

Research Article

Solvability of Second-Order m -Point Boundary Value Problems with Impulses

Jianli Li and Sanhui Liu

Received 1 April 2007; Accepted 30 August 2007

Recommended by Pavel Drabek

By Leray-Schauder continuation theorem and the nonlinear alternative of Leray-Schauder type, the existence of a solution for an m -point boundary value problem with impulses is proved.

Copyright © 2007 J. Li and S. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The main purpose of this paper is to get results on the solvability of the following boundary value problem (BVP):

$$\begin{aligned} x''(t) &= f(t, x(t), x'(t)), \\ \Delta x'(t_k) &= b_k x'(t_k), \quad \Delta x(t_k) = c_k x(t_k), \\ x'(0) &= 0, \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i), \end{aligned} \tag{1.1}$$

where $\xi_i \in (0, 1)$, $i = 1, 2, \dots, m-2$, $0 < \xi_1 < \xi_2 < \dots < \xi_{m-2} < 1$, $a_i \in R$, $i = 1, 2, \dots, m-2$, $\sum_{i=1}^{m-2} a_i \neq 1$, $0 = t_0 < t_1 < t_2 < \dots < t_T < t_{T+1} = 1$.

Such problems without impulses effects have been solved before, for example, in [1–3]. But as far as we know the publication on the solvability of m -point problems with impulses is fewer [4]. Our main goal is to find condition for $f, b_k, c_k, 1 \leq k \leq T$, which guarantees the existence of at least one solution of problem (1.1). The proofs are based on the Leray-Schauder continuation theorem [5] and the nonlinear alternative of Leray-Schauder type [6].

2 Boundary Value Problems

In order to define the concept of solution for BVP (1.1), we introduce the following spaces of functions:

- (i) $PC[0,1] = \{u : [0,1] \rightarrow R, u \text{ is continuous at } t \neq t_k, u(t_k^+), u(t_k^-) \text{ exist, and } u(t_k^-) = u(t_k)\};$
- (ii) $PC^1[0,1] = \{u \in PC[0,1] : u \text{ is continuously differentiable at } t \neq t_k, u'(0^+), u'(t_k^+), u'(t_k^-) \text{ exist and } u'(t_k^-) = u'(t_k)\};$
- (iii) $PC^2[0,1] = \{u \in PC^1[0,1] : u \text{ is twice continuously differentiable at } t \neq t_k\}.$

Note that $PC[0,1]$ and $PC^1[0,1]$ are Banach spaces with the norms

$$\|u\|_\infty = \sup \{ |u(t)| : t \in [0,1] \}, \quad \|u\|_1 = \max \{ \|u\|_\infty, \|u'\|_\infty \}, \quad (1.2)$$

respectively.

Definition 1.1. The set \mathcal{F} is said to be quasiequicontinuous in $[0,c]$ if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in \mathcal{F}$, $k \in Z$, $t^*, t^{**} \in (t_{k-1}, t_k] \cap [0,c]$, and $|t^* - t^{**}| < \delta$, then $|x(t^*) - x(t^{**})| < \varepsilon$.

LEMMA 1.2 (compactness criterion [7]). *The set $\mathcal{F} \subset PC([0,c], R^n)$ is relatively compact if and only if one has the following:*

- (1) \mathcal{F} is bounded;
- (2) \mathcal{F} is quasiequicontinuous in $[0,c]$.

LEMMA 1.3 [7]. *Let $s \in [0, T)$, $c_k \geq 0$, α_k , $k = 1, \dots, p$, are constants and let $p, q \in PC(J, R)$, $x \in PC^1(J, R)$. If*

$$\begin{aligned} x'(t) &\leq p(t)x(t) + q(t), \quad t \in [s, T), \quad t \neq t_k, \\ x(t_k^+) &\leq c_k x(t_k) + \alpha_k, \quad t_k \in [s, T), \end{aligned} \quad (1.3)$$

then for $t \in [s, T]$,

$$\begin{aligned} x(t) &\leq x(s^+) \left(\prod_{s < t_k < t} c_k \right) \exp \left(\int_s^t p(u) du \right) \\ &\quad + \int_s^t \left(\prod_{u < t_k < t} c_k \right) \exp \left(\int_u^t p(\tau) d\tau \right) q(u) du \\ &\quad + \sum_{s < t_k < t} \left(\prod_{t_k < t_i < t} c_i \right) \exp \left(\int_{t_k}^t p(\tau) d\tau \right) \alpha_k. \end{aligned} \quad (1.4)$$

The result also holds if the above inequalities are reversed.

