

PERIODIC SOLUTIONS OF SECOND-ORDER NONAUTONOMOUS DYNAMICAL SYSTEMS

MARTIN SCHECHTER

Received 13 March 2006; Revised 10 May 2006; Accepted 15 May 2006

We study the existence of periodic solutions for second-order nonautonomous dynamical systems. We give four sets of hypotheses which guarantee the existence of solutions. We were able to weaken the hypotheses considerably from those used previously for such systems. We employ a new saddle point theorem using linking methods.

Copyright © 2006 Martin Schechter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider the following problem. One wishes to solve

$$-x''(t) = \nabla_x V(t, x(t)), \quad (1.1)$$

where

$$x(t) = (x_1(t), \dots, x_n(t)) \quad (1.2)$$

is a map from $I = [0, T]$ to \mathbb{R}^n such that each component $x_j(t)$ is a periodic function in H^1 with period T , and the function $V(t, x) = V(t, x_1, \dots, x_n)$ is continuous from \mathbb{R}^{n+1} to \mathbb{R} with

$$\nabla_x V(t, x) = \left(\frac{\partial V}{\partial x_1}, \dots, \frac{\partial V}{\partial x_n} \right) \in C(\mathbb{R}^{n+1}, \mathbb{R}^n). \quad (1.3)$$

Here H^1 represents the Hilbert space of periodic functions in $L^2(I)$ with generalized derivatives in $L^2(I)$. The scalar product is given by

$$(u, v)_{H^1} = (u', v') + (u, v). \quad (1.4)$$

For each $x \in \mathbb{R}^n$, the function $V(t, x)$ is periodic in t with period T .

2 Periodic solutions of second-order nonautonomous dynamical systems

We will study this problem under the following assumptions:

(1)

$$V(t, x) \geq 0, \quad t \in I, x \in \mathbb{R}^n; \quad (1.5)$$

(2) there are constants $m > 0, \alpha \leq 6m^2/T^2$ such that

$$V(t, x) \leq \alpha, \quad |x| \leq m, t \in I, x \in \mathbb{R}^n; \quad (1.6)$$

(3) there is a constant $\mu > 2$ such that

$$\frac{H_\mu(t, x)}{|x|^2} \leq W(t) \in L^1(I), \quad |x| \geq C, t \in I, x \in \mathbb{R}^n, \quad (1.7)$$

$$\limsup_{|x| \rightarrow \infty} \frac{H_\mu(t, x)}{|x|^2} \leq 0, \quad (1.8)$$

where

$$H_\mu(t, x) = \mu V(t, x) - \nabla_x V(t, x) \cdot x; \quad (1.9)$$

(4) there is a subset $e \subset I$ of positive measure such that

$$\liminf_{|x| \rightarrow \infty} \frac{V(t, x)}{|x|^2} > 0, \quad t \in e. \quad (1.10)$$

We have the following theorem.

THEOREM 1.1. *Under the above hypotheses, the system (1.1) has a solution.*

As a variant of Theorem 1.1, we have the following one.

THEOREM 1.2. *The conclusion in Theorem 1.1 is the same if Hypothesis (2) is replaced by (2') there is a constant $q > 2$ such that*

$$V(t, x) \leq C(|x|^q + 1), \quad t \in I, x \in \mathbb{R}^n, \quad (1.11)$$

and there are constants $m > 0, \alpha < 2\pi^2/T^2$ such that

$$V(t, x) \leq \alpha|x|^2, \quad |x| \leq m, t \in I, x \in \mathbb{R}^n. \quad (1.12)$$

We also have the following theorem.

THEOREM 1.3. *The conclusions of Theorems 1.1 and 1.2 hold if Hypothesis (3) is replaced by (3') there is a constant $\mu < 2$ such that*

$$\begin{aligned} \frac{H_\mu(t, x)}{|x|^2} &\geq -W(t) \in L^1(I), \quad |x| \geq C, t \in I, x \in \mathbb{R}^n, \\ \liminf_{|x| \rightarrow \infty} \frac{H_\mu(t, x)}{|x|^2} &\geq 0. \end{aligned} \quad (1.13)$$

And we have the following theorem.

