)
. 12 |2
X (J |u1—u2|2d1) ds) dr
0
= ||u1 - Mz||iZ([o,oo))
ol e e ) 2 VN
2 2
<), (J \”H(s)(L (\/ h1<r>A2+Vh1(T)h2(”B) d’) ds) a
(4.29)
that is, for every fixed t € [0,1] we have
IR (1) = R(w2) [[72 10,
<||u — U2||izqo,oo>)
(o ([ e b 2 12 |2
2 2
XL (J /hl(s)US ( /hl(T)A2+ hl(‘[)hz(‘t‘)g) dT) ds) dr,
(4.30)

from (H4) we have

2

2 1/2
L [ha(s)( (T hy (1) b
JO (J hﬂs)(L < hl(T)Az-f—w/hl(T)hz(T)E) dT) ds) dr<1.  (431)
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From here and from (4.30) we get

2
IR (1) = R(t42) |12 0,000y < 11 = 12| 2 10,00))- (4.32)

Consequently, the operator R: M — M is contractive operator. We note that the set M is
closed subset of the space 6((0,1]L?([0,0))) (for the proof see Lemma A.1 in the appen-
dix of this paper). Therefore (1**) has unique nontrivial solution in the set M. O

Let u be the solution from Theorem 4.1, that is, % is a solution to the integral equation
(1**). From Proposition 2.4, we have that # satisfies (1). Consequently ,% is solution to
the nonhomogeneous Cauchy problem (1), (2) with initial data

J \/hzs S (\/h Egv”(l)w(r)— hl(T)hz(T)(f(V(l)w(T))+g(T)))de5,

S

u = 0.
(4.33)

We have 7 € 6((0,1]L2([0, ))), u, € L2([0, 0)), u; € H~1([0, 00)).

4.2. Blow up of the solutions of nonhomogeneous Cauchy problem (1), (2). Let v(¢) be
the same function as in Theorem 4.1.

THEOREM 4.2. Let n = 2 be fixed, let hy(r), ha(r) be fixed, which satisfy the conditions (il),
let the positive constants a, b, a < b be fixed, and let the positive constants ¢, d, A, B, A,
A, be fixed which satisfy the conditions (H1), ..., (H4) and f € €'((—c0,00)), f(0) =0,

alul < f'(u) < blul, b/2 = f(1) = a/2, g(r) € €([0,)), g(r) = 0 for every r = 0, g(r) <
b/2 — f(1) for every r = 0. Then for the solution u of the Cauchy problem (1), (2) one has

1,11]3 (12211 12((0,00)) = 0. (4.34)

Proof. For every fixed t € (0,1] and for every r € [0, %) we have

i
u(t,r) = J ks 2 J (,/ e V(tl;)_(t ) = (ke (1) (@) + g T))drds.

(4.35)
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Since for every fixed t € (0,1] and for every r € [¢,d] we have that u > 1/A follows that
there exists subinterval A in [0, o) such that

forr € A. (4.36)

Let us fix the subinterval A. From here
I M”Lz ([0,00)

hy(s) hy(1) v
(J Vi 1<sJ (\/ (o) v(t) )
2

—\hi(D)ha (1) (f (@) +g(‘r))> deS) dr

_ © Thy(s) [ [ha(z) v/ (2)_
- J[(),"")\A(Jr \/hl(s) L (\/h](‘l') v(t) () (4.37)
2
\/hl(T)hz(T)(f(ﬁ)+g(T))>des) dr

/hz [hy(7) V”(t),
(I J ( 1(T (t’T)
2

— i ()hy (1) (f () +g(‘r))> drds) dr.

Let

th (t)_
fie= Ow)\A<J\/ (s) (\/ v(t) Wt 1)

2
- hl(T)hz(T)(f(ﬁ)+g(T)))des) dr,

() (o) v ()
(I \/ (\/ (o) v W07

2
— (D (1) (f () +g(T)))des> dr.