2. Main results

THEOREM 2.1. *Let $f : [0,1] \times R^2 \rightarrow R$ be a continuous function. Assume that there exist $p(t)$, $q(t)$, and $r(t) : [0,1] \rightarrow [0, \infty)$ such that*

$$|f(t, u, v)| \leq p(t)|u| + q(t)|v| + r(t) \quad (2.1)$$

for $t \in [0, 1]$ and all $(u, v) \in R^2$. Then the BVP (1.1) has at least one solution in $PC^1[0, 1]$ provided

$$Q + B < 1, \quad (2.2)$$

$$\left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{\left|1 - \sum_{i=1}^{m-2} a_i\right|}\right) \left(\frac{P}{1 - Q - B} + C\right) < 1, \quad (2.3)$$

where $P = \int_0^1 p(t)dt$, $Q = \int_0^1 q(t)dt$, $B = \sum_{k=1}^T |b_k|$, $C = \sum_{k=1}^T |c_k|$.

Proof. Let $Y = X = PC^1[0, 1]$. Define a linear operator $L : D(L) \subset X \rightarrow Y$ by setting

$$D(L) = \left\{x \in PC^2[0, 1], x'(0) = 0, x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i)\right\}, \quad (2.4)$$

and for $x \in D(L) : Lx = (x'', \Delta x'(t_k), \Delta x(t_k))$. We also define a nonlinear mapping $F : X \rightarrow Y$ by setting

$$(Fx)(t) = (f(t, x(t), x'(t)), b_k x'(t_k), c_k x(t_k)). \quad (2.5)$$

From the assumption on f , we see that F is a bounded mapping from X to Y . Next, it is easy to see that $L : D(L) \rightarrow Y$ is one-to-one mapping. Moreover, it follows easily using Lemma 1.2 that $L^{-1}F : X \rightarrow X$ is a compact mapping.

We note that $x \in PC^1[0, 1]$ is a solution of (1.1) if and only if x is a fixed point of the equation

$$x = L^{-1}Fx. \quad (2.6)$$

We apply the Leray-Schauder continuation theorem to obtain the existence of a solution for $x = L^{-1}Fx$.

To do this, it suffices to verify that the set of all possible solutions of the family of equations:

$$\begin{aligned} x''(t) &= \lambda f(t, x(t), x'(t)), \\ \Delta x'(t_k^+) &= \lambda b_k x'(t_k), \quad \Delta x(t_k) = \lambda c_k x(t_k), \\ x'(0) &= 0, \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i). \end{aligned} \quad (2.7)$$

Integrate (2.7) from 0 to t to obtain

$$x'(t) = \lambda \int_0^t f(s, x(s), x'(s)) ds + \lambda \sum_{0 < t_k < t} b_k x'(t_k). \quad (2.8)$$

4 Boundary Value Problems

By condition (2.1), we have

$$\begin{aligned} |x'(t)| &\leq \int_0^t [p(s)\|x\| + q(s)\|x'\| + r(s)]ds + \sum_{k=1}^T |b_k|\|x'\| \\ &\leq (Q+B)\|x'\| + P\|x\| + R_1, \end{aligned} \quad (2.9)$$

where $R_1 = \int_0^1 r(t)dt$. Thus,

$$\|x'\| \leq \frac{1}{1-Q-B} (P\|x\| + R_1). \quad (2.10)$$

Integrate (2.8) from t to 1 to obtain

$$\begin{aligned} &-x(t) \\ &= \lambda \left\{ \int_0^1 H(t,s)f(s,x(s),x'(s))ds + \int_t^1 \sum_{0 < t_k < s} b_k x'(t_k)ds + \sum_{t < t_k < 1} c_k x(t_k) \right. \\ &\quad \left. + \frac{1}{1 - \sum_{i=1}^{m-2} a_i} \sum_{i=1}^{m-2} a_i \left[\int_0^1 H(\xi_i, s)f(s, x(s), x'(s))ds + \int_{\xi_i}^1 \sum_{0 < t_k < s} b_k x'(t_k)ds + \sum_{\xi_i < t_k < 1} c_k x(t_k) \right] \right\}, \end{aligned} \quad (2.11)$$

where

$$H(t,s) = \begin{cases} 1-t, & 0 \leq s \leq t \leq 1, \\ 1-s, & 0 \leq t \leq s \leq 1. \end{cases} \quad (2.12)$$

So

$$\|x\| \leq \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) [(P+C)\|x\| + (Q+B)\|x'\| + R_1]. \quad (2.13)$$

Equations (2.10) and (2.13) imply

$$\|x\| \leq \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \left[\left(\frac{P}{1-Q-B} + C \right) \|x\| + R_1 \right]. \quad (2.14)$$

It follows from the assumption (2.3) that there is a constant M_1 independent of $\lambda \in [0, 1]$ such that $\|x\| \leq M_1$. Furthermore, by (2.10), there is a constant M_2 such that $\|x'\| \leq M_2$. It is now immediate that the set of solutions of the family of equations (2.7) is, a priori, bounded in $PC^1[0, 1]$ by a constant independent of $\lambda \in [0, 1]$. This completes the proof of the theorem.

