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We study the existence of periodic solutions for second-order nonautonomous dynamical
systems. We give four sets of hypotheses which guarantee the existence of solutions. We
were able to weaken the hypotheses considerably from those used previously for such
systems. We employ a new saddle point theorem using linking methods.
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1. Introduction

We consider the following problem. One wishes to solve
—x"(t) = V.V (5x(1)), (L.1)
where

x(t) = (x1(£),...,x4(1)) (1.2)

is a map from I = [0, T] to R" such that each component x;(t) is a periodic function in
H'! with period T, and the function V(t,x) = V(t,x1,...,x,) is continuous from R""! to
R with

oV oV
ox, " Oxy,

V. Vi(t,x) = € C(R™!,R"). (1.3)
( )

Here H! represents the Hilbert space of periodic functions in L?(I) with generalized
derivatives in L?(I). The scalar product is given by

(V) = (W',v") + (u,v). (1.4)
For each x € R”, the function V(¢,x) is periodic in ¢ with period T.
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2 Periodic solutions of second-order nonautonomous dynamical systems

We will study this problem under the following assumptions:

(1)
V(t,x) =0, tel, xeR" (1.5)
(2) there are constants m > 0, & < 6m?/T? such that
Vitbtx) <a, |x|<m,tel, xR (1.6)

(3) there is a constant y > 2 such that

H,(t,
ﬁ;jswmeUUL|MzCJeLer, (1.7)
H,(t,x)
lims “ <0, 1.8
l‘xlﬁl(;lop |x|2 ( )
where
Hy(t,x) = uV(t,x) = ViV (t,x) - x; (1.9)

(4) there is a subset e C I of positive measure such that

>0, teEe. (1.10)

We have the following theorem.
THEOREM 1.1. Under the above hypotheses, the system (1.1) has a solution.
As a variant of Theorem 1.1, we have the following one.

THEOREM 1.2. The conclusion in Theorem 1.1 is the same if Hypothesis (2) is replaced by
(2") there is a constant q > 2 such that

V(t,x) <C(|x|7+1), tel, xeR", (1.11)
and there are constants m > 0, « < 272/ T? such that
Vit,x) <alx]?, |x|<m, tel, xeR" (1.12)

We also have the following theorem.

THEOREM 1.3. The conclusions of Theorems 1.1 and 1.2 hold if Hypothesis (3) is replaced by
(3') there is a constant y < 2 such that

H,(t,x)
|x|2

>-W(t)eL\I), |x|=C,tel, xeR",
(1.13)

H,(t,
liminf H( *)
Ixl-eo  ]x|2
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And we have the following theorem.

TueoreM 1.4. The conclusion of Theorem 1.1 holds if Hypothesis (1) is replaced by
(1)

0<V(t,x) <C(lx|*+1), tel, xeR" (1.14)

and Hypothesis (3) by
(3") the function given by

H(t,x) =2V (t,x) — V, V(t,x) - x (1.15)
satisfies

H(t,x) < Wt e L), |x|=C, tel, xeR",

1.16
H(t,x) — —o0, |x| — o, tel, x€R" (1.16)

The periodic nonautonomous problem
x'(t) = V. V(t,x(1)) (1.17)

has an extensive history in the case of singular systems (cf,, e.g., Ambrosetti-Coti Zelati
[1]). The first to consider it for potentials satisfying (1.3) were Berger and Schechter [3].
We proved the existence of solutions to (1.17) under the condition that

V(t,x) — o as |x| — oo (1.18)

uniformly for a.e. t € I. Subsequently, Willem [16], Mawhin [6], Mawhin and Willem
(8], Tang [11, 12], Tang and Wu [13-15], Wu and Tang [17] and others proved existence
under various conditions (cf. the references given in these publications).

The periodic problem (1.1) was studied by Mawhin and Willem [7, 8], Long [5], Tang
and Wu [13-15] and others (cf. the refernces quoted in them). Ben-Naoum et al. [2]
and Nirenberg (cf. Ekeland and Ghoussoub [4]) proved the existence of nonconstant
solutions.

We will prove Theorems 1.1-1.4 in the next section. We use a linking method of critical
point theory (cf. [9, 10]). These methods allow us to improve the previous results.

2. Proofs of the theorems
We now give the proof of Theorem 1.1.

Proof. Let X be the set of vector functions x(t) given by (1.2) and described above. It is a
Hilbert space with norm satisfying

n
% = 3 s - (2.1)
j=1
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We also write
“ 2
lxl1? = D ||x] (2.2)
j=1

where || - || is the L*(I) norm.
Let

N = {x(t) € X : x;(t) = constant, 1 < j < n} (2.3)

and M = N*. The dimension of N is n, and X = M & N. Proof of the following lemma
can be found in [7].

LemMa 2.1. Ifx € M, then

T, T, .,
llxll% < 7 /* I1%, lell < >l (2.4)

We define

Glx) = ||x'||2—2JIV(t,x(t))dt, xeX (2.5)

For each x € X write x = v+ w, where v € N, w € M. For convenience, we will use the
following equivalent norm for X:

lxl% = Iw'I12+ llvlI* (2.6)
If x € M and
12
x| = p? = Tmz, (2.7)

then Lemma 2.1 implies that [|x||. < m, and we have by Hypothesis (2) that V(t,x) < a.
Hence,

G(x) = ||x'||2—2J adt > p* = 2aT > 0. (2.8)

lx()|<

We also note that Hypothesis (1) implies

G(v) <0, veEN. (2.9)
Take
12,
A=0B,NM, p :?m, B=N, (2.10)
where

B, ={xeX:|xllx <o} (2.11)
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By [9, Theorem 1.1], A links B. (For background material on linking theory, cf. [10].)
Moreover, by (2.8) and (2.9), we have

sup[—G] <0 <inf[-G]. (2.12)
4 B

Hence, we may apply [9, Theorem 1.1] to conclude that there is a sequence {xY c X
such that

G(x®) = H[x<k>]’ g 2Lv(t,x<k>(t))dt — =<0, (2.13)
w (0], 2y — L V.V (W) z()dt—0, zeX,  (2.14)
w — H[x(m]’ 2 L V.V (t,x® (1)) - x®(t)dt — 0. (2.15)

If
pe=ll¥ll = C. (2.16)

then there is a renamed subsequence such that x*) converges to a limit x € X weakly in
X and uniformly on I. From (2.14) we see that

(G'(x),z2)

- (x',z')—J VoV (6x(8) - 2(t)dt =0, zEX, (2.17)
2 I

from which we conclude easily that x is a solution of (1.1).

If
pr =[x Pl — oo, (2.18)
let X = x0)/pr. Then, ||[X®]x = 1. Let X% = w® + 9% where wK) € M and ¥¥ € N.

There is a renamed subsequence such that || [¥X®]'|| — r and [|X®|| — 7, where r?> + 72 = 1.
From (2.13) and (2.15) we obtain

(EC (AL L
Pk (2.19)
NERT)1P - [; VxV(t»x(k;({)) xO@dt 0.
Thus,
Zfﬂ/(t+2(k)(l‘))dt . (2.20)
k
VY (6x00) -0t (2.21)

Pi
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Hence, by (1.9),

£, x (¢
UL ACEAO) L (ﬁ—l)rz. (2.22)
Pi 2
Note that
[X0 ()| < Cl|®W]|, = C. (2.23)
If
[x 0 (1) | — oo, (2.24)
then by (1.8)
H, (t,x® (¢ H,(t,x® (1))
limsup M = limsup M |x(k)(t) |2 <0. (2.25)
Pk [x®)(1) |
If
x® @) <C, (2.26)
then
H,(t,x®(t
y( x2 (1)) _.o. (2.27)
Pk
Hence,
£,x®(8)) dt
limsup L A (6XE@)dE (2.28)
p 2
Pk
Hence by (2.22)
(g 1)r <0. (2.29)

If r # 0, this contradicts the fact that g > 2. If r = 0, then wk =0 uniformly in I by
Lemma 2.1. Moreover, T|7®) |2 = ||9®)||2 — 1. Hence, there is a renamed subsequence
such that % — % in N with |7|2 = 1/T. Hence, X*) — % uniformly in I. Consequently,
|x®)| — oo uniformly in I. Thus, by Hypothesis (4),

liminfflv(t’x—z f hmmfw |20 (1) | dt > 0. (2.30)

Pk | x®(t)|?