(4.38)

Then

”ﬁ”%zuo,w)) =L +D. (4.39)
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For I, we have the following estimate:

L (RS (R |

hi(Dhy (1) (f (@) +g(7))> deS) dr

I’lz N hz(‘l’ V' (t)_
(J \ h s,[ (\/ )tEOI] v(t) w(t,7)

_(t 7)

, (4.40)
hl(‘l’)hz(‘[)(f(u)+g(T))>de$> dr
(J /hz(S J ( [hz(T )
2
hi(1)hy(7) (f(u)+g(f))>dfd$> dr.
Now we use (4.7)
o h ’
(I s 2( J ( [ ar) st T)+ Iy (1) (1) )drds) dr
(4.41)

2
L7 [ha(s) (7 hy (1) b _
JO (J ‘/hl(s) f (‘/hl(T)A2+ZB\/hl(T)hz(‘r))udes) dr.

Now we apply the Holder inequality

2

12
h h o 1/2
(I \/TZ( ( fg 1<T>hz<f>> dr) (j |u|2dr> ds) dr
hy( hy (1) b 2 2, 12 (2
(J X ( ( h? z)A2+ﬁ hl(T)hZ(T)) dT) (L |ﬁ|2d‘z’) ds) dr

— @l ( 3(] <\/TA2+—\/T) df) - >2dr.

(4.42)
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Let

2 1/2 2
(T (T [ ([T hy(T) b
L <J = (S)(L (,/ P ZBw/hl(T)hz(‘r)) dr) ds) dr. (4.43)

Then
L < QlI#ll 2 (g,00))- (4.44)

Now we consider I,. For it we have

2
(J \/%I < i ”(t T)W(f(u)Jrg(r)))drds) dr

2

< Tha(s) [ [ha(z) v/ (F) _
L(J N L ( o ) - hl(‘r)hz(‘r)(f(u)+g(‘r))>d‘rds> dr
B * [ha(s) ha (D) vi(t) o,
L@VWJKW&MM T I UW”)PW
* ha(s) ha(7) v (t) _
+LAVMGJ@wm< By v 0T

2
(010 () )

(4.45)

Let

b = szs (th 31/ (5 BT = (@l (f( +g7)>d7ds’

S

I I0) hy(z) v (1) ]
b‘LVmwhmA () v BT VI Oh () +g(r Oﬁ%

(4.46)

Consequently,

2
L < J (121 +122> dr < 2J Izzldr+2J I3,dr. (4.47)
A A A
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Also we have
_ * | hy(s) hy(7) v () _
lezldr - L (J \/ i (s) L (\/ () v W7
2
- hl(T)hz(T)(f(u)+g(T))>des) dr
_ * ha(s) 1V
J, (J \ In(s) J @) (5 5 0D

5 (4.48)
- (f(u)+g(f))>drds> dr
S
(J (s) Lre[?ﬁ) h(t)ha(7)
2
1
x( max - v((tl;)*(t 2 - (f@) +g(T)))des> dr.
Case 1. Let
1 1
Ao =& e

Then after we use that for every fixed ¢ € [0,1] and for every r € A we have f'(u) = au
and integrate the last inequality from 1 to u, we get

f)=Jw s f() -7,
f@)+g(r) = 57 =5+ f(1) +g(r) (4.50)
zga2—§+ (1)—f(1)+§zga2 %ﬁ,

for every r € A,

2
hz 1 v'(t)_
(j J7 LTE (1) hz(T)( moii)hl(r) Ol )——u)drds) dr

<J hZ(S max | Jm(Ohy(0)+ (V”(t) a)udrds)zdr.

