

EXISTENCE OF INFINITELY MANY NODAL SOLUTIONS FOR A SUPERLINEAR NEUMANN BOUNDARY VALUE PROBLEM

AIXIA QIAN

Received 12 January 2005

We study the existence of a class of nonlinear elliptic equation with Neumann boundary condition, and obtain infinitely many nodal solutions. The study of such a problem is based on the variational methods and critical point theory. We prove the conclusion by using the symmetric mountain-pass theorem under the Cerami condition.

1. Introduction

Consider the Neumann boundary value problem:

$$\begin{aligned} -\Delta u + \alpha u &= f(x, u), \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega, \end{aligned} \tag{1.1}$$

where $\Omega \subset \mathbb{R}^N (N \geq 1)$ is a bounded domain with smooth boundary $\partial\Omega$ and $\alpha > 0$ is a constant. Denote by $\sigma(-\Delta) := \{\lambda_i \mid 0 = \lambda_1 < \lambda_2 \leq \dots \leq \lambda_k \leq \dots\}$ the eigenvalues of the eigenvalue problem:

$$\begin{aligned} -\Delta u &= \lambda u, \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega. \end{aligned} \tag{1.2}$$

Let $F(x, s) = \int_0^s f(x, t) dt$, $G(x, s) = f(x, s)s - 2F(x, s)$. Assume

(f_1) $f \in C(\overline{\Omega} \times \mathbb{R})$, $f(0) = 0$, and for some $2 < p < 2^* = 2N/(N-2)$ (for $N = 1, 2$, take $2^* = \infty$), $c > 0$ such that

$$|f(x, u)| \leq c(1 + |u|^{p-1}), \quad (x, u) \in \Omega \times \mathbb{R}. \tag{1.3}$$

(f_2) There exists $L \geq 0$, such that $f(x, s) + Ls$ is increasing in s .
(f_3) $\lim_{|s| \rightarrow \infty} (f(x, s)s)/|s|^2 = +\infty$ uniformly for a.e. $x \in \Omega$.

(f_4) There exist $\theta \geq 1, s \in [0, 1]$ such that

$$\theta G(x, t) \geq G(x, st), \quad (x, u) \in \Omega \times \mathbb{R}. \quad (1.4)$$

(f_5) $f(x, -t) = -f(x, t), (x, u) \in \Omega \times \mathbb{R}$.

Because of (f_3), (1.1) is called a superlinear problem. In [6, Theorem 9.38], the author obtained infinitely many solutions of (1.1) under (f_1)–(f_5) and

(AR) $\exists \mu > 2, R > 0$ such that

$$x \in \Omega, \quad |s| \geq R \implies 0 < \mu F(x, s) \leq f(x, s)s. \quad (1.5)$$

Obviously, (f_3) can be deduced from (AR). Under (AR), the (PS) sequence of corresponding energy functional is bounded, which plays an important role for the application of variational methods. However, there are indeed many superlinear functions not satisfying (AR), for example, take $\theta = 1$, the function

$$f(x, t) = 2t \log(1 + |t|) \quad (1.6)$$

while it is easy to see that the above function satisfies (f_1)–(f_5). Condition (f_4) is from [2] and (1.6) is from [4].

In view of the variational point, solutions of (1.1) are critical points of corresponding functional defined on the Hilbert space $E := W^{1,2}(\Omega)$. Let $X := \{u \in C^1(\Omega) \mid \partial u / \partial \nu = 0, x \in \partial\Omega\}$ a Banach space. We consider the functional

$$J(u) = \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) dx - \int_{\Omega} F(x, u) dx, \quad (1.7)$$

where E is equipped with the norm

$$\|u\| = \left(\int_{\Omega} |\nabla u|^2 + \alpha \int_{\Omega} u^2 \right)^{1/2}. \quad (1.8)$$

By (f_1), J is of C^1 and

$$\langle J'(u), v \rangle = \int_{\Omega} (\nabla u \nabla v + \alpha u v) dx - \int_{\Omega} f(x, u) v dx, \quad u, v \in E. \quad (1.9)$$

Now, we can state our main result.

