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We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In partic-
ular, we give sufficient conditions for a real-valued function defined on the product of a
reflexive Banach space and a normed space to represent all bounded linear functionals of
the latter. We also give two applications to singular differential equations.
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1. Introduction

The following generalization of the Lax-Milgram theorem was proved recently by An et al.
in [1].

TueoreM 1.1. Let X be a reflexive Banach space over R, let {X,}nen be an increasing se-
quence of closed subspaces of X and V = {J,,cn Xn. Suppose that

A: XXV —R (1.1)
is a real-valued function on X X 'V for which the following hold:
(a) Ay = Alx,xx, is a bounded bilinear form, for all n € N;
(b) A(-,v) is a bounded linear functional on X, for allv € V;
(c) A is coercive on V, that is, there exists ¢ > 0 such that

A(v,v) = cllvl?, (1.2)

forallveV.
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Then, for each bounded linear functional v* on V, there exists x € X such that
Alx,v) = (v, v), (1.3)

forallve V.

In this paper our aim is to prove a linear extension and a nonlinear extension of
Theorem 1.1. In the linear case, we use a variant of a theorem due to Hayden [2, 3],
and thus manage to substitute the coercivity condition in (c) of the previous theorem
with a more general inf-sup condition. In the nonlinear case, we appropriately modify
the notion of type M operator and use a surjectivity result for monotone, hemicontinu-
ous, coercive operators. We also present two examples to illustrate the applicability of our
results.

All Banach spaces considered are over R. Given a Banach space X, X* will denote its
dual and (-,-) will denote their duality product. Moreover, if M is a subset of X, then
M+ will denote its annihilator in X* and if N is a subset of X*, then * N will denote its
preannihilator in X.

2. The linear case

To prove our main result for the linear case, we need the following lemma which is a
variant of [2, Theorem 12] and [3, Theorem 1].

LemMa 2.1. Let X be a reflexive Banach space, let Y be a Banach space and let
A:XxXY —R (2.1)

be a bounded, bilinear form satisfying the following two conditions:
(a) A is nondegenerate with respect to the second variable, that is, for each y € Y \ {0},
there exists x € X with A(x, y) # 0;
(b) there exists ¢ > 0 such that

sup |A(x,y)| = cllxll, (2.2)
lyli=1

forall x € X.
Then, for every y* € Y*, there exists a unique x € X with
Alxy) = (y*y), (2.3)
forallyeY.

Proof. Let T: X — Y* with (Tx,y) = A(x,y), for all x € X and all y € Y. Obviously ,T
is a bounded linear map. Since, by (b), |Tx|| = cllx|l, for all x € X, T is one to one. To
complete the proof, we need to show that T is onto.

Since A is nondegenerate with respect to the second variable, we have that

TTX)={yeY|A(xy) =0, Vxe X} = {0}. (2.4)
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Hence
(*TX))" =Y, (2.5)
and so by [4, Proposition 2.6.6],
TX)" = v*. (2.6)

Thus to show that T'maps X onto Y*, we need to prove that T(X) is w*-closed in Y*. To
see that, let {Tx)}1ea be a netin T(X) and let y* be an element of Y* such that

Tx) 22 y*. (2.7)

Without loss of generality, we may assume, using the special case of the Krein-Smulian
theorem on w*-closed linear subspaces (see [4, Corollary 2.7.12]), the proof of which
is originally due to Banach [5, Theorem 5, page 124] for the separable case and due to
Dieudonné [6, Theorem 23] for the general case, that {Tx)} ca is bounded. Thus, since
[|Tx|| = c|lx]| for all x € X, the net {x)},ea is also bounded. Hence, since X is reflexive,
there exist a subnet {x), },em and an element x of X such that {x, } ,em converges weakly

to x. Since T is w — w* continuous, Tx), Y. Tx. Hence Tx = y*, and so T(X) is w*-
closed. O

Remark 2.2. An alternative proof of the previous lemma can be obtained using the closed
range theorem.

We are now in a position to prove our main result for the linear case.

TaEOREM 2.3. Let X be a reflexive Banach space, let Y be a Banach space, let A be a directed
set, let {X)}aen be a family of closed subspaces of X, let {Y)}rea be an upwards directed
family of closed subspaces of Y, and let V = {J,cp Ya. Suppose that

A: XXV —R (2.8)

is a function for which the following hold:
(a) Ay = Alx,xy, is a bounded bilinear form, for all A € A;
(b) A(-,v) is a bounded linear functional on X, for allv € V;
(c) Ay is nondegenerate with respect to the second variable, for all A € A;
(d) there exists ¢ > 0 such that for all A € A,

sup A%, p)| = cllxll, (2.9)
yEYLyll=1

forall x € X.
Then, for each bounded linear functional v* on V, there exists x € X such that

Alx,v) = (v, v), (2.10)

forallve V.
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Proof. Let v¥ € V*, and for each A € A, let vj = v¥[y,. For all A € A, v is a bounded
linear functional on Y). By hypothesis, for all A € A, A, is a bounded bilinear form on
X) X Y) satisfying the two conditions of Lemma 2.1. Since for all A € A, X, is a reflexive
Banach space, we get that for each A € A, there exists a unique x; such that Ay(x),y) =
(vi,y), forall y € Y). Since A satisfies condition (d), we get that for all A € A,

clall< sup A py)| = sup [ (viy) | < V¥l (2.11)
yEYLlyll=1 yeLIlyll=1

So {x1}1en is a bounded net in X. Since X is reflexive, there exist a subnet {x), },em of
{x1}1ea and x in X such that {x), },em converges weakly to x.

