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We solve boundary value problems for elliptic semilinear equations in which no asymp-
totic behavior is prescribed for the nonlinear term.
1. Introduction

Many authors (beginning with Landesman and Lazer [1]) have studied resonance prob-
lems for semilinear elliptic partial differential equations of the form

—Au—Au= f(x,u) inQ, u=0 onodQ, (1.1)
where Q) is a smooth bounded domain in R”, A, is an eigenvalue of the linear problem
—-Au=Au inQ, u=0 onodQ, (1.2)
and f(x,t) is a bounded Carathéodory function on Q X R such that
fx,t) — fe(x) ae.ast— +oo. (1.3)

Sufficient conditions were given on the functions f. to guarantee the existence of a solu-
tion of (1.1). (Some of the references are listed in the bibliography. They mention other
authors as well.)

In the present paper, we consider the situation in which (1.3) does not hold. In fact,
we do not require any knowledge of the asymptotic behavior of f(x,t) as || — co. As an
example, we have the following.

THEOREM 1.1. Assume that

sup F(x,v)dx < oo, (1.4)
veE(ly) I Q

where E(A¢) is the eigenspace of A and

Flx,1) = ﬂ Flxs)ds. (1.5)
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2 Semilinear problems with bounded nonlinear term
Assume also that if there is a sequence {uy} such that
[1Peui]| — oo, [[(T = Pe)uel| < C,
2| Fom)dr— b (16)
f(x,ur) — f(x) weakly in L*(Q),
where f(x) L E(A¢) and P is the projection onto E(A¢), then
bo < (f,u1) — By, (1.7)

where By = [ Wo(x)dx, Wo(x) = sup,[(Ae—1 — A¢)t? — 2F(x,t)], and u, is the unique solu-
tion of

—Au—MNu=f, ulE()). (1.8)
Then (1.1) has at least one solution. In particular, the conclusion holds if there is no sequence
satisfying (1.6).
A similar result holds if (1.4) is replaced by

inf F(x,v)dx > — 0. (1.9
vE€E(Ae) JQ

In proving these results we will make use of the following theorem [2].

TaeoreM 1.2. Let N be a closed subspace of a Hilbert space H and let M = N*. Assume
that at least one of the subspaces M, N is finite dimensional. Let G be a C'-functional on H
such that

my := inf supG(v+w) < oo,
WEMVEN

. 1.10
mg :=sup inf G(v+w) > —oo. ( )
veNWE
Then there are a constant ¢ € R and a sequence {u} C H such that
my<c<m;, G(u)—rc, G (ux)—D0. (1.11)

2. The main theorem

We now state our basic result. Let O be a domain in R”, and let A be a selfadjoint operator
on L?(Q) such that the following hold.
(A)

0.(A) C (0,00). (2.1)
(B) There is a function V(x) >0 in L?(Q)) such that multiplication by V is a compact

operator from D := D(|A|"?) to L' (Q).
(C)Ifue N(A)\ {0}, then u # 0 a.e. in Q.
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Let f(x,t) be a Carathéodory function on Q X R satisfying
(D)

| fo1)| < V(x). (2.2)

Let A(A) be the largest (smallest) negative (positive) point in 0(A), and define

Wo(x) := sup [At? — 2F(x,1)], (2.3)
t
Wi(x) := sup [2F(x,t) — A?], (2.4)
t
where
t
HMn;qu@¢. (2.5)
0
Note that (D) implies
2
SVEPAS Wl Wi < Lo (2.6)
We also assume
(E)
sup F(x,v)dx < oo. (2.7)
vEN(A)JQ
(F) If there is a sequence {uy} C D such that
[|Pouk|| — oo, [|(I — Po)ug|| < const,
(2.8)

ZL)F(x,uk)dx — by, f(x,ux) — f(x) weakly in L*(Q),

where f(x) € R(A) and Py is the projection of D onto N(A), then by < (f,u;) — By, where
By = | Wo(x)dx and u is the unique solution of

Au=f, ueR(A). (2.9)

We have the following.

THEOREM 2.1. Under hypotheses (A)—(F), there is at least one solution of
Au= f(x,u), ueD. (2.10)
Proof. We begin by letting
N =@« oN(A-1), N=N &N(A), M=N*nD, M=M &N(A). (2.11)
By hypothesis (A), N, N(A), and N are finite dimensional, and

D=M&N =M &N. (2.12)
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It is easily verified that the functional
G(u) := (Au,u) J F(x,u (2.13)
is continuously differentiable on D. We take
lulld := (1Alu,u) +|[Poul| (2.14)
as the norm squared on D. We have
(G'(u),v) =2(Au,v) = 2(f (x,u),v), u,v€D. (2.15)

Consequently (2.10) is equivalent to

G (u)=0, uebD. (2.16)

Note that
(Av,v) <Alvl’, veN/, (2.17)
Mwl? < (Aw,w), we M. (2.18)

By hypothesis (D), (2.5), and (2.13),
Gv) <AlvIP+2[IVI - vl — —oo as [yl — oo, vEN'. (2.19)

Forw € M,wewritew = y+w', y € N(A),w € M. Since |F(x,w) — F(x,y)| < V(x)|w'|
by (D) and (2.5), we have

G(w) = Aw'||> - 2JF(x,y)dx =20VI- W'l (2.20)

In view of (E), (2.19) and (2.20) imply

inf G > —oo, supG < oo, (2.21)
M N

We can now apply Theorem 1.2 to conclude that there is a sequence satisfying (1.11). Let
Uk = vk + Wk +pryk> vk EN', wp € M, yi € N(A), ||yl =1, px = 0. (2.22)
We claim that
l|ukl|p < C. (2.23)
To see this, note that (1.11) and (2.15) imply