THEOREM 1.1. *Under assumptions (f_1)–(f_5), (1.1) has infinitely many nodal solutions.*

Remark 1.2. [8, Theorem 3.2] obtained infinitely many solutions under (f_1)–(f_5) and

(f_3)' $\lim_{|u| \rightarrow \infty} \inf(f(x, u)u) / |u|^{\mu} \geq c > 0$ uniformly for $x \in \Omega$, where $\mu > 2$.

(f_4)' $f(x, u)/u$ is increasing in $|u|$.

It turns out that (f_3)' and (f_4)' are stronger than (f_3) and (f_4), respectively, furthermore, the function (1.6) does not satisfy (f_3)', then Theorem 1.1 applied to Dirichlet boundary value problem improves [8, Theorem 3.2].

Remark 1.3. [1, Theorem 7.3] also got infinitely many nodal solutions for (1.1) under assumption that the functional is of C^2 .

2. Preliminaries

Let E be a Hilbert space and $X \subset E$, a Banach space densely embedded in E . Assume that E has a closed convex cone P_E and that $P =: P_E \cap X$ has interior points in X , that is, $P = \overset{\circ}{P} \cup \partial P$, with $\overset{\circ}{P}$ the interior and ∂P the boundary of P in X . Let $J \in C^1(E, \mathbb{R})$, denote $K = \{u \in E : J'(u) = 0\}$, $J^c = \{u \in E : J(u) \leq c\}$, $K_c = \{u \in K : J(u) = c\}$, $c \in \mathbb{R}$.

Definition 2.1. We say that J satisfies Cerami condition (C), if for all $c \in \mathbb{R}$

- (i) Any bounded sequence $\{u_n\} \subset E$ satisfying $J(u_n) \rightarrow c$, $J'(u_n) \rightarrow 0$ possesses a convergent subsequence.
- (ii) There exist $\sigma, R, \beta > 0$ such that for any $u \in J^{-1}([c - \sigma, c + \sigma])$ with $\|u\| \geq R$, $\|J'(u)\| \|u\| \geq \beta$.

Definition 2.2 (see [3]). Let $M \subset X$ be an invariant set under σ . We say M is an admissible invariant set for J , if (a) M is the closure of an open set in X , that is, $M = \overset{\circ}{M} \cup \partial M$; (b) if $u_n = \sigma(t_n, v)$ for some $v \notin M$ and $u_n \rightarrow u$ in E as $t_n \rightarrow \infty$ for some $u \in K$, then $u_n \rightarrow u$ in X ; (c) if $u_n \in K \cap M$ such that $u_n \rightarrow u$ in E , then $u_n \rightarrow u$ in X ; (d) for any $u \in \partial M \setminus K$, $\sigma(t, u) \in \overset{\circ}{M}$ for $t > 0$.

In [5], we proved $J \in C^1(E, \mathbb{R})$ satisfies the deformation Lemma 2.3 under (PS) condition and assumption (Φ) : $K(J) \subset X$, $J'(u) = u - A(u)$ for $u \in E$, $A : X \rightarrow X$ is continuous. It turns out that the same lemma still holds if J satisfies (C), that is.

LEMMA 2.3. Assume $J \in C^1(E, \mathbb{R})$ satisfies (Φ) and (C) condition. Let $M \subset X$ be an admissible invariant set to the pseudo-gradient flow σ of J . Define $K_c^1 = K_c \cap \overset{\circ}{M}$, $K_c^2 = K_c \cap (X \setminus M)$ for some c . Assume $K_c \cap \partial M = \emptyset$, there exists $\delta > 0$ such that $(K_c^1)_{4\delta} \cap (K_c^2)_{4\delta} = \emptyset$, where $(K_c^i)_{4\delta} = \{u \in E : d_E(u, K_c^i) < 4\delta\}$ for $i = 1, 2$. Then there is $\varepsilon_0 > 0$, such that for any $0 < \varepsilon < \varepsilon_0$ and any compact subset $A \subset (J^{c+\varepsilon} \cap X) \cup M$, there is $\eta \in C([0, 1] \times X, X)$ such that