This contradicts (2.20). Hence the pj are bounded, and the proof is complete. O
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The proof of Theorem 1.2 is similar to that of Theorem 1.1 with the exception of the
inequality (2.8) resulting from Hypothesis (2). In its place we reason as follows: if x € M,
we have by Hypothesis (2'),

G(x)znx'nz—zj oc|x(t)|2dt—2CJ (|x(6) |9+ 1)dt

[x(t)|>m

z||x'||2—2a||x||2—zc(1+m-q)j |x(6) | 1dt

[x()[>m

r’ 2 T2 4
- ||2(1—[fz])—cj (1) | 4dt
T [x(t)|>m

[x|<m

_ _ (2.31)
aT? 5 ., q
> (1= 5 |) 1t - ¢ | i
_“TZ_ rr’
> (1-] 57 | ) etk - ¢
7‘XT27 rrr -2
- (155 |- e i
by Lemma 2.1. Hence, we have the following lemma.
LEMMA 2.2.
G(x) = elxllx, lxllx<p,x€M (2.32)

for p > 0 sufficiently small, where e < 1 — [aT?/21%].

The remainder of the proof is essentially the same.
In proving Theorem 1.3 we follow the proof of Theorem 1.1 until we reach (2.20).
Then we reason as follows. If

[x®(£)] — oo, (2.33)
then
H, (t,x®0 (¢ H, (t,x®(t
liming e EE0E) e HeEO) 20125 0 (2.34)
Pk |x® (1) |
If
|x® ()| <C, (2.35)
then by Hypothesis (3'),
H,(t,x® (1))
s . (2.36)

Hence,

H,(t,x® (1)) dt
liminfM > 0. (2.37)
Pk
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Thus by (2.22)

(% - 1)r2 > 0. (2.38)

If r # 0, this contradicts the fact that y < 2. If r = 0, then W) — 0 uniformly in I by
Lemma 2.1. Moreover, T|#®|2 = ||#0)]|2 — 1. Hence, there is a renamed subsequence
such that % — % in N with |7|2 = 1/T. Hence, X*) — ¥ uniformly in I. Consequently,
[x®)] = oo uniformly in I. Thus, by Hypothesis (4),

liminf 1LY (627 (0)dt Jhml f )(|)) 120 (1) |2de > 0. (2.39)

This contradicts (2.20). Hence the pj are bounded, and the proof is complete.
In proving Theorem 1.4, we follow the proof of Theorem 1.1 until (2.20). Assume first
that » > 0. Note that (2.13) and (2.15) imply that

J H(t,x® () dt — —c. (2.40)
I

On the other hand, by Hypothesis (1"), we have

N2 ,x(k)
0 — [IxRT| _ZLW

= |[E0)| - 2¢ | (189(0)|+ pi?)dt (2.41)
I
. rz—ZCJ 1%(6) | 2dt.
I

Hence, X(t) # 0. Let Qg C I be the set on which X(#) # 0. The measure of Q) is positive.
Moreover, |x®)(t)| — o0 as k — oo for t € Qp. Thus,

J H(t,x®(1))dt < J H(t,x® (1)) dt + W(t)dt — —o (2.42)
1 Qo 1\Q

by Hypothesis (3"’). But this contradicts (2.40). If r = 0, then W) — 0 uniformly in I
by Lemma 2.1. Moreover, T|7%) |2 = ||%}||2 — 1. Thus, there is a renamed subsequence
such that ¥®) — ¥ in N with |¥]? = 1/T. Hence, X¥)(t) — ¥ uniformly in I. Consequently,
[x® ()] - o0 uniformly in I. Thus, by Hypothesis (4),

(t x t) |~(k

(1) %dt > 0. (2.43)
|x® (1) |* |

(k
liminf fIV(t’x—z J liminf
Pk

This contradicts (2.20). Hence the pj are bounded, and the proof is complete.
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