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We obtain some uniqueness results for the Dirichlet problem for second-order elliptic
equations in an unbounded open set () without the cone property, and with data de-
pending on appropriate weight functions. The leading coefficients of the elliptic operator
are VMO functions. The hypotheses on the other coefficients involve the weight function.
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1. Introduction

Let Q) be an open subset of R”, n > 3. Consider in Q the uniformly elliptic differential
operator with measurable coefficients

n

L:—Z Uax,ax] Za,—+a, (1.1)

ij=1 i=1
and the Dirichlet problem
4
Lu=0, ue W>(Q)n W (Q), (D)

with p €]1,+0co[.

Suppose that Q) verifies suitable regularity assumptions.

If p=n,a; €L™(Q) (i,j = 1,...,n), and the coefficients a; (i = 1,...,n), a satisfy cer-
tain local summability conditions (with a > 0), then it is possible to obtain a uniqueness
result for the problem (D) using a classical result of Alexandrov and Pucci (see [17] for
the case of bounded open sets and [6, Section 1] for the unbounded case).

If p < n, some more assumptions on the a;;’s are necessary to get uniqueness results for
the problem (D). If Q) is bounded, problem (D) has been widely studied by several authors
under various hypotheses on the leading coefficients. In particular, if the coefficients a;;

Hindawi Publishing Corporation
Boundary Value Problems

Volume 2006, Article ID 98923, Pages 1-9
DOI 10.1155/BVP/2006/98923



2 Uniqueness results for elliptic problems with singular data

belong to the space C°(Q), then uniqueness results for problem (D) have been obtained
(see [12-15]). On the other hand, when the coefficients a;; are required to be discon-
tinuous, the classical result by Miranda [16] must be quoted, where the author assumed
that the a;;’s belong to W'"(Q) (and consider the case p = 2). More recently, a relevant
contribution has been given in [11, 22], where the coefficients a;; are supposed to be in
the class VMO and p €]1,[; observe here that VMO contains both classes C°(Q) and
Wb (Q) (see [10]). If Q is unbounded, uniqueness results for problem (D), under as-
sumptions similar to those required in [16], have been for istance obtained in [4, 18, 19]
with p =2 and in [5] with p €]1, co[. Moreover, futher uniqueness results for (D), when
the a;;’s are in VMO and p €]1, o[, can be found in [6, 9].

Suppose now that Q has singular boundary. In [8], a problem of type (D) has been
investigated, with (a;;)y,, a; and a singular near a nonempty subset S, of (2, and p = 2.
In particular, the data are supposed to be depending on an appropriate weight function p
related to the distance function from S,.

The aim of this paper is to obtain uniqueness results for a Dirichlet problem of type
(D) under hypotheses weaker than those of [8] on the a;;’s, and with p > 1. More precisely,
if there exist extensions a;-’]- of the coefficients a;; (i,j = 1,...,n) in VMO(£,) N L*(Q,),
where Q), is a regular open set containing (), and the functions pa; (i = 1,...,n), pza are
assumed to be bounded with essinfq p?a >0, we can prove a uniqueness result for the
problem

20 L P
Lu=0, ue Wl (Q\S,) nWE(Q\S,) nLI(Q), (D))

where LY (Q), t € R, is a weighted Sobolev space.
Observe that if S, = 02 and Q) has the segment property, we are able to deduce from
the above result that the problem

ue Wl Q)nIP(Q), Lu=0, (D,)

ocC

admits only the trivial solution.

2. Notation and function spaces

Let G be any Lebesgue measurable subset of R” and let 2(G) be the collection of all
Lebesgue measurable subsets of G. If F € %(G), denote by |F| the Lebesgue measure of F
and by % (F) the class of restrictions to F of functions { € CZ(R") with F nsupp{ € F.
Moreover, for p € [1,+], let LY (F) be the class of functions g such that (g € L?(F) for
all { € 9(F).

Let Q) be an open subset of R”. We put

Qlx,r) =QnB(x,r) VxeR" VreR,, 2.1

where B(x,r) is the open ball of radius r centered at x.
Denote by (Q) the class of all measurable functions p : QO — R, such that

Y e =p(x) < yp(y) VyeQ, VxeQ(yp(y), (2.2)
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where y € R, is independent of x and y. For p € sA(Q), we put

Sy = {z € 00:1imp(x) = 0}. (2.3)
It is known that
peELX(Q), p el (Q\S,), (2.4)
and, if S, + @,
p(x) < dist(x,S,) VxeQ (2.5)

(see [7,20]).
IfreN,1<p<+o,seR,and p € A(Q), we consider the space WP (Q) of distri-
butions u on Q such that p***I=79%y € LP(Q) for |a| < r, equipped with the norm

lullyre ) = Z ||PS+IM_ra“”||LP(Q)- (2.6)

|| <r

Moreover, we denote by V({/?p (Q) the closure of C¥(Q) in W ?(Q) and put WP Q) =
LY(Q). A detailed account of properties of the above-defined function spaces can be
found in [21].