- (i) $\eta(t, u) = u$, if $t = 0$ or $u \notin J^{-1}([c - 3\varepsilon_0, c + 3\varepsilon_0]) \setminus (K_c^2)_\delta$;
- (ii) $\eta(1, A \setminus (K_c^2)_{3\delta}) \subset J^{c-\varepsilon} \cup M$, and $\eta(1, A) \subset J^{c-\varepsilon} \cup M$ if $K_c^2 = \emptyset$;
- (iii) $\eta(t, \cdot)$ is a homeomorphism of X for $t \in [0, 1]$;
- (iv) $J(\eta(\cdot, u))$ is nonincreasing for any $u \in X$;
- (v) $\eta(t, M) \subset M$ for any $t \in [0, 1]$;
- (vi) $\eta(t, \cdot)$ is odd, if J is even and M is symmetric about the origin.

Indeed, $\sigma > \varepsilon_0 > 0$ can be chosen small, where σ is from (ii) of (C), such that $\|J'(u)\|^2 / (1 + 2\|J'(u)\|) \geq 6\varepsilon_0 / \delta$, $\forall u \in J^{-1}([c - 3\varepsilon_0, c + 3\varepsilon_0]) \setminus (K_c)_\delta$.

In [3, 5], a version of symmetric mountain-pass theorem holds under (PS). (C) is weaker than (PS), but by above deformation Lemma 2.3, a version of “symmetric mountain-pass theorem” still follows.

THEOREM 2.4. Assume $J \in C^1(E, \mathbb{R})$ is even, $J(0) = 0$ satisfies (Φ) and $(C)_c$ condition for $c > 0$. Assume that P is an admissible invariant set for J , $K_c \cap \partial P = \emptyset$ for all $c > 0$, $E = \overline{\bigoplus_{j=1}^{\infty} E_j}$, where E_j are finite dimensional subspaces of X , and for each k , let $Y_k = \bigoplus_{j=1}^k E_j$ and $Z_k = \overline{\bigoplus_{j=k}^{\infty} E_j}$. Assume for each k there exist $\rho_k > \gamma_k > 0$, such that $\lim_{k \rightarrow \infty} a_k < \infty$, where $a_k = \max_{Y_k \cap \partial B_{\rho_k}(0)} J(x)$, $b_k = \inf_{Z_k \cap \partial B_{\gamma_k}(0)} J(x) \rightarrow \infty$ as $k \rightarrow \infty$. Then J has a sequence of critical

points $u_n \in X \setminus (P \cup (-P))$ such that $J(u_n) \rightarrow \infty$ as $n \rightarrow \infty$, provided $Z_k \cap \partial B_{\gamma_k}(0) \cap P = \emptyset$ for large k .

3. Proof of Theorem 1.1

PROPOSITION 3.1. *Under (f_1) – (f_3) and (f_4) , J satisfies the (C) condition.*

Proof. For all $c \in \mathbb{R}$, since Sobolev embedding $H^1(\Omega) \rightarrow L^2(\Omega)$ is compact, the proof of (i) in (C) is trivial.