THEOREM 1.4. *The conclusion of Theorem 1.1 holds if Hypothesis (1) is replaced by (1')*

$$0 \leq V(t, x) \leq C(|x|^2 + 1), \quad t \in I, x \in \mathbb{R}^n \quad (1.14)$$

and Hypothesis (3) by

(3'') the function given by

$$H(t, x) = 2V(t, x) - \nabla_x V(t, x) \cdot x \quad (1.15)$$

satisfies

$$\begin{aligned} H(t, x) &\leq W(t) \in L^1(I), \quad |x| \geq C, t \in I, x \in \mathbb{R}^n, \\ H(t, x) &\rightarrow -\infty, \quad |x| \rightarrow \infty, t \in I, x \in \mathbb{R}^n. \end{aligned} \quad (1.16)$$

The periodic nonautonomous problem

$$x''(t) = \nabla_x V(t, x(t)) \quad (1.17)$$

has an extensive history in the case of singular systems (cf., e.g., Ambrosetti-Coti Zelati [1]). The first to consider it for potentials satisfying (1.3) were Berger and Schechter [3]. We proved the existence of solutions to (1.17) under the condition that

$$V(t, x) \rightarrow \infty \quad \text{as } |x| \rightarrow \infty \quad (1.18)$$

uniformly for a.e. $t \in I$. Subsequently, Willem [16], Mawhin [6], Mawhin and Willem [8], Tang [11, 12], Tang and Wu [13–15], Wu and Tang [17] and others proved existence under various conditions (cf. the references given in these publications).

The periodic problem (1.1) was studied by Mawhin and Willem [7, 8], Long [5], Tang and Wu [13–15] and others (cf. the references quoted in them). Ben-Naoum et al. [2] and Nirenberg (cf. Ekeland and Ghoussoub [4]) proved the existence of nonconstant solutions.

We will prove Theorems 1.1–1.4 in the next section. We use a linking method of critical point theory (cf. [9, 10]). These methods allow us to improve the previous results.

2. Proofs of the theorems

We now give the proof of Theorem 1.1.

Proof. Let X be the set of vector functions $x(t)$ given by (1.2) and described above. It is a Hilbert space with norm satisfying

$$\|x\|_X^2 = \sum_{j=1}^n \|x_j\|_{H^1}^2. \quad (2.1)$$

4 Periodic solutions of second-order nonautonomous dynamical systems

We also write

$$\|x\|^2 = \sum_{j=1}^n \|x_j\|^2, \quad (2.2)$$

where $\|\cdot\|$ is the $L^2(I)$ norm.

Let

$$N = \{x(t) \in X : x_j(t) \equiv \text{constant}, 1 \leq j \leq n\} \quad (2.3)$$

and $M = N^\perp$. The dimension of N is n , and $X = M \oplus N$. Proof of the following lemma can be found in [7].

LEMMA 2.1. *If $x \in M$, then*

$$\|x\|_\infty^2 \leq \frac{T}{12} \|x'\|^2, \quad \|x\| \leq \frac{T}{2\pi} \|x'\|. \quad (2.4)$$

We define

$$G(x) = \|x'\|^2 - 2 \int_I V(t, x(t)) dt, \quad x \in X. \quad (2.5)$$

For each $x \in X$ write $x = v + w$, where $v \in N$, $w \in M$. For convenience, we will use the following equivalent norm for X :

$$\|x\|_X^2 = \|w'\|^2 + \|v\|^2. \quad (2.6)$$

If $x \in M$ and

$$\|x'\|^2 = \rho^2 = \frac{12}{T} m^2, \quad (2.7)$$

then Lemma 2.1 implies that $\|x\|_\infty \leq m$, and we have by Hypothesis (2) that $V(t, x) \leq \alpha$. Hence,

$$G(x) \geq \|x'\|^2 - 2 \int_{|x(t)| < m} \alpha dt \geq \rho^2 - 2\alpha T \geq 0. \quad (2.8)$$