We are going to prove that A(x,v) = (v*,v), for all v € V. Take v € V. Then there
exists some Ag € A with v € Y),. Since {x), } em is a subnet of {x3}1e, there exists some
o € M with A,, = L. Hence, since the family {Y)}1ea is upwards directed,

Ve, (2.12)
for all y = po. Thus, for all y = o,
Ay, (,,v) = (Vi) (2.13)
Therefore
: — (¥
plclerll\l/IA(x/\")V) = (v*,v). (2.14)

Since A(-,v) is a bounded linear functional on X,

limA(xAF,v) = A(x,v). (2.15)
UeM

Hence A(x,v) = (v¥,v). O
The following example illustrates the possible applicability of Theorem 2.3.

Example 2.4. Leta € C'(0,1) be a decreasing function with lim,_¢a(t) = c and a(t) > 0,
for all + € (0,1). We will establish the existence of a solution for the following Cauchy
problem:

(2.16)

where f € L*(0,1).

Let X = {u € H'(0,1) | u(0) = 0} be equipped with the norm |ull = (fol | |2dt) V2,
which is equivalent to the original Sobolev norm, and Y = L?(0,1). Note that X is a re-
flexive Banach space, being a closed subspace of H'(0,1). Let {a,}.en be a decreasing
sequence in (0,1) with lim,_ a, = 0. Define

X, ={ueH (ay1) | u(a,) =0}, Y, = L*(ay,1) (2.17)
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(we can consider X,, and Y, as closed subspaces of X and Y, resp., by extending their
elements by zero outside (a,,1)). Also let V = U,_; Y.
Let A: X X V — R be the bilinear map defined by

1 1

u'vdt+J a(tyuvdt. (2.18)
0

Au,v) :J

0
A is well defined and A(+,v) is a bounded linear functional on X for any v € V.
Let A, = Alx,xy,. A, be a bounded bilinear form since

|An(u,v) | < (1+ M) llullx, lIvIly,, (2.19)

where M, is the bound of a on [«y, 1]. It should be noted that A is not bounded on the
whole of X X V.

To show that A, is nondegenerate, let v € Y}, and assume that A, (u,v) =0 forall u €
X, that is,

1
J (v +a(t)u)vdt=0, VueX,. (2.20)
It is easy to see that the above implies that
1
| wrae=o, (2.21)

for any continuous function w, and therefore v = 0.
We next show that

sup  [An(u,v) | = llullx,. (2.22)

Ivll=1,veY,
Define T}, : X;, — Y, by (Tu,v) = An(u,v). Ty, is a well-defined bounded linear operator
and T,u = u’ +a(t)u. Hence

1
Tl = [+ ateyu]dr
Ay

1 1 1
=J Iu’lzdt+J az(t)lulzdt+J a(H) () dt (2.23)

Qn Qn Qn

= Jl |1,¢'|2d1‘+J(l (@*(t) —a' () lul*dt + a(1)u*(1) = ||ull%,

An An

since u(a,) = 0, a is decreasing and a(t) > 0 for all r € (0, 1).
All the hypotheses of Theorem 2.3 are hence satisfied and so if F € V* is defined by
F(v) = fol fvdt, then there exists u € X such that

A(u,v) =F(v), VveV. (2.24)

Thus u satisfies (2.16).
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3. The nonlinear case

We start by recalling some well-known definitions.

Definition 3.1. Let T : X — X* be an operator. Then T is said to be
(i) monotone if (Tx — Ty,x — y) = 0, forall x,y € X;

(i) hemicontinuous if for allx, y € X, T(x +ty) ETxast— 0%
(iii) coercive if

(Tx,x)
1m = 00
Ixl—co lx]|

(3.1)

We also need the following generalization of the notion of type M operator (for the
classical definition, see [7] or [8]).

Definition 3.2. Let X be a Banach space, let V be a linear subspace of X, and let
A: XXV —R (3.2)

be a function. Then A is said to be of type M with respect to V if for any net {v)} e in
V,x € X and v* € V'*;

@wn>x

(b) A(vy,v) — (v*,v), forallv € V;

(c) A(va,v1) — (v*,x), where v* is the extension of v* on the closure of V,
imply that A(x,v) = (v*,v), forallve V.

Our result is the following.