About (ii) of (C) . If not, there exist $c \in \mathbb{R}$ and $\{u_n\} \subset H^1(\Omega)$ satisfying, as $n \rightarrow \infty$

$$J(u_n) \rightarrow c, \quad \|u_n\| \rightarrow \infty, \quad \|J'(u_n)\| \|u_n\| \rightarrow 0, \quad (3.1)$$

then we have

$$\lim_{n \rightarrow \infty} \int_{\Omega} \left(\frac{1}{2} f(x, u_n) u_n - F(x, u_n) \right) dx = \lim_{n \rightarrow \infty} \left(J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle \right) = c. \quad (3.2)$$

Denote $v_n = u_n / \|u_n\|$, then $\|v_n\| = 1$, that is, $\{v_n\}$ is bounded in $H^1(\Omega)$, thus for some $v \in H^1(\Omega)$, we get

$$\begin{aligned} v_n &\rightharpoonup v \quad \text{in } H^1(\Omega), \\ v_n &\rightarrow v \quad \text{in } L^2(\Omega), \\ v_n &\rightarrow v \quad \text{a.e. in } \Omega. \end{aligned} \quad (3.3)$$

If $v = 0$, as the similar proof in [2], define a sequence $\{t_n\} \in \mathbb{R}$:

$$J(t_n u_n) = \max_{t \in [0, 1]} J(t u_n). \quad (3.4)$$

If for some $n \in \mathbb{N}$, there is a number of t_n satisfying (3.4), we choose one of them. For all $m > 0$, let $\bar{v}_n = 2\sqrt{m}v_n$, it follows that

$$\lim_{n \rightarrow \infty} \int_{\Omega} F(x, \bar{v}_n) dx = \lim_{n \rightarrow \infty} \int_{\Omega} F(x, 2\sqrt{m}v_n) dx = 0. \quad (3.5)$$

Then for n large enough

$$J(t_n u_n) \geq J(\bar{v}_n) = 2m - \int_{\Omega} F(x, \bar{v}_n) dx \geq m, \quad (3.6)$$

that is, $\lim_{n \rightarrow \infty} J(t_n u_n) = +\infty$. Since $J(0) = 0$ and $J(u_n) \rightarrow c$, then $0 < t_n < 1$. Thus

$$\begin{aligned} &\int_{\Omega} \left(|\nabla(t_n u_n)|^2 + \alpha(t_n u_n)^2 \right) - \int_{\Omega} f(x, t_n u_n) t_n u_n \\ &= \langle J'(t_n u_n), t_n u_n \rangle = t_n \frac{d}{dt} \Big|_{t=t_n} J(t u_n) = 0. \end{aligned} \quad (3.7)$$

We see that

$$\begin{aligned}
& \int_{\Omega} \left(\frac{1}{2} f(s, t_n u_n) t_n u_n - F(x, t_n u_n) \right) dx \\
&= \frac{1}{2} \int_{\Omega} \left(|\nabla(t_n u_n)|^2 + \alpha(t_n u_n)^2 \right) - \int_{\Omega} F(x, t_n u_n) \\
&= J(t_n u_n) \rightarrow +\infty, \quad n \rightarrow \infty.
\end{aligned} \tag{3.8}$$

From above, we infer that

$$\begin{aligned}
& \int_{\Omega} \left(\frac{1}{2} f(s, u_n) u_n - F(x, u_n) \right) dx \\
&= \frac{1}{2} \int_{\Omega} G(x, u_n) dx \geq \frac{1}{2\theta} \int_{\Omega} G(x, t_n u_n) dx \\
&= \frac{1}{\theta} \int_{\Omega} \left(\frac{1}{2} f(s, t_n u_n) t_n u_n - F(x, t_n u_n) \right) dx \rightarrow +\infty, \quad n \rightarrow \infty,
\end{aligned} \tag{3.9}$$

which contradicts (3.2).

If $v \not\equiv 0$, by (3.1)

$$\int_{\Omega} \left(|\nabla u_n|^2 + \alpha u_n^2 \right) - \int_{\Omega} f(x, u_n) u_n = \langle J'(u_n), u_n \rangle = o(1), \tag{3.10}$$

that is,

$$1 - o(1) = \int_{\Omega} \frac{f(x, u_n) u_n}{|u_n|^2} dx = \left(\int_{v \neq 0} + \int_{v=0} \right) \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx. \tag{3.11}$$