THEOREM 2.2. *Let $f : [0, 1] \times \mathbb{R}^2 \rightarrow \mathbb{R}$. Assume that the following conditions hold:*

(H₁) $|f(t, u, v)| \leq q(t)w(\max\{|u|, |v|\})$ on $[0, 1] \times \mathbb{R}^2$ with $w > 0$ continuous and non-decreasing on $[0, \infty)$, $q(t) : [0, 1] \rightarrow [0, \infty)$ is continuous;

(H₂) $b_k \geq 0$, and

$$\begin{aligned} C \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) &< 1, \\ \sup_{r \geq 0} \frac{r}{w(r)} > M_3 = \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \left[1 - C \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \right]^{-1} Q, \end{aligned} \quad (2.15)$$

where $Q = \int_0^1 \prod_{0 < t_k < 1} (1 + b_k) q(s) ds$.

Then (1.1) has at least one solution.

Choose $\tilde{M} > 0$ such that

$$\frac{\tilde{M}}{w(\tilde{M})} > M_3. \quad (2.16)$$

To show that (1.1) has at least one solution, we consider the operator

$$x = \lambda L^{-1} Fx, \quad \lambda \in [0, 1], \quad (2.17)$$

which is equivalent to (2.7). Let $x \in PC^1[0, 1]$ be any solution of (2.7), from (H₁), we have

$$-q(t)w(\|x\|_1) \leq x''(t) \leq q(t)w(\|x\|_1). \quad (2.18)$$

Consider the inequalities

$$\begin{aligned} x''(t) &\leq q(t)w(\|x\|_1), \\ x'(t_k) &= (1 + b_k)x(t_k), \\ x'(0) &= 0, \\ x''(t) &\geq -q(t)w(\|x\|_1), \\ x'(t_k) &= (1 + b_k)x(t_k), \\ x'(0) &= 0. \end{aligned} \quad (2.19)$$

By Lemma 1.3, we have

$$\begin{aligned} x'(t) &\leq w(\|x\|_1) \int_0^t \prod_{0 < t_k < s} (1 + b_k) q(s) ds \\ &\leq Qw(\|x\|_1), \\ x'(t) &\geq -w(\|x\|_1) \int_0^t \prod_{0 < t_k < s} (1 + b_k) q(s) ds \\ &\geq -Qw(\|x\|_1). \end{aligned} \quad (2.20)$$

From (2.20), we can deduce

$$|x'(t)| \leq Qw(\|x\|_1), \quad (2.21)$$

6 Boundary Value Problems

and so

$$\|x'\| \leq Qw(\|x\|_1). \quad (2.22)$$

Using $x(t) = x(1) - \int_t^1 x'(s)ds - \sum_{t < t_k < 1} c_k x(t_k)$ and $x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i)$, we have

$$x(t) = -\frac{1}{1 - \sum_{i=1}^{m-2} a_i} \sum_{i=1}^{m-2} a_i \left[\int_{\xi_i}^1 x'(s)ds + \sum_{\xi_i < t_k < 1} c_k x(t_k) \right] - \int_t^1 x'(s)ds - \sum_{t < t_k < 1} c_k x(t_k), \quad (2.23)$$

which implies

$$|x(t)| \leq \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) (\|x'\| + C\|x\|), \quad (2.24)$$

and so

$$\begin{aligned} \|x\| &\leq \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \left[1 - C \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \right]^{-1} \|x'\| \\ &\leq \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \left[1 - C \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|} \right) \right]^{-1} Qw(\|x\|_1). \end{aligned} \quad (2.25)$$

Now, (2.22) together with (2.25) imply $\|x\|_1 \neq \widetilde{M}$. Set

$$U = \{u \in PC^1[0,1] : \|u\|_1 < \widetilde{M}\}, \quad K = E = PC^1[0,1], \quad (2.26)$$

then the nonlinear alternative of Leray-Schauder type [6] guarantees that $L^{-1}F$ has a fixed point, that is, (1.1) has a solution $x \in PC^1[0,1]$, which completes the proof. \square