We also note that Hypothesis (1) implies

$$G(v) \leq 0, \quad v \in N. \quad (2.9)$$

Take

$$A = \partial B_\rho \cap M, \quad \rho^2 = \frac{12}{T} m^2, \quad B = N, \quad (2.10)$$

where

$$B_\sigma = \{x \in X : \|x\|_X < \sigma\}. \quad (2.11)$$

By [9, Theorem 1.1], A links B . (For background material on linking theory, cf. [10].) Moreover, by (2.8) and (2.9), we have

$$\sup_A[-G] \leq 0 \leq \inf_B[-G]. \quad (2.12)$$

Hence, we may apply [9, Theorem 1.1] to conclude that there is a sequence $\{x^{(k)}\} \subset X$ such that

$$G(x^{(k)}) = \left\| [x^{(k)}]'\right\|^2 - 2 \int_I V(t, x^{(k)}(t)) dt \rightarrow c \leq 0, \quad (2.13)$$

$$\frac{(G'(x^{(k)}), z)}{2} = ([x^{(k)}]', z') - \int_I \nabla_x V(t, x^{(k)}(t)) \cdot z(t) dt \rightarrow 0, \quad z \in X, \quad (2.14)$$

$$\frac{(G'(x^{(k)}), x^{(k)})}{2} = \left\| [x^{(k)}]'\right\|^2 - \int_I \nabla_x V(t, x^{(k)}(t)) \cdot x^{(k)}(t) dt \rightarrow 0. \quad (2.15)$$

If

$$\rho_k = \|x^{(k)}\|_X \leq C, \quad (2.16)$$

then there is a renamed subsequence such that $x^{(k)}$ converges to a limit $x \in X$ weakly in X and uniformly on I . From (2.14) we see that

$$\frac{(G'(x), z)}{2} = (x', z') - \int_I \nabla_x V(t, x(t)) \cdot z(t) dt = 0, \quad z \in X, \quad (2.17)$$

from which we conclude easily that x is a solution of (1.1).

If

$$\rho_k = \|x^{(k)}\|_X \rightarrow \infty, \quad (2.18)$$

let $\tilde{x}^{(k)} = x^{(k)} / \rho_k$. Then, $\|\tilde{x}^{(k)}\|_X = 1$. Let $\tilde{x}^{(k)} = \tilde{w}^{(k)} + \tilde{v}^{(k)}$, where $\tilde{w}^{(k)} \in M$ and $\tilde{v}^{(k)} \in N$. There is a renamed subsequence such that $\|[\tilde{x}^{(k)}]'\| \rightarrow r$ and $\|\tilde{x}^{(k)}\| \rightarrow \tau$, where $r^2 + \tau^2 = 1$. From (2.13) and (2.15) we obtain

$$\begin{aligned} \left\| [\tilde{x}^{(k)}]'\right\|^2 - \frac{2 \int_I V(t, x^{(k)}(t)) dt}{\rho_k^2} &\rightarrow 0, \\ \left\| [\tilde{x}^{(k)}]'\right\|^2 - \frac{\int_I \nabla_x V(t, x^{(k)}(t)) \cdot x^{(k)}(t) dt}{\rho_k^2} &\rightarrow 0. \end{aligned} \quad (2.19)$$

Thus,

$$\frac{2 \int_I V(t, x^{(k)}(t)) dt}{\rho_k^2} \rightarrow r^2, \quad (2.20)$$

$$\frac{\int_I \nabla_x V(t, x^{(k)}(t)) \cdot x^{(k)}(t) dt}{\rho_k^2} \rightarrow r^2. \quad (2.21)$$

6 Periodic solutions of second-order nonautonomous dynamical systems

Hence, by (1.9),

$$\frac{\int_I H_\mu(t, x^{(k)}(t)) dt}{\rho_k^2} \rightarrow \left(\frac{\mu}{2} - 1\right) r^2. \quad (2.22)$$