A T€[0,00) v(t)

(4.51)
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Now we use that for every fixed t € [0,1] and for every r € A we have u = 1/A, Au = 1,
2
S (20 -5)) | f°h“44‘l
Qgﬁ)muhﬁr <wn g | amydras) dr
hZ J 2—2_
s(rgﬁ Jm@h(r ( (t) 2 (I Vi | a s i
sA2< max +/h(1)hy (1)~ (V () E (J 1/h2 J 2d7d5> dr
7€[0,00) v(t)

< e o (- 5) (J JES [ ) ar
S B e G | RN EA

(4.52)
that is,
_ 1 V”( S
e =8 s omsrs (=) [ (1) o
(4.53)
Let

e e o L (20 ) [ (7 B0 0 s

T€[0,00) 1 (s

Then
lezldr < Fllal {2 0,0). (4.55)
Case 2. Let
(el hltr) > 4 (4.56)
Let
1

max =G 4.57
ref0,00) hl(r) ( )
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Then

hy(
sz1dr<2 <J N ?(S Afre%ii(o )hz(T)

x((c—l)v((t;)—(t - (f(a+g ())))drds)zd

2
hz(S //(t) a
( \/TL TE[Ooo Dha(7 )A< V(1) u(t,7) - Eu>d1d5) dr.

(4.58)

As mentioned above, we get
2Q||ﬁ||%2([0,m)) + 2F||H||%2([0)00)), (4.59)
that is,
[ Bidr <201 o, + 2PV (4.60)

From (4.55) and (4.60) we have

[ Bir <201 o, + 2PV o (4.61)

As in the estimate for I; we have

JAIZZZd” =< J'O Izzzdr < Q”ﬁ”%z([o’m)) (4.62)
From (4.47), (4.61), and (4.62) we get

L < 4F |18l L2 (g,000) + 6QUI T (10 0))- (4.63)
From the last inequality and from (4.39), (4.44) we have

||ﬁ||]%2([0)w)) =< 4F||m|j]}12([0)w)) + 7Q|m”i2([0,w))>
(4.64)

(1 - 7Q)||ﬁ||%2([0,oo)) = 4F||HH%2([0)00))-

From (H3) we have

1
Q< 7 (4.65)

from here

_ 1-7Q
2
||u||L2([0,OO)) = 4F . (466)
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From (H7) we have

ltiiI&F = +0. (4.67)

Therefore
lti_l:l(}”ﬁ”Lz([O,oo)) = 0. (4.68)
(]

Appendix

LemMma A.1. The set M is closed subset of the space 6((0,1]L*([0, ))).

Proof. Lett € (0,1] be fixed. Let {u,} be a sequence of elements of the set M for which

,113}0 4, — Ul L2([0,00)) = O, (A.1)

where % € L2([0, )).
First, we note that for u € M we have that L(u) is continuous function because f(u) €
@1 (—00,00). Also for u € M we have that L' (1) is continuous function and

h " 7
- (B (Bt o

1(5

Now, we will prove that |L' ()] > 0 for u € M. Really,
v [ [ (Vi s~ omy o)ass
zf\/:gs (J z V”(t N )Iul)drds
ZJM\/ZTS (thz min V,((tg)—b hl(r)hz(r)lul)drds
J \/Ej (Al\/}le——\/W)drds

From (H1) we have

(A.3)

hz(”)
A

II;“, 1(")ha(r) =0 (A4)
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for every r = 0. Therefore
L'(u)=0 (A.5)

for every fixed ¢ € [0,1] and for every r > 0. Also for every r € [0, 1] we have that L' (u)(r)
is decrease function of r and for every r € [0,1] we have

mm>J ZJ <‘/ z —J mu)wm>uw (A.6)

(In the last inequality, we use (H1).) From here it follows that for every u € M there exists

N:= min |L'(u)(r)| >0. (A7)
re(0,1]
Let
J .,
M; = max |=—L (u)(r)‘. (A.8)
rel0,0) | Or

Now, we will prove that for every € > 0 there exists § = §(€) > 0 such that from |x —
y| < &8 we have

|tm(x) —um(y)| <€ VmeN. (A.9)

We suppose that there exists € > 0 such that for every § > 0 there exist natural m and
x,y € [0,0), |x — y| < & for which |u,,(x) — u,,(y)| = €. We choose € >0 such that & <
NE. We note that L(uy,)(x) is uniformly continuous function for x € [0,) (for u € M
L(u)(r) is uniformly continuous function for r € [0, o) because L(u)(r) € 6([0,)) and
as in the proof of Theorem 3.1 (after we use the second condition of (H2)) we have that
[(0/0r)L(u)(r)| < 1/B). Then there exists §; = 61(5) > 0 such that for every natural n we
have

|L(u)(x) — L(u)(y)| < ¢ Vx,y €[0,00):|x—y| <& (A.10)