For $x \in \Omega' := \{x \in \Omega : v(x) \neq 0\}$, we get $|u_n(x)| \rightarrow +\infty$. Then by (f_3)

$$\frac{f(x, u_n(x)) u_n(x)}{|u_n(x)|^2} |v_n(x)|^2 dx \rightarrow +\infty, \quad n \rightarrow \infty. \tag{3.12}$$

By using Fatou lemma, since $|\Omega'| > 0$ ($|\cdot|$ is the Lebesgue measure in \mathbb{R}^N),

$$\int_{v \neq 0} \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx \rightarrow +\infty, \quad n \rightarrow \infty. \tag{3.13}$$

On the other hand, by (f_3) , there exists $\gamma > -\infty$, such that $f(x, s)s/|s|^2 \geq \gamma$ for $(x, s) \in \Omega \times \mathbb{R}$. Moreover,

$$\int_{v=0} |v_n|^2 dx \rightarrow 0, \quad n \rightarrow \infty. \tag{3.14}$$

Now, there exists $\Lambda > -\infty$ such that

$$\int_{v=0} \frac{f(x, u_n) u_n}{|u_n|^2} |v_n|^2 dx \geq \gamma \int_{v=0} |v_n|^2 dx \geq \Lambda > -\infty, \tag{3.15}$$

together with (3.11) and (3.13), it is a contradiction.

This proves that J satisfies (C) . \square

PROPOSITION 3.2. *Under $(f_4)'$, then for $|t| \geq |s|$ and $ts \geq 0$, $G(x, t) \geq G(x, s)$, that is, (f_4) holds for $\theta = 1$.*

Proof. for $0 \leq s \leq t$,

$$\begin{aligned} G(x, t) - G(x, s) &= 2 \left[\frac{1}{2} (f(x, t)t - f(x, s)s) - (F(x, t) - F(x, s)) \right] \\ &= 2 \left[\int_0^t \frac{f(x, t)}{t} \tau d\tau - \int_0^s \frac{f(x, s)}{s} \tau d\tau - \int_s^t \frac{f(x, \tau)}{\tau} \tau d\tau \right] \\ &= 2 \left[\int_s^t \left(\frac{f(x, t)}{t} - \frac{f(x, \tau)}{\tau} \right) \tau d\tau + \int_0^s \left(\frac{f(x, t)}{t} - \frac{f(x, s)}{s} \right) \tau d\tau \right] \geq 0. \end{aligned} \quad (3.16)$$

In like manner, for $t \leq s \leq 0$, $G(x, t) - G(x, s) \geq 0$. \square

On $E := H^1(\Omega)$, let us define $P_E = \{u \in E : u(x) \geq 0, \text{ a.e. in } \Omega\}$, which is a closed convex cone. Let $X = C_v^1(\Omega)$, which is a Banach space and embedded densely in E . Set $P = P_E \cap X$, then P is a closed convex cone in X . Furthermore, $P = \overset{\circ}{P} \cup \partial P$ under the topology of X , that is, there exist interior points in X . We may define a partial order relation: $u, v \in X$, $u > v \Leftrightarrow u - v \in P \setminus \{0\}$, $u \gg v \Leftrightarrow u - v \in \overset{\circ}{P}$.

As the proof of those propositions in [5, Section 5], it turns out that condition Φ is satisfied and P is an admissible invariant set for J under (f_1) , (f_2) , and (C) condition.

Proof of Theorem 1.1. Let $E_i = \ker(-\Delta - \lambda_i)$, $Y_k = \bigoplus_{i=1}^k E_i$ and $Z_k = \bigoplus_{i=k}^{\infty} E_i$. It shows that J is continuously differentiable by (f_1) and satisfies the $(C)_c$ condition for every $c \in R$ by Proposition 3.1.