Note that

$$|\tilde{x}^{(k)}(t)| \leq C \|\tilde{x}^{(k)}\|_X = C. \quad (2.23)$$

If

$$|x^{(k)}(t)| \rightarrow \infty, \quad (2.24)$$

then by (1.8)

$$\limsup \frac{H_\mu(t, x^{(k)}(t))}{\rho_k^2} = \limsup \frac{H_\mu(t, x^{(k)}(t))}{|x^{(k)}(t)|^2} |\tilde{x}^{(k)}(t)|^2 \leq 0. \quad (2.25)$$

If

$$|x^{(k)}(t)| \leq C, \quad (2.26)$$

then

$$\frac{H_\mu(t, x^{(k)}(t))}{\rho_k^2} \rightarrow 0. \quad (2.27)$$

Hence,

$$\limsup \frac{\int_I H_\mu(t, x^{(k)}(t)) dt}{\rho_k^2} \leq 0. \quad (2.28)$$

Hence by (2.22)

$$\left(\frac{\mu}{2} - 1\right) r^2 \leq 0. \quad (2.29)$$

If $r \neq 0$, this contradicts the fact that $\mu > 2$. If $r = 0$, then $\tilde{x}^{(k)} \rightarrow 0$ uniformly in I by Lemma 2.1. Moreover, $T|\tilde{v}^{(k)}|^2 = \|\tilde{v}^{(k)}\|^2 \rightarrow 1$. Hence, there is a renamed subsequence such that $\tilde{v}^{(k)} \rightarrow \tilde{v}$ in N with $|\tilde{v}|^2 = 1/T$. Hence, $\tilde{x}^{(k)} \rightarrow \tilde{v}$ uniformly in I . Consequently, $|x^{(k)}| \rightarrow \infty$ uniformly in I . Thus, by Hypothesis (4),

$$\liminf \frac{\int_I V(t, x^{(k)}(t)) dt}{\rho_k^2} \geq \int_e \liminf \frac{V(t, x^{(k)}(t))}{|x^{(k)}(t)|^2} |\tilde{x}^{(k)}(t)|^2 dt > 0. \quad (2.30)$$

This contradicts (2.20). Hence the ρ_k are bounded, and the proof is complete. \square

The proof of Theorem 1.2 is similar to that of Theorem 1.1 with the exception of the inequality (2.8) resulting from Hypothesis (2). In its place we reason as follows: if $x \in M$, we have by Hypothesis (2'),

$$\begin{aligned}
G(x) &\geq \|x'\|^2 - 2 \int_{|x| < m} \alpha |x(t)|^2 dt - 2C \int_{|x(t)| > m} (|x(t)|^q + 1) dt \\
&\geq \|x'\|^2 - 2\alpha \|x\|^2 - 2C(1 + m^{-q}) \int_{|x(t)| > m} |x(t)|^q dt \\
&\geq \|x'\|^2 \left(1 - \left[\frac{2\alpha T^2}{4\pi^2}\right]\right) - C' \int_{|x(t)| > m} |x(t)|^q dt \\
&\geq \left(1 - \left[\frac{\alpha T^2}{2\pi^2}\right]\right) \|x\|_X^2 - C'' \int_I \|x\|_X^q dt \\
&\geq \left(1 - \left[\frac{\alpha T^2}{2\pi^2}\right]\right) \|x\|_X^2 - C''' \|x\|_X^q \\
&= \left(1 - \left[\frac{\alpha T^2}{2\pi^2}\right] - C''' \|x\|_X^{q-2}\right) \|x\|_X^2
\end{aligned} \tag{2.31}$$

by Lemma 2.1. Hence, we have the following lemma.

LEMMA 2.2.

$$G(x) \geq \varepsilon \|x\|_X^2, \quad \|x\|_X \leq \rho, \quad x \in M \tag{2.32}$$

for $\rho > 0$ sufficiently small, where $\varepsilon < 1 - [\alpha T^2 / 2\pi^2]$.

The remainder of the proof is essentially the same.