Consequently, we can choose

(NE- B }

0<d< '{La,
min 1 v

(A.11)
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such that there exist natural m and x1,x, € [0, o) for which

|x1 — x| <6, |t (x1 — x2) — um(0)] = €. (A.12)

In particular,

m22

| L(um) (x1 = x2) = L(um)(0) | < (A.13)

Let us suppose for convenience that x; —x, > 0. Then, x; — x, < 1 and for every u € M we
have L' (u)(x) — x2) = N. Then, from the middle point theorem we have

L0)=0,  L(um)(x1 —x2) = L'(§) (1 = x2) (1 — X2),
L(um) (0) = L'(§)(0)um(0),
| L(utm) (31 = %2) = L(um) (0) |
= | L'(§) (a1 = x2) um (x1 = %2) = L' (§)(0) 4 (0) |
= [L'(€) (e1 = x2) (31 = x2) = L (§) (31 = X2) u (0)
+L'() (x1 = x2) um (0) = L'(§)(0)um (0) |

= |L'(E)(x1 _x2)um(xl —Xz) —L'(f)(xl —Xz)um(0)|
— |1 (&) (x1 = %2) 4 (0) = L' (£)(0)14, (0) |

= [L'(&)(x1 —x2) | [t (%1 = x2) = 4 (0) | = | L' (&) (x1 — x2) = L'(§)(0) | | 4 (0) |

4 a ’
= [L'(§)(x1 = x2) | [t (31 = x2) — 1 (0) | — g(L (f))‘ |x1 = x2 | [ 4 (0) |
~ 1
> Ne€ —Mlég > €,
(A.14)
which is contradiction with (A.13). Therefore,
Ve>0 3I6=0(e)>0: from [x—y|<d
(A.15)

= |un(x) —un(y)| <€ Vm.
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On the other hand, from the definition of the set M we have

U sl VmeN. (A.16)
B

From (A.15) and (A.16) it follows that the set {u,} is compact subset of the space
%([0,0)). Therefore, there exists a subsequence {u,, } and function u € €([0,)) for
which

|t (x) —u(x)| <€ (A.17)

for every x € [0, o). From here and from

[o4n, — ﬁ||L2([o,<>o)) =0 (A.18)

we have that for every € > 0 there exists F = F(€) > 0 such that for every nx > F we have

max |y, —ul| <6, ety = 8] 2([0,00)) < E- (A.19)

Then, for every nj > F we have

lu—tl=|tu—tp iy, — 0| < |u—ty |+ |ty —U| <€+ |u, —ul. (A.20)

| L(u) — L(%)|

hz

ha(

(ﬁ v(t) — i) - \/1(77]12 )drds
* [ha(s) ho(T) v/ (t

SL \/hl(s) (\/ hi(t) v t) _MI+W|f(u — f(u) )d‘rds.

(A.21)




Svetlin Georgiev Georgiev 41

Now we apply the middle point theorem

J' lhzg J ( (1) //(t| . |+m|f ||u—ﬂ|)d‘l’d$
1

T

< €] < max {|ul, ||}

J Jh?g; <\/h2(T " |+Jﬁlf (&) [ lu— ul)drds

hi(1) te[Ol] vt

J ths (th LN ]+ (Dha(0) | £(E) | lu— u|)d1’ds

S

J\/hzs (\/ A2|u—u|+mb|f||U—ﬁ|>de5’

(s)
(A.22)

1) |&] < |ul. Then, |€| < 1/B. From here

| L(u) — L(1)| <J \/hl(s) (\/ e )Azlu | ++/hi (D) hy(1)= |u—ﬁ|>drds

J \/hzs (\/ A2+ hi (D) (1) = )lu uldrds

S

J\/hz (\/ZT)Aer h1<r)hz<r)§)(e+lunk—ﬁl)drds

hi (1)

hz(S hy(7)
J K J (/hl(T)A Vi (0hs(1)2 )drds
J /hz(SJ ( ZZ ;A hi (T)hy (1) z>|unk—u|de5
1

| L( | _( J \/hZ(S) <\/Zj z Ay +h (D) hy (1) = )drds

hi(s)