THEOREM 3.3. Let X be a reflexive Banach space, let A be a directed set, let {X)}rca be an
upwards directed family of closed subspaces of X, and let V = Jycp Xy Suppose that

A: XXV —R (3.3)

is a function for which the following hold:
(a) A is of type M with respect to V;
(b) hml\xHaoo A(X,X)/HX” = 005
(c) Ax(x,-) € X}, for all A € A and all x € X, where A, is the restriction of A on
Xy X Xy
(d) the operator Ty : Xy — X', defined by (Tax,y) = Ay(x,y) forall x, y € X, is mono-
tone and hemicontinuous for all A € A.
Then for each v* € V*, there exists x € X such that

Alx,v) = (v, v), (3.4)

forallveV.

Proof. As in the proof of Theorem 2.3, for each A € A, let v; = v*|x,. By the Browder-
Minty theorem (see [8, Theorem 26.A]), a monotone, coercive, and hemicontinuous op-
erator, from a real reflexive Banach space into its dual, is onto. Thus, by (b) and (d), for
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each A € A, the operator T) is onto and so there exists x) € X, such that
AA(X)“)/) = <V,ik’y>> (35)

for all y € X;. In particular A)(x),x1) = (v}, x1), and hence by (b), we get that the net
{x1}1en is bounded. Continuing as in the proof of Theorem 2.3 and applying the fact
that A is of type M with respect to V, we get the required result. O

Remark 3.4. It should be noted that since a crucial point in the above proofis the existence
and boundedness of the net {x)}ca, variants of the previous theorem could be obtained
using in (b) and (d) alternative conditions corresponding to other surjectivity results.

We now apply Theorem 3.3 to a singular Dirichlet problem.

Example 3.5. Let Q be abounded domain in RN. We consider the Dirichlet problem

N9 ou
- > — a(x)—) + f(x,u) =0 a.e.onQ,
u=0 onoQ,

where a € L}, (Q) and there exists ¢; >0 such that a(x) = ¢; a.e.on Q,and f: QX R -
R is a monotone increasing (with respect to its second variable for each fixed x € Q)
Carathéodory function, for which there exist h € L?(Q) and ¢, > 0 such that

| fu)| <h(x)+clul, VxeQ,ueR. (3.7)

We will show that if the above hypotheses on a and f hold, then problem (3.6) has a weak
solution, that is, that there exists a function u € H& (Q) with

J a(x)Vqudx+J flx,u)vdx =0, VveCy(Q). (3.8)
Q Q

To this end, let X = H{(Q), let {Q,,},cn be an increasing sequence of open subsets of
Q such that Q, € Q,.+; and

Ua.=0 (3.9)

and X,, = H}(Q,), for each n € N. Observe that we can consider each X, as a closed
subspace of X by extending its elements by zero outside Q,, and let

V=X, (3.10)

Finally, let

A: XXV —R (3.11)
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be the function defined by
Au,v) = Jﬂa(x)Vqudx+JQf(x,u)vdx. (3.12)
By a(x) = ¢; a.e. on Q, the monotonicity of f, and the growth condition (3.7), we have
A(u,u) = Jﬂa(x)l Vul|*dx+ L)f(x,u)udx

=J a(x)qu\zdx+f (f(x,u)—f(x,O))udx+[ f(x,0)udx (3.13)
Q Q Q
> ||VM||%2(Q) = Al 2o llull g -

Since by the Poincaré inequality || Vull12(q) is equivalent to the norm of X, it follows that
A is coercive.

Let A, = Alx,xx,. Then, since a € L}, .(Q), it follows that a € L*(Q,), for all n € N.
Combining this with (3.7), we have that

|An(u,v) | < c(u,n)llvllx,, (3.14)
where c(u,n) is a positive constant depending on # and u. So the operator
Tn: X0 — X, (3.15)
with (T,u,v)x, = An(u,v), is well defined for all n € N. Let
Tiw Ton : X — X (3.16)

be the operators defined by
(Tyuu,v)y = I a(x)VuVvdx, (T, v)y = J f(x,u)vdx. (3.17)
n Q, n Q,

Then T}, is a monotone bounded linear operator. Using the monotonicity of f, it is easy
to see that T, , is monotone. Finally, recalling that the Nemytskii operator corresponding
to f is continuous (see, e.g., [8, Proposition 26.7]) and that the embedding of X,, into
L?(Q,) is compact, we have that T, is hemicontinuous. Thus T,, = T}, + T>,, is mono-
tone and hemicontinuous for all n € N.

To finish the proof, let u, 2 4in X. Then since for allv € V,

u— J a(x)VuVvdx (3.18)
Q

is a bounded linear functional and, by the continuity of the Nemytskii operator and the
compactness of the embedding of X into L?(Q),

Jﬂf(x,un)vdx — sz(x,u)vdx, (3.19)
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for all v € V, we get that
Aun,v) — A(w,v), Vvev. (3.20)

Thus A is of type M with respect to V. Applying now Theorem 3.3 we get that there exists
u € X such that A(u,v) = 0 for all v € V. Observing that Cy’ (Q) is contained in V, we get
that u is the required weak solution of (3.6).
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