In proving Theorem 1.3 we follow the proof of Theorem 1.1 until we reach (2.20). Then we reason as follows. If

$$|x^{(k)}(t)| \rightarrow \infty, \tag{2.33}$$

then

$$\liminf \frac{H_\mu(t, x^{(k)}(t))}{\rho_k^2} = \liminf \frac{H_\mu(t, x^{(k)}(t))}{|x^{(k)}(t)|^2} |\tilde{x}^{(k)}(t)|^2 \geq 0. \tag{2.34}$$

If

$$|x^{(k)}(t)| \leq C, \tag{2.35}$$

then by Hypothesis (3'),

$$\frac{H_\mu(t, x^{(k)}(t))}{\rho_k^2} \rightarrow 0. \tag{2.36}$$

Hence,

$$\liminf \frac{\int_I H_\mu(t, x^{(k)}(t)) dt}{\rho_k^2} \geq 0. \tag{2.37}$$

8 Periodic solutions of second-order nonautonomous dynamical systems

Thus by (2.22)

$$\left(\frac{\mu}{2} - 1\right)r^2 \geq 0. \quad (2.38)$$

If $r \neq 0$, this contradicts the fact that $\mu < 2$. If $r = 0$, then $\tilde{w}^{(k)} \rightarrow 0$ uniformly in I by Lemma 2.1. Moreover, $T|\tilde{v}^{(k)}|^2 = \|\tilde{v}^{(k)}\|^2 \rightarrow 1$. Hence, there is a renamed subsequence such that $\tilde{v}^{(k)} \rightarrow \tilde{v}$ in N with $|\tilde{v}|^2 = 1/T$. Hence, $\tilde{x}^{(k)} \rightarrow \tilde{v}$ uniformly in I . Consequently, $|x^{(k)}| \rightarrow \infty$ uniformly in I . Thus, by Hypothesis (4),

$$\liminf \frac{\int_I V(t, x^{(k)}(t)) dt}{\rho_k^2} \geq \int_e \liminf \frac{V(t, x^{(k)}(t))}{|x^{(k)}(t)|^2} |\tilde{x}^{(k)}(t)|^2 dt > 0. \quad (2.39)$$

This contradicts (2.20). Hence the ρ_k are bounded, and the proof is complete.

In proving Theorem 1.4, we follow the proof of Theorem 1.1 until (2.20). Assume first that $r > 0$. Note that (2.13) and (2.15) imply that

$$\int_I H(t, x^{(k)}(t)) dt \rightarrow -c. \quad (2.40)$$

On the other hand, by Hypothesis (1'), we have

$$\begin{aligned} 0 &\leftarrow \|\tilde{x}^{(k)}\|^2 - 2 \int_I \frac{V(t, x^{(k)}(t)) dt}{\rho_k^2} \\ &\geq \|\tilde{x}^{(k)}\|^2 - 2C \int_I (|\tilde{x}^{(k)}(t)|^2 + \rho_k^{-2}) dt \\ &\rightarrow r^2 - 2C \int_I |\tilde{x}(t)|^2 dt. \end{aligned} \quad (2.41)$$

Hence, $\tilde{x}(t) \neq 0$. Let $\Omega_0 \subset I$ be the set on which $\tilde{x}(t) \neq 0$. The measure of Ω_0 is positive. Moreover, $|x^{(k)}(t)| \rightarrow \infty$ as $k \rightarrow \infty$ for $t \in \Omega_0$. Thus,

$$\int_I H(t, x^{(k)}(t)) dt \leq \int_{\Omega_0} H(t, x^{(k)}(t)) dt + \int_{I \setminus \Omega_0} W(t) dt \rightarrow -\infty \quad (2.42)$$

by Hypothesis (3''). But this contradicts (2.40). If $r = 0$, then $\tilde{w}^{(k)} \rightarrow 0$ uniformly in I by Lemma 2.1. Moreover, $T|\tilde{v}^{(k)}|^2 = \|\tilde{v}^{(k)}\|^2 \rightarrow 1$. Thus, there is a renamed subsequence such that $\tilde{v}^{(k)} \rightarrow \tilde{v}$ in N with $|\tilde{v}|^2 = 1/T$. Hence, $\tilde{x}^{(k)}(t) \rightarrow \tilde{v}$ uniformly in I . Consequently, $|x^{(k)}(t)| \rightarrow \infty$ uniformly in I . Thus, by Hypothesis (4),

$$\liminf \frac{\int_I V(t, x^{(k)}(t)) dt}{\rho_k^2} \geq \int_e \liminf \frac{V(t, x^{(k)}(t))}{|x^{(k)}(t)|^2} |\tilde{x}^{(k)}(t)|^2 dt > 0. \quad (2.43)$$