If O has the property

|Q(x,r)| = Ar" Vxe€Q, Vre]o,1], (2.7)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Q, 1) (t € R;) of functions g € L] (Q) such that

[g]BMO(Q,) = sup
xeQ JQ(xr)
re]0,t]

g—J[ g’dy<+oo, (2.8)
Q(x,r)

wheref, gdy=(1/1Q0x,1)|) o gdy. Wewill say that g € VMO(Q) if g € BMO(Q) =
BMO(Q,t4), where

n
ta = sup | sup . 1 (2.9)

737 s
teR, | xeQ |Q(x>7')| A
relo,t]

and [g]smo(a,) — 0 fort — 0F.
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3. Some density results

Let p € s4(€2). We consider the following conditions on p.
(i1) There exists an open subset Q, of R” with the segment property such that

QCQ, 90\S,Con, (3.1)

(i2) H = infqp™(x)|Q(x,p(x))| € R;.

Remark 3.1. 1f condition (i) holds, then it is possible to find a function o € H(Q) N
C*(Q) N C*(Q) which is equivalent to p and such that

|0%(x)| < ceo' ¥ (x) VxeQ, Vae N, (3.2)

where ¢, is independent of x (see [20]).

Fixr € Nand p € [1,+00[. We denote by I/OV”P Q\ Sp) the space of distributions u on
Q such that

ue WrP(Q), suppuc Q\S,. (3.3)

LeMMA 3.2. Assume that condition (i) holds. Then @(Q\ S,) is dense in V(i/'”l’(ﬁ \ Sp).

o —
Proof. Fix u € W"P(Q1\ S,) and denote by u, the zero extension of u to €,. It is easy
to prove that u, belongs to W"?(Q,). It follows from (i;) that there exists a sequence
{urtren € D(Q,) such that

uy — u, in WP (Q,) (3.4)

(see [1, Theorem 3.18]).
Let y € D(Q\ S,) such that y = 1 on suppu. Observe that {yui}ren C D(Q\ S,) and

= ullyeoion = v (= 50) Loy = cillie ~ tollroay (35)
where ¢; depends on n,y. Thus the statement is a consequence of (3.4). O
LEMMA 3.3. Assume that conditions (i,) and (i) hold. Then @(Q \ Sp) is dense in WP (Q).

Proof. It follows from (i}), (i2), and [20, Theorem 4.1] that there exists a sequence {8k } ken
CD(Q\S,) such that

klim 0*(1-8(x)) =0 VxeQ, Vae N, (3.6)
—+o00

sup | 0%6k(x) | < cap(x) VxeEQ, Vae N, (3.7)
keN

where ¢, is independent of x.
Fix u € W{F(Q). Observe that condition (3.7) implies that §xu € WoP(Q) for all k €
N. Moreover, by (3.6) we have that

Su— u  in WoP(Q). (3.8)
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On the other hand, using (2.4), it is easy to show that §xu € W"P(Q), and so Sru €
WP (Q\ Sp). For each k € N, Lemma 3.2 yields that there exists a sequence {u',j} hen C
B\ S,) such that

uﬁ — Oku  in WPP(Q)). (3.9)

Moreover, let v, € C(R") such that yx = 1 on supp(8xu). Thus by (2.4), we have

||y, — Sl wirQ) < 1wy — Skl | wro (> (3.10)

where ¢; € Ry depends on p, 7, s, k. It follows from (3.9) that there exists hix € N such
that

ettt — Seaallyrr oy < % (3.11)

If or = yi uﬁk, k € N, we obtain from (3.8) and (3.11) that
Qr — u in WP (Q), (3.12)
and the lemma is proved. O

If reN, 1< p<+oo, we will denote by Vliflr(’fc’(ﬁ \'Sp) the set of distributions « on Q
0 —
such that (u € WP (Q) for any { € D(Q\ S,).

LEmMMA 3.4. Assume that conditions (i,) and (i) hold. Then

WIL(Q\S,) N WoP(Q) = WiP(Q). (3.13)

loc

Proof. It is clearly enough to show that

WEE(Q\S,) N WP (Q) € WEP(Q). (3.14)

loc

Letu € V({/f(’)ﬁ(ﬁ \Sp) N WoP(Q) and consider a sequence {8k ken C DO\ Sp) satis-
fying (3.6) and (3.7). Since each §xu belongs to W"P(Q)), for any k € N, there exists a
sequence {ulfl}heN C C2(Q) such that

ub — Su in WHP(Q). (3.15)

Let yx € C°(R") such that y; = 1 on supp(dxu). Since wkuﬁ € C2(Q), the same argument
used in Lemma 3.3 allows to deduce from (3.15) that for every k € N, there exists i € N
such that

1
||1//kul,jk - 6ku||W;»p(Q) < © (3.16)

We put ¢ = I/Jku'flk for each k. Therefore it follows from (3.16) that

1
||k — ul Wi Q) < %+||8ku—u||wsnp(m. (3.17)
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As the sequence {0k} ren satisfies (3.8), (3.17) yields that the sequence { @i }xen converges
to u in We?(Q), and hence (3.14) holds. O

4. Main results

Let Q) be an open subset of R”, n > 3, with the segment property. Fix p € s4(Q) N L (Q)
and consider the following condition on Q.