J ﬁj (\/WA2+W >|unk u|drds)

=2 <I Jh?(g <\/h2(T Azt (D)ha(7 )b)dm)

o[ (D o) e

(A.23)
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Now we apply the Holder inequality

2
(J \/hfg (J :Az-h/hl(r)hz(r) >drds>
* @) ( (= ( () b\
2(s 2
”(L hl(s>(L (\/ hl(ﬂA”Vhl(’)hz”)B) dT)
o 1/2 2
x(J |unk—ﬁ|2d1> ds)
2
© Jha(s) (P [ha(1) b
s2€2< ) h1(s)L ( hl(T)Az+\/h1(‘r)h2(r)B>d‘rds>
2 1/2
© () [ (7 hy (1) b
+2<L hm(ﬁ (/hl(T)Az-h/hl(T)hz(T)B) dr)
0o 1/2 2
X(Jo |unk—ﬁ|2dr> ds)
2
(" RO~ R b
_2€2< r hl(s)L ( /hl(T)Az+,/h1(r)h2(r)B>des>
) h (S) 00 h (T) b 2 1/2 2
+2||unk—ﬁ|\iz([o,m))<Jr hf(g(L (,/hj(T)Az+\/h1(T)hz(T)B> dr) ds)
2
© ha(s) (P (1) b
S2€2|:( ) ',hl(s) L <1/hl(T)Az+w/h1(r)h2(T)B)des>
2
© ha(s) (T hy (1) b
+(J hl(s)<L < /hl(T)A2+w/h1(T)h2(T)B) d7>

From here

2

1/2

o)

(A.24)

10 - 1 ar
0

sze[ (J \/hZ(s <\/ZTIA2+w/h1(T)h2(T) )drds) dr

1(5

2 1/2 2
AT () (T [ha(7) b
) (J hl(s><£ (\/ mo2t hl(”’”“ﬁ) dT) ds) dr}

(A.25)
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From (i1) we have that there exist constants C; and C, such that

2
[ g
1 l

(A.26)
2 (12 (2
T (G (T [hk) b <
Jo <L hi(s) (J; (\/EAZ'F h1(T)h2(T)§) dT) ds) dr < C..
Consequently,
Jw | L(u) — L(#) | *dr < 2€*(Cy + Cy). (A.27)
0

2) |&] < |u|. Then,

L(w) - L() | <J / J ( /hf( As 4+ byl (a7 |u|> (€+ |ttn, — 11| )drds
(T ha(s) (2 [ha(7) ~ hy(7) ~
,L /hl(s) J ( /hl(T)eA2+eb (o (0) 1+ Any [,

+b h1<f>hz<r>|m|unk—m)dfds
ha(s) ([ [ha(7)
_eAzj \/ 71 (s) L \/hl(T)drds
+€bﬁw Z?Ez; fo hi(t)hy(7)ltldr ds

+A2J \/hz-ZJ' \/hig |y, —u|drds
N bfo , /218 wa/hl(‘l’)hz(‘rﬂm |y, — 1| drds
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hy(s) [ [ha(T)
<EA2J \/ hi(s) L \/hl(T)deS
o o 12 / roo 172
+ebL /Z?EZ;(J hl(r)hz(r)dr) (J |ﬂ|2d1> ds
1/2 1/2
© ha(s) [ [T ha(T) * ~12
+A2L ‘,hl(s)< o T)dr) (L |y, — ] dr) ds