This contradicts (2.20). Hence the ρ_k are bounded, and the proof is complete.

References

- [1] A. Ambrosetti and V. Coti Zelati, *Periodic Solutions of Singular Lagrangian Systems*, Progress in Nonlinear Differential Equations and Their Applications, vol. 10, Birkhäuser Boston, Massachusetts, 1993.
- [2] A. K. Ben-Naoum, C. Troestler, and M. Willem, *Existence and multiplicity results for homogeneous second order differential equations*, Journal of Differential Equations **112** (1994), no. 1, 239–249.
- [3] M. S. Berger and M. Schechter, *On the solvability of semilinear gradient operator equations*, Advances in Mathematics **25** (1977), no. 2, 97–132.
- [4] I. Ekeland and N. Ghoussoub, *Selected new aspects of the calculus of variations in the large*, Bulletin of the American Mathematical Society **39** (2002), no. 2, 207–265.
- [5] Y. M. Long, *Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials*, Nonlinear Analysis **24** (1995), no. 12, 1665–1671.
- [6] J. Mawhin, *Semicoercive monotone variational problems*, Académie Royale de Belgique. Bulletin de la Classe des Sciences **73** (1987), no. 3-4, 118–130.
- [7] J. Mawhin and M. Willem, *Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance*, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire **3** (1986), no. 6, 431–453.
- [8] ———, *Critical Point Theory and Hamiltonian Systems*, Applied Mathematical Sciences, vol. 74, Springer, New York, 1989.
- [9] M. Schechter, *New linking theorems*, Rendiconti del Seminario Matematico della Università di Padova **99** (1998), 255–269.
- [10] ———, *Linking Methods in Critical Point Theory*, Birkhäuser Boston, Massachusetts, 1999.
- [11] C.-L. Tang, *Periodic solutions of non-autonomous second order systems with γ -quasibadditive potential*, Journal of Mathematical Analysis and Applications **189** (1995), no. 3, 671–675.
- [12] ———, *Periodic solutions for nonautonomous second order systems with sublinear nonlinearity*, Proceedings of the American Mathematical Society **126** (1998), no. 11, 3263–3270.
- [13] C.-L. Tang and X.-P. Wu, *Periodic solutions for second order systems with not uniformly coercive potential*, Journal of Mathematical Analysis and Applications **259** (2001), no. 2, 386–397.
- [14] ———, *Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems*, Journal of Mathematical Analysis and Applications **275** (2002), no. 2, 870–882.
- [15] ———, *Notes on periodic solutions of subquadratic second order systems*, Journal of Mathematical Analysis and Applications **285** (2003), no. 1, 8–16.
- [16] W. Willem, *Oscillations forcées systèmes hamiltoniens*, Public. Sémin. Analyse Non Linéaire, Université de Franche-Comté, Besançon, 1981.
- [17] X.-P. Wu and C.-L. Tang, *Periodic solutions of a class of non-autonomous second-order systems*, Journal of Mathematical Analysis and Applications **236** (1999), no. 2, 227–235.

Martin Schechter: Department of Mathematics, University of California, Irvine,
CA 92697-3875, USA
E-mail address: mschecht@math.uci.edu

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/ade/guidelines.html>. Authors should follow the Advances in Difference Equations manuscript format described at the journal site <http://www.hindawi.com/journals/ade/>. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	April 1, 2009
First Round of Reviews	July 1, 2009
Publication Date	October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.oter@usc.es