(hy) There exists an open subset Q, of R” with the uniform C!-regularity property,
such that

QCQ, 9Q\S, CQ,. (4.1)

Remark 4.1. If condition (h;) holds and p € s4(Q) N L (Q), then Q satisfies (i) (see
(20]).

Let p €]1,+00[, and let L be the differential operator in Q defined by
n az n a
L=- Zd,’jm'l’izzlaig-l'a. (4.2)

ij=1 i

Consider the following conditions on the coefficients of L:
(h,) there exist extensions a?j of a;j to Q, such that

al-”j = a;?i € L*(Q) NVMO(Qy), i,j=1,...,n,

n 4.3
v e R, : Z afjf,-fj >v[E]? ae.inQ, VEeR", (43)
ij=1
(hs)
a, €LyY(Q), i=1,....,n,ac Ly (Q),
4.4
a, = essﬂinf(az(x)a(x)) >0, (4.4)
where o is the function defined in Remark 3.1.
Moreover, we suppose that the following hypothesis on p holds:
(hy)
lim ( sup ((a(x))x+a(x)(0(x))xx)) —0, (4.5)
k—+00 Q\
where

Qk={er:0(x)>%}, ke N. (4.6)
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In the proof of our main theorem, we need the following uniqueness result.

LemMA 4.2. Assume that conditions (hy )—(hs) hold and also that p > n/2. Then the problem

Lu=0, ue W),

)1131 (c°u)(x) =0, Vx,€0Q, (4.7)
| l‘im (o°u)(x) =0, if Qis unbounded,
x| —-+o0

admits only the zero solution.

Proof. The statement can be proved as [2, Corollary 5.4]. In fact, the proof of that result
also works if the condition S, = dQ) is replaced by the assumption (h;). O

THEOREM 4.3. Suppose that conditions (hy)—(hs) are satisfied. Then for any t € R, the prob-
lem

NN O Lp p
ue Wis (Q\S,) n Wi (Q\S,) NLi (), Lu=0, (4.8)

ocC
admits only the zero solution.

Proof. Let u be a solution of the problem (4.8). It follows from [3, Theorem 5.2] that
ue Wf;g(Qg. Moreover, u belongs to thff (Q), and hence Lemma 3.4 yields that u €
Wf;f;(Q) N th+pl (Q). Using Remark 3.1, it is easy to prove that

o™ 2u e WHP(Q) N WP (Q). (4.9)
Put v = ¢""?u and denote by v, the zero extension of v to Q,. Then
Ve € WP (Q,) N WP (Q,) (4.10)

by Lemma 3.3; Suppose first that p > n/2. By the Sobolev embedding theorem, v, belongs
to C°(Qy) N WHP(£,), and hence v, ,, = 0. On the other hand, v, € W*P((,), so that
another application of the Sobolev embedding theorem gives that lim|y|—+« vo(x) = 0.
Thus by (h; ), we have that

‘ 1‘1n+1 (o"2u)(x) = 0, (6" ?u)(x)),, = 0. (4.11)
In this case the statement follows now from Lemma 4.2.

Assume now that p €]1,n/2]. Then by the Sobolev embedding theorem, we have that
vo € L1(Q,), where 1/q = 1/p — 2/n. It follows from [3, Theorem 5.2] that v, € sz’q(Qo),
and hence v, belongs to W21(Q,) by (2.4). If g > n/2, the previous case can be used to
complete the proof. If finally g < #/2, an iterated application of [3, Theorem 5.2] yields
that v, € W24 (Q,) with ¢’ > n/2. Thus the first case applies again to complete the proof.

O

As an application of Theorem 4.3, we consider the case S, = 0Q) (examples of such
situation can for instance be found in [20]). The condition (h,) is obviously satisfied by



8 Uniqueness results for elliptic problems with singular data

each Q, O Q with the uniform C"!-regularity property; in this case, condition (h,) means
that the coefficients a;; admit extensions outside () in the class L*(€,) N VMO(€Q,).

COROLLARY 4.4. Assume that (hy), (h3), (hy) hold and that S, = Q). Then the problem
ue Wl (Q) LA (Q), Lu=0 (4.12)

admits only the zero solution.

Proof. The statement follows from Theorem 4.3 observing that, in this case, u belongs to
0 l,p
Wee (Q). O
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