+b rr{ng)ﬂhl(‘r)hz(‘r)
€[0,00

r

- [F . 2, 12
XL 1/}:8<L Iﬁlzdr) (L |unk—17|2dr) ds,

(A.28)
from (i1) we have that there exists constant C; > 0 such that
rlel[lgiio)vhl(f’)hz(r) < Gs,
AZI \/hzs)J th e ds
12
+€b||a||L2[O,oo)Jr 1/}:(2) (J; hl(T)hz(T)dT) ds
hz(s hz(T)
+A2||Unk u||L2([000 J S ( . h T) ) ds
(A.29)
~ ~ ha(s)
+ bt =l |

seAzro\/lh \/hZ(T;d
T bl 20 j F(thl (T)ha( T)dr)l/zds

“ () ( (© (D), \Y ha(s)
+A2€L hl(s)< . hl(r)dT) ds+ebC3||u||Lz(0w))J hl(s)ds’




Svetlin Georgiev Georgiev 45

from here

|L(u)—L(ﬁ)|2s262[A§( m\/mr\/@drdsy
e ||u||Lzom)( \/ﬁ“ I (1)ha(7) dT> )
)
et ([ 55)

(A.30)

from here

[ 10 - 1 ar
0

<2€? [Az (J \/h2(5)J \/h2 )
2
~ /h 1
+b2||u|‘1%2[0,w) (J 2 ) I hl(T)hZ(T)dT) Eds) dr (A.31)
a7 Zzg ) ) dr
s 1
PGl [, (J Z?(Z)‘“) dr]'
From (i1) we have that there exist constants Cy4, Cs, Cg, and C; such that
( \/hl(s) J )" ) dr=Cs,
o /oo . 12 |2
JO (J , /Zjég (J hl(T)hz(T)dT> ds) dr < Cs,
/— 1/2 2
(J h2 S ) dr < C6,
(1" [, .
L <L ) ds) dr < C;.

(A.32)
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Consequently,

[ 1200 - 2@ ar

< 2€2 (A%C4 + b2 HaH%Z([O’m))CS + C6A% + ||17||%2([0’00))b2C§C7>.

(A.33)

Since # € L?([0,0)) and from the inequalities (A.27) and (A.33) it follows that there
exists constant Cg such that

r | L(u) — L(#0) | dr < Cge. (A.34)
0

From here it follows that L(u) = L(#i) a.e. in [0, ). Now we suppose that it is not true
u =y a.e.in [0,). Then there exist €; > 0 and subinterval A C [0, c) such that

lu—1u|>€; forreA. (A.35)
From the middle point theorem we have
| L) = L@)| = [L'@)[lu—dl, &< {lul,l@l}. (A.36)
Also there exists constant M; > 0 such that

min [ L'(§)(r)| = M. (A.37)

Then for
€ < Miu(A)et (A.38)
we have

€> ro |L(u) - L(%) | *dr = J |L(u) - L(%) | *dr
0 A
(A.39)
> [ IL© - = M)

which is contradiction with (A.38). From here it follows that u = % a.e. in [0, ), |u, —
ul? = |u, — 1l? a.e.in [0, 00),

etn = wl] 2 0,000) = et = Bl 2 (0,00 (A.40)

Consequently, for every sequence {u,} from elements of the set M which is convergent in
L%([0, c0)) there exists function u € €([0,)), u € L%([0,»)) for which
lim l[etn = vl 2 (0,000 = O- (A.41)

Below we suppose that the sequence {u,} is a sequence from elements of the set M which
is convergent in L?([0, )). Then, there exists function u € 6([0,)), u € L?([0, )) for
which limnﬂw Hu,, - u”LZ([O’OO)) =0.
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Now we suppose that u(t,00) # 0. Since u(t,r) € €([0,)), u,(t,r) € €([0,)),

un(t,00) = 0 for every natural n we have that there exists €, > 0 and constant Q > 0 such
that for every r > Q

€
luy | < ?2 lul > €. (A.42)

Then, for every natural n and for every r > Q we have

[ zlul—luy,l>%. (A43)

Also there exist constants M > 0 and M; > 0 such that

. , , 1
min |[L'(&)(r)| =M, |L'(é)(r)] < — forre [0,0). (A.44)
re[Q,Q+1] M,
Let €5 > 0 be such that
M€2

€3< —F/——. A.45
> 2(1/My) (445)

Therefore, there exists natural n and for every r > Q we have

€
un(r) = ()| >l = ullp2(g ) < €3 (A.46)
From here
62 Q+1 ) Q+1 5
MZZZ SMZJQ lu—u,| drSL) |L(u) — L(u,) | “dr
Qrl 2 2 1 « 2
= [ @ - waldr = [ lu (A47)
Q Mi Jo
< 2l = ullioey < 7€
=M Un = Ull12([0,00)) = M12€3
or
2
e 1
M*=2 < €3 (A.48)
4 - M7
or
M€2
P A4
&= 20m) (A49)

which is contradiction with (A.45). Therefore, u(t,00) = 0 and for every enough large
Q >0 we have u(t,r) = 0 for every r > Q. From here u,(t,0) = 0.
Now we suppose that the inequality

u(t,r) < (A.50)

1
B
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is not true for every r € [0,0). Since u € €([0,)), we can take €4 >0 and A; C [0, )

such that
1
u> E+e4 forr € Ay.

Then for every natural n and for every r € A; we have

|y —u| = ul — | u| zl+e4—l:e4.
B B

Let €5 > 0 be such that
12
€5S€4(‘u(A1)) .
Then, there exists constant F > 0 such that for every n > F we have

|4 — ”||L2([o,oo)) <é€s.

Therefore, for every n > F and for every r € A, we have

|un(r)—u(r)| = €4, ||un_u||L2([0)m)) < €s.
Also
12 2 172
€sp(Ay) < L |y —uldx < (u(Ar)) (L |y — ul dx)
12 ) ) 1/2
< (u(Ay)) (L |, — ul dx)
< (1))t = tll 2 10,0y < €5((A1)) "
or
es(Ar) < €s5(u(an)"”.
From here

ex(u(D)” <es,

which is contradiction with (A.53). Consequently, for every r € [0, o) we have

1

Lr) < —.

u(t,r) < 5
Now we suppose that the inequality

u(t,r) =

| =

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)



Svetlin Georgiev Georgiev 49

is not true for every r € [c,d]. Since u € €([0,)), we can take €5 >0 and A; C [¢,d]

SuCh that
|u| < € fOI re AZ
1- 6 .

Then, for every natural n and for every r € A, we have

|, —u| = |u,,|—lulzl+66—l
A A

Let €7 > 0 be such that

€7 < €s(u(n)

then there exists natural n such that
|1t — u||L2([O,oo)) <é€7,

|u,(r) —u(r)| =€, re€AN,.

Also
au(da) = [ Lo —uldr = (u(2)"* (| o uldx)
0 1/2
< (u(aa) (] =l )
< ((82)) |t = ull 2,00 < €7 ((A2))
esu(Aa) < €5 (u(Ar))".
From here

co(p(n))” < e,

which is contradiction with (A.63). Consequently, for every r € [¢,d] we have

o=

u(t,r) >

Now we suppose that the inequality

u(t,r) =0

= €.

172

1/2

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

is not true for every r € [0,0). Since u € €([0,)), we can take €g >0 and A3 C [0, )

such that

u<0 forreds, |u,—ul=>es.

(A.70)
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Let €9 > 0 be such that
1/2
€9 < Eg([J(Ag)) s (A71)
then there exists natural n such that

|| — u||L2([O,oo)) < €y,

(A.72)
lu,(r) —u(r)| =€, r€AN;.
Also
12 2\
€sp(As) < L |, —uldx < (u(As)) (L |y — ul dx)
© 1/2
- (y(A3))1/2<L |un—u|2dx) (A.73)
= (@(83)) "t = wll 2 g0,0y) < €0((83)) "
or
esp(As) < €9(F(A3))1/2- (A.74)
From here
1/2
€g ([,z(A3)) < €9, (A.75)
which is contradiction with (A.71). Consequently, for every r € [0, %) we have
u(t,r) > 0. (A.76)

Consequently, for every sequence {u,} C M which is convergent in L?([0, %)) there exists
u € M such that

lim l[etn = wl] 2 (0,007 = O- (A.77)
(]
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