(Aug,h) = (f (x,ux),h) = o(llAll). (2.24)
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Taking h = vy, we see that ||vkl|> = O(|lvkll) in view of (2.17) and (D). Thus [[vllp is
bounded. Similarly, taking i = wy, we see that [|wk|[p < C. Suppose

Pk — 0. (2.25)

There is a renamed subsequence such that yx — y in N(A). Clearly [ y|l = 1. Thus by
hypothesis (D), y # 0 a.e. This means that [|pxyx|l — co. Hence (2.8) holds. Let u}, = v +
wk € N(A)* = R(A). Then |lu;llp < C. Thus there is a renamed subsequence such that
u;, — u; weakly in D. By hypothesis (B), there is a renamed subsequence such that Vi —
Vuy strongly in L'(Q)). Since V(x) > 0, there is another renamed subsequence such that
u;, — uy a.e. in Q. On the other hand, since fi(x) = f(x, ux(x)) is uniformly bounded in
L2(Q) by hypothesis (D), there is an f(x) € L*(Q) such that for a subsequence

fi(x) — f(x) weakly in L*(Q). (2.26)
Since
(Aup,h) = (fi(x),h) = o(llkllp), heD, (2.27)

we see in the limit that ; is a solution of (2.9), and consequently that f € R(A). More-
over, we see by (2.27) that

(Alug —wr],h) = (fk = f-h) = o(llklp), heD. (2.28)

Write u; = v; +wy, and take h successively equal to v — v; and wx — wy. Then

[lvie =l = 211V Ivi = w111, +o(llvi = villp),

5 (2.29)
llwie = willp, < 2|V [wi = wi ], +o([[wk — willp).
Hence u;, — u; in D. Consequently,
(Auotne) = (Atioti) = (fioit) +o(l])) — (o), (2:30)
ZJF(x,uk)dx= (Aug,ux) — G(ux) — (fou) — ¢ (2.31)
where my < ¢ < m;. By (2.3)
Gv) < (Av,v) —=AllvlI*+By, veN'. (2.32)

Thus m; < By. Consider first the case m; < By. Then (2.31) implies by = (f,u1) — ¢, and
consequently, my < (f,u1) — by < my < By. Thus by > (f,u;) — By, contradicting (1.7).
This shows that the assumption (2.25) is not possible. Consequently (2.23) holds, and we
have a renamed subsequence such that u; — u strongly in D and a.e. in Q. It now follows
from (2.27) that

(Au,h) = (f(x,u),h), heD, (2.33)
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showing that (2.10) indeed has a solution. Assume now that m; = By. Let v be a maximiz-
ing sequence in N” such that G(vx) — my. By (2.19), llvkllp < C, and there is a renamed
subsequence such that v — vy in N'. By continuity G(vk) — G(vp). Hence G(vy) = m; =

Bo. Thus

Aol <2 [ B v0)de+ By = (Avo, ) <1112

Consequently, (Avy,vy) = Allvoll? and Avy = Avy. We also have

JQ [2F (x,v0) — AV + Wo(x)]dx = 0.

In view of (2.3), the integrand is nonnegative. Hence

2F (x,v9) = Avg — Wo(x).

Let

D(u) = L} [2F (x,u) — Au?]dx.
Then

®O(u) = O(vy), uecDb,
(@' (u),y) =2(f (x,u),h) = 2M(u, h).

Thus

@' (vo) =21 (x,v0) —2Avo = 0.
This implies

Avg = Avg = f(x,v),

and vy is a solution of (2.10). This completes the proof.

THEOREM 2.2. In Theorem 2.1, replace hypotheses (E), (F) by
(E)

inf F(x,v)dx > —o0,
veN(A) JQ

(F’) if (2.8) hold with f(x) € R(A), then
bo > (f,ul) + B;.

Then (2.10) has at least one solution.

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



Martin Schechter 7

Proof. We modify the proof of Theorem 2.1. This time we use the second decomposition
in (2.12). For v € N we write v = v' + v, where v € N" and vy € N(A). By (D) and (2.5),

[ Fowde = [ Favdes VIV (2.43)
Q Q
Hence
Gv) <AV IP+20VI - VN - ZJF(X,Vo)dx, vEN. (2.44)
Consequently,
my =supG < oo, (2.45)
N
On the other hand
Gw) = Mwl? =2V - llwll, weM, (2.46)
so that
my = inf G > — oo, (2.47)
e

It now follows from Theorem 1.2 that there is a sequence {ux} C D satisfying (1.11). We
now follow the proof of Theorem 2.1 from (2.22) to (2.31). By (2.4),

Gw) = (Aw,w) =Alwl>-B;, weM, (2.48)

where B, = [, Wi(x)dx. Thus mg > —Bj. Assume first that my > —B;. Then (1.11) and
(2.31) imply

—Bi<my < (f,ul) — bo, (249)

contradicting (2.42). Thus (2.25) cannot hold, and we obtain a solution of (2.10) as in
the proof of Theorem 2.1. If my = —By, let {wx} C M’ be a minimizing sequence such
that wy — wo weakly in D, Vwy — Vwg in L'(Q) and a.e. in Q. By hypothesis (D),

1
[ 1FGowe) = FCewo)ldx = [ [ ewo+ 0w~ o)) (e — wo) dOdx — 0.
Q alo
(2.50)
Thus G is weakly lower semicontinuous, and
G(wp) < limG(wy) = mg — By. (2.51)

Hence

Awo = f(x,wp) < 2JF(x,wo) —B; < X||wo||2, (2.52)
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and we proceed as before to show that

Awy = Awg = f (x,w). (2.53)
The proof is complete. O
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