(1) As the proof of [7, Theorem 3.7(3)], there exists $\gamma_k > 0$ such that for $u \in Z_k$, $\|u\| = \gamma_k$, we have

$$b_k := \inf_{Z_k \cap \partial B_{\gamma_k}(0)} J(u) \rightarrow \infty, \quad k \rightarrow \infty. \quad (3.17)$$

(2) Since $\dim Y_k < +\infty$ and all norms are equivalent on the finite dimensional space, there exists $C_k > 0$, for all $u \in Y_k$, we get

$$\frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) = \frac{1}{2} \|u\|^2 \leq C_k \|u\|_2^2 \equiv C_k \int_{\Omega} |u|^2 dx. \quad (3.18)$$

Next, by (f_3) , there exists $R_k > 0$ such that $F(x, s) \geq 2C_k|s|^2$ for $|s| \geq R_k$. Take $M_k := \max\{0, \inf_{|s| \leq R_k} F(x, s)\}$, then for all $(x, s) \in \Omega \times \mathbb{R}$, we obtain

$$F(x, s) \geq 2C_k|s|^2 - M_k. \quad (3.19)$$

It follows from (3.18) and (3.19) that, for all $u \in Y_k$

$$\begin{aligned} J(u) &= \frac{1}{2} \int_{\Omega} (|\nabla u|^2 + \alpha u^2) - \int_{\Omega} F(x, u) \\ &\leq -C_k \|u\|_2^2 + M_k |\Omega| \leq -\frac{1}{2} \|u\|^2 + M_k |\Omega|, \end{aligned} \quad (3.20)$$

which implies that for ρ_k large enough ($\rho_k > \gamma_k$),

$$a_k := \max_{Y_k \cap \partial B_{\rho_k}(0)} J(u) \leq 0. \quad (3.21)$$

Moreover, for $k \geq 2$, $Z_k \cap P = \{0\}$. This can be seen by noting that for all $u \in P \setminus \{0\}$, $\int_{\Omega} u\phi_1(x)dx > 0$, while for $u \in Z_k$, $\int_{\Omega} u\phi_1(x)dx = 0$, where ϕ_1 is the first eigenfunction corresponding to λ_1 , which implies $Z_k \cap \partial B_{\gamma_k}(0) \cap P = \emptyset$.

By Theorem 2.4, J has a sequence of critical points $u_n \in X \setminus (P \cup (-P))$ such that $J(u_n) \rightarrow \infty$ as $n \rightarrow \infty$, that is, (1.1) has infinitely many nodal solutions. \square

Example 3.3. By Theorem 1.1, the following equation with $\alpha > 0$

$$\begin{aligned} -\Delta u + \alpha u &= 2u \log(1 + |u|), \quad x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0, \quad x \in \partial\Omega \end{aligned} \quad (3.22)$$

has infinitely many nodal solutions, while the result cannot be obtained by either [6, Theorem 9.12] or [8, Theorem 3.2].

References

- [1] T. Bartsch, *Critical point theory on partially ordered Hilbert spaces*, J. Funct. Anal. **186** (2001), no. 1, 117–152.
- [2] L. Jeanjean, *On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^N* , Proc. Roy. Soc. Edinburgh Sect. A **129** (1999), no. 4, 787–809.
- [3] S. Li and Z.-Q. Wang, *Ljusternik-Schnirelman theory in partially ordered Hilbert spaces*, Trans. Amer. Math. Soc. **354** (2002), no. 8, 3207–3227.
- [4] S. Liu, *Existence of solutions to a superlinear p -Laplacian equation*, Electron. J. Differential Equations **2001** (2001), no. 66, 1–6.
- [5] A. Qian and S. Li, *Multiple nodal solutions for elliptic equations*, Nonlinear Anal. **57** (2004), no. 4, 615–632.
- [6] P. H. Rabinowitz, *Minimax Methods in Critical Point Theory with Applications to Differential Equations*, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Rhode Island, 1986.
- [7] M. Willem, *Minimax Theorems*, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Massachusetts, 1996.
- [8] W. Zou, *Variant fountain theorems and their applications*, Manuscripta Math. **104** (2001), no. 3, 343–358.

Aixia Qian: Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China
 E-mail address: qianax@163.com

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br