3. Examples

Example 3.1. Consider the boundary value problem

$$\begin{aligned} x'' &= f(t, x, x'), \quad t \in [0, 1], t \neq \frac{1}{2}, \\ \Delta x'(t_k) &= \frac{1}{6}x'(t_k), \quad \Delta x(t_k) = \frac{1}{4}x(t_k), \quad t_k = \frac{1}{2}, \\ x'(0) &= 0, \quad x(1) = \frac{1}{2}x\left(\frac{1}{3}\right) - \frac{1}{3}x\left(\frac{2}{3}\right), \end{aligned} \quad (3.1)$$

where

$$f(t, u, v) = t^5 u + \frac{1}{2}t^3 v + t^2 [1 + \cos(u^{200} + v^{30})]. \quad (3.2)$$

It is easy to see that

$$|f(t, u, v)| \leq p(t)|u| + q(t)|v| + r(t) \quad (3.3)$$

with $p(t) = t^5$, $q(t) = (1/2)t^3$, $r(t) = 2t^2$. Clearly, $P = 1/6$, $Q = 1/8$, $B = 1/6$, $C = 1/4$, and

$$Q+B = \frac{7}{24} < 1, \quad \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|}\right) \left(\frac{P}{1-Q-B} + C\right) = \frac{33}{34} < 1. \quad (3.4)$$

By Theorem 2.1, (3.1) has at least one solution.

Example 3.2. Consider the boundary value problem

$$\begin{aligned} x'' &= f(t, x, x'), \quad t \in [0, 1], \quad t \neq \frac{1}{2}, \\ \Delta x'(t_k) &= x'(t_k), \quad \Delta x(t_k) = \frac{1}{3}x(t_k), \quad t_k = \frac{1}{2}, \\ x'(0) &= 0, \quad x(1) = \frac{1}{2}x\left(\frac{1}{3}\right) - \frac{1}{2}x\left(\frac{2}{3}\right), \end{aligned} \quad (3.5)$$

where

$$f(t, u, v) = e^{-t}(u^\alpha + v^\beta) + \mu e^{-t} \quad (3.6)$$

with $\alpha \in [0, 1]$, $\beta \in [0, 1]$, $\mu > 0$. It is easy to see that

$$|f(t, u, v)| \leq q(t)w(\max\{|u|, |v|\}) \quad (3.7)$$

with $q(t) = e^{-t}$, $w(s) = s^\alpha + s^\beta + \mu$. Clearly

$$\begin{aligned} C \left(1 + \frac{\sum_{i=1}^{m-2} |a_i|}{|1 - \sum_{i=1}^{m-2} a_i|}\right) &= \frac{2}{3} < 1, \\ \sup_{r \geq 0} \frac{r}{w(r)} &= \sup_{r \geq 0} \frac{r}{r^\alpha + r^\beta + \mu} = \infty, \end{aligned} \quad (3.8)$$

so (H_2) is true. Theorem 2.2 shows that (3.5) has at least one solution.

Acknowledgments

This work is supported by the NNSF of China (no. 10571050 and no. 60671066), a project supported by Scientific Research Fund of Hunan Provincial Equation Department and Program for Young Excellent Talents in Hunan Normal University.

References

- [1] C. P. Gupta, "Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation," *Journal of Mathematical Analysis and Applications*, vol. 168, no. 2, pp. 540–551, 1992.
- [2] C. P. Gupta, S. K. Ntouyas, and P. Ch. Tsamatos, "Solvability of an m -point boundary value problem for second order ordinary differential equations," *Journal of Mathematical Analysis and Applications*, vol. 189, no. 2, pp. 575–584, 1995.
- [3] R. Ma, "Existence of positive solutions for superlinear semipositone m -point boundary-value problems," *Proceedings of the Edinburgh Mathematical Society. Series II*, vol. 46, no. 2, pp. 279–292, 2003.

8 Boundary Value Problems

- [4] R. P. Agarwal and D. O'Regan, "A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem," *Applied Mathematics and Computation*, vol. 161, no. 2, pp. 433–439, 2005.
- [5] J. Mawhin, *Topological Degree Methods in Nonlinear Boundary Value Problems*, vol. 40 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1979.
- [6] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, *Positive Solutions of Differential, Difference and Integral Equations*, Kluwer Academic, Dordrecht, The Netherlands, 1999.
- [7] D. D. Bainov and P. S. Simeonov, *Impulsive Differential Equations: Periodic Solutions and Applications*, vol. 66 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, UK, 1993.

Jianli Li: Department of Mathematics, Hunan Normal University, Changsha 410081, Hunan, China
Email address: ljianli@sina.com

Sanhui Liu: Department of Mathematics, Hunan Normal University, Changsha 410081, Hunan, China; Department of Mathematics, Zhuzhou Professional Technology College, Zhuzhou 412000, Hunan, China

Email address: 000007295@sina.com

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk