

Research Article

Extremal Solutions of Periodic Boundary Value Problems for First-Order Impulsive Integrodifferential Equations of Mixed-Type on Time Scales

Yongkun Li and Hongtao Zhang

Received 12 October 2006; Accepted 21 May 2007

Recommended by Ivan Kiguradze

We consider the existence of minimal and maximal solutions of periodic boundary value problems for first-order impulsive integrodifferential equations of mixed-type on time scales by establishing a comparison result and using the monotone iterative technique.

Copyright © 2007 Y. Li and H. Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The theory of calculus on time scales (see [1, 2] and references cited therein) was initiated by Stefan Hilger in his Ph.D. thesis in 1990 [3] in order to unify continuous and discrete analyses, and it has a tremendous potential for applications and has recently received much attention since his foundational work. In this paper, we will study the periodic boundary value problem for the first-order impulsive integrodifferential equations of mixed-type (PBVP):

$$\begin{aligned} u^\Delta(t) &= f(t, u(t), [Tu](t), [Su](t)), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ u(t_k^+) - u(t_k^-) &= I_k(u(t_k^-)), \quad k = 1, 2, \dots, p, \\ u(0) &= u(T), \end{aligned} \tag{1.1}$$

where \mathbb{T} is a time scale which has the subspace topology inherited from the standard topology on \mathbb{R} . For each interval J of \mathbb{R} , we denote by $J_{\mathbb{T}} = J \cap \mathbb{T}$, $f \in C[J_{\mathbb{T}} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}]$, $J = [0, T]$, $I_k \in C[\mathbb{R}, \mathbb{R}]$, where $u(t_k^+)$ and $u(t_k^-)$ represent right and left limits of $u(t)$ at $t = t_k$ ($k = 1, 2, \dots, p$) in the sense of time scales, and in addition, if t_k is right scattered, then $y(t_k^+) = y(t_k)$, whereas if t_k is left scattered, then $y(t_k^-) = y(t_k)$,

2 Boundary Value Problems

$$0 < t_1 < t_2 < \dots < t_k < \dots < t_p < T,$$

$$[Tu](t) = \int_0^t k(t,s)u(s)\Delta s, \quad [Su](t) = \int_0^T h(t,s)u(s)\Delta s, \quad (1.2)$$

$$k(t,s) \in C[D, \mathbb{R}^+], D = \{(t,s) \in J_{\mathbb{T}} \times J_{\mathbb{T}} : t \geq s\}, h(t,s) \in C[J_{\mathbb{T}} \times J_{\mathbb{T}}, \mathbb{R}^+], \mathbb{R}^+ = [0, +\infty), k_0 = \max\{k(t,s) : (t,s) \in D\}, h_0 = \max\{h(t,s) : (t,s) \in J_{\mathbb{T}} \times J_{\mathbb{T}}\}.$$

The study of impulsive dynamic equations on time scales has been initiated by Henderson [4], Benchohra et al. [5], and Atici and Biles [6]. Extremal solutions of PBVP for impulsive differential equations and difference equations has been studied by some authors (see [7, 8]). In this paper, we will obtain an inequality on time scales. And then, using this inequality, a comparison result is obtained. At last, we obtain an existence theorem of minimal and maximal solutions of PBVP (1.1) by using monotone iterative technique (see [7–9]).

2. Preliminaries and comparison principle

In this section, we will first recall some basic definitions and lemmas, which are used in what follows.

Let \mathbb{T} be a nonempty closed subset (time scale) of \mathbb{R} . The forward and backward jump operators $\sigma, \rho : \mathbb{T} \rightarrow \mathbb{T}$, and the graininess $\mu : \mathbb{T} \rightarrow \mathbb{R}^+$ are defined, respectively, by

$$\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}, \quad \rho(t) = \sup\{s \in \mathbb{T} : s < t\}, \quad \mu(t) = \sigma(t) - t. \quad (2.1)$$

A point $t \in \mathbb{T}$ is called left dense if $t > \inf \mathbb{T}$ and $\rho(t) = t$, left scattered if $\rho(t) < t$, right dense if $t < \sup \mathbb{T}$ and $\sigma(t) = t$, and right scattered if $\sigma(t) > t$. If \mathbb{T} has a left-scattered maximum m , then $\mathbb{T}^k = \mathbb{T} \setminus \{m\}$; otherwise $\mathbb{T}^k = \mathbb{T}$. If \mathbb{T} has a right-scattered minimum m , then $\mathbb{T}_k = \mathbb{T} \setminus \{m\}$; otherwise $\mathbb{T}_k = \mathbb{T}$.

A function $f : \mathbb{T} \rightarrow \mathbb{R}$ is right-dense continuous provided it is continuous at right-dense point in \mathbb{T} and its left-side limits exist at left-dense points in \mathbb{T} . If f is continuous at each right-dense point and each left-dense point, then f is said to be continuous function on \mathbb{T} .

For $y : \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}^k$, we define the delta derivative of $y(t)$, $y^{\Delta}(t)$ to be the number (if it exists) with the property that for a given $\varepsilon > 0$, there exists a neighborhood U of t such that

$$| [y(\sigma(t)) - y(s)] - y^{\Delta}(t)[\sigma(t) - s] | < \varepsilon |\sigma(t) - s| \quad (2.2)$$

for all $s \in U$.

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t , then y is continuous at t .

LEMMA 2.1 (see [1]). *Assume that $f, g : \mathbb{T} \rightarrow \mathbb{R}$ are delta differentiable at $t \in \mathbb{T}^k$. Then,*

$$(fg)^{\Delta}(t) = f^{\Delta}(t)g(t) + f(\sigma(t))g^{\Delta}(t) = f(t)g^{\Delta}(t) + f^{\Delta}(t)g(\sigma(t)). \quad (2.3)$$

Let y be right-dense continuous. If $Y^\Delta(t) = y(t)$, then we define the delta integral by

$$\int_a^t y(s)\Delta s = Y(t) - Y(a). \quad (2.4)$$

A function $r : \mathbb{T} \rightarrow \mathbb{R}$ is called regressive if

$$1 + \mu(t)r(t) \neq 0 \quad (2.5)$$

for all $t \in \mathbb{T}^k$.

If r is regressive function, then the generalized exponential function e_r is defined by

$$e_r(t,s) = \exp \left\{ \int_s^t \xi_{\mu(\tau)}(r(\tau))\Delta\tau \right\} \quad \text{for } s, t \in \mathbb{T} \quad (2.6)$$

with the cylinder transformation

$$\xi_h(z) = \begin{cases} \frac{\text{Log}(1+hz)}{h} & \text{if } h \neq 0, \\ z & \text{if } h = 0. \end{cases} \quad (2.7)$$

Let $p, q : \mathbb{T} \rightarrow \mathbb{R}$ be two regressive functions, we define

$$p \oplus q := p + q + \mu p q, \quad \ominus p := -\frac{p}{1 + \mu p}, \quad p \ominus q := p \oplus (\ominus q). \quad (2.8)$$

Then, the generalized exponential function has the following properties.

LEMMA 2.2 (see [1]). *Assume that $p, q : \mathbb{T} \rightarrow \mathbb{R}$ are two regressive functions, then*

- (i) $e_0(t,s) \equiv 1$ and $e_p(t,t) \equiv 1$;
- (ii) $e_p(\sigma(t),s) = (1 + \mu(t)p(t))e_p(t,s)$;
- (iii) $e_p(t,\sigma(s)) = e_p(t,s)/(1 + \mu(s)p(s))$;
- (iv) $1/e_p(t,s) = e_{\ominus p}(t,s)$;
- (v) $e_p(t,s) = 1/e_p(s,t) = e_{\ominus p}(s,t)$;
- (vi) $e_p(t,s)e_p(s,r) = e_p(t,r)$;
- (vii) $e_p(t,s)e_q(t,s) = e_{p \oplus q}(t,s)$;
- (viii) $e_p(t,s)/e_q(t,s) = e_{p \ominus q}(t,s)$.

LEMMA 2.3 [1]. *Let $r : \mathbb{T} \rightarrow \mathbb{R}$ be right-dense continuous and regressive, $a \in \mathbb{T}$, and $y_a \in \mathbb{R}$. The unique solution of the initial value problem*

$$y^\Delta(t) = r(t)y(t) + h(t), \quad y(a) = y_a, \quad (2.9)$$

is given by

$$y(t) = e_r(t,a)y_a + \int_a^t e_r(t,\sigma(s))h(s)\Delta s. \quad (2.10)$$

Throughout this paper, we assume that, for each $k = 1, \dots, p$, the points of impulse t_k are right dense. For convenience, we introduce the notation $PC[J_{\mathbb{T}}, \mathbb{R}] = \{u : J_{\mathbb{T}} \rightarrow \mathbb{R}, u(t)$

4 Boundary Value Problems

is continuous everywhere except some t_k at which $u(t_k^-)$ and $u(t_k^+)$ exist and $u(t_k^-) = u(t_k)$. Evidently, $PC[J_{\mathbb{T}}, \mathbb{R}]$ is a Banach space with norm $\|u\|_{PC} = \sup_{t \in J_{\mathbb{T}}} |u(t)|$. Let $J'_{\mathbb{T}} = J_{\mathbb{T}} \setminus \{t_1, t_2, \dots, t_p\}$, $C^1[J'_{\mathbb{T}}, \mathbb{R}] = \{u^\Delta(t) \text{ is continuous on } J'_{\mathbb{T}}\}$, $\Omega = PC[J_{\mathbb{T}}, \mathbb{R}] \cap C^1[J'_{\mathbb{T}}, \mathbb{R}]$, $\mathbb{T}^+ = \mathbb{T} \cap \mathbb{R}^+$, $PC^1[\mathbb{T}^+, \mathbb{R}] = PC[\mathbb{T}^+, \mathbb{R}] \cap C^1[\mathbb{T}^+, \mathbb{R}]$. A function $u \in \Omega$ is called a solution of PBVP (1.1) if it satisfies (1.1).

Next, we combine [10, 11] to obtain an inequality as follows.

LEMMA 2.4. *Assume that*

- (A₀) *the sequence $\{t_k\}$ satisfies $0 \leq t_0 < t_1 < t_2 < \dots < t_k < \dots$ with $\lim_{k \rightarrow +\infty} t_k = +\infty$,*
- (A₁) *$m \in PC^1[\mathbb{T}^+, \mathbb{R}]$ is right-dense continuous at t_k for $k = 1, 2, \dots$,*
- (A₂) *$\inf_{t \in J_{\mathbb{T}}} \{\mu(t)p(t)\} > -1$. For $k = 1, 2, \dots, t \geq t_0$,*

$$m^\Delta(t) \geq p(t)m(t) + q(t), \quad t \neq t_k, \quad m(t_k^+) \geq d_k m(t_k) + b_k, \quad (2.11)$$

where $p, q \in C(\mathbb{T}^+, \mathbb{R})$, $d_k \geq 0$, and b_k are real constants. Then,

$$\begin{aligned} m(t) &\geq m(t_0) \prod_{t_0 < t_k < t} d_k e_p(t, t_0) + \int_{t_0}^t \prod_{s < t_k < t} d_k e_p(t, \sigma(s)) q(s) \Delta s \\ &\quad + \sum_{t_0 < t_k < t} \prod_{t_k < t_j < t} d_j e_p(t, t_k) b_k. \end{aligned} \quad (2.12)$$

Proof. By condition (A₂), we know that $e_{\ominus p}(\sigma(t), t_0) \geq 0$ for $t \in [t_0, +\infty)_{\mathbb{T}}$. For the following inequality:

$$m^\Delta(t) \geq p(t)m(t) + q(t), \quad (2.13)$$

on multiplying $e_{\ominus p}(\sigma(t), t_0)$ and arranging the terms, we obtain

$$e_{\ominus p}(\sigma(t), t_0) m^\Delta(t) - p(t)m(t) e_{\ominus p}(\sigma(t), t_0) \geq e_{\ominus p}(\sigma(t), t_0) q(t), \quad (2.14)$$

which is the same as

$$(e_{\ominus p}(t, t_0) m(t))^\Delta \geq e_{\ominus p}(\sigma(t), t_0) q(t). \quad (2.15)$$

Integrating (2.15) from t_0 to t_1 , then

$$e_{\ominus p}(t_1, t_0) m(t_1) \geq m(t_0) + \int_{t_0}^{t_1} e_{\ominus p}(\sigma(s), t_0) q(s) \Delta s. \quad (2.16)$$

Again integrating (2.15) from t_1 to t , where $t \in (t_1, t_2]$, then

$$\begin{aligned} e_{\ominus p}(t, t_0) m(t) &\geq e_{\ominus p}(t_1, t_0) m(t_1^+) + \int_{t_1}^t e_{\ominus p}(\sigma(s), t_0) q(s) \Delta s \\ &\geq e_{\ominus p}(t_1, t_0) (d_1 m(t_1) + b_1) + \int_{t_1}^t e_{\ominus p}(\sigma(s), t_0) q(s) \Delta s \\ &\geq d_1 \left(m(t_0) + \int_{t_0}^{t_1} e_{\ominus p}(\sigma(s), t_0) q(s) \Delta s \right) + b_1 e_{\ominus p}(t_1, t_0) \\ &\quad + \int_{t_1}^t e_{\ominus p}(\sigma(s), t_0) q(s) \Delta s, \end{aligned} \quad (2.17)$$

that is,

$$m(t) \geq m(t_0) d_1 e_p(t, t_0) + \int_{t_0}^t \prod_{s < t_k < t} d_k e_p(t, \sigma(s)) q(s) \Delta s + b_1 e_p(t, t_1). \quad (2.18)$$

Repeating the above procession for $t \in [t_0, +\infty)_{\mathbb{T}}$, we have

$$\begin{aligned} m(t) &\geq m(t_0) \prod_{t_0 < t_k < t} d_k e_p(t, t_0) + \int_{t_0}^t \prod_{s < t_k < t} d_k e_p(t, \sigma(s)) q(s) \Delta s \\ &\quad + \sum_{t_0 < t_k < t} \prod_{t_k < t_j < t} d_j e_p(t, t_k) b_k. \end{aligned} \quad (2.19)$$

Thus the proof of Lemma 2.4 is complete. \square

The following comparison result plays an important role in this paper.

LEMMA 2.5. *Let $t_0 = 0$, $t_{p+1} = T$. Assume that $u \in \Omega$ satisfies*

$$\begin{aligned} u^\Delta(t) &\geq -a(t)u(t) - b(t)[Tu](t) - c(t)[Su](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ u(t_k^+) - u(t_k) &\geq -L_k u(t_k), \quad k = 1, 2, \dots, p, \\ u(0) &\geq u(T), \end{aligned} \quad (2.20)$$

where $a, b, c \in C[J_{\mathbb{T}}, \mathbb{R}^+]$, a is not identically vanishing, and $\sup_{t \in J_{\mathbb{T}}} \{\mu(t)a(t)\} < 1$, $0 \leq L_k < 1$ ($k = 1, 2, \dots, p$). If

$$(Bk_0 + Ch_0)e_{\ominus(-a)}(T, 0) \leq \frac{\left\{ \prod_{0 < t_k < T} (1 - L_k) \right\}^2}{\int_0^T \prod_{s < t_k < T} (1 - L_k) \Delta s} \quad (2.21)$$

with $B = \sup_{t \in J_{\mathbb{T}}} \{b(t) \int_0^t e_{\ominus(-a)}(\sigma(t), s) \Delta s\}$ and $C = \sup_{t \in J_{\mathbb{T}}} \{c(t) \int_0^T e_{\ominus(-a)}(\sigma(t), s) \Delta s\}$, then $u(t) \geq 0$ for $t \in J_{\mathbb{T}}$.

Proof. Let $p(t) = u(t)e_{\ominus(-a)}(t, 0)$ for $t \in J_{\mathbb{T}}$. Then $p \in \Omega$ satisfies

$$\begin{aligned} p^\Delta(t) &\geq -b(t) \int_0^t e_{\ominus(-a)}(\sigma(t), s) k(t, s) p(s) \Delta s \\ &\quad - c(t) \int_0^T e_{\ominus(-a)}(\sigma(t), s) h(t, s) p(s) \Delta s, \quad t \neq t_k, t \in J_{\mathbb{T}}, \end{aligned} \quad (2.22)$$

$$p(t_k^+) - p(t_k) \geq -L_k p(t_k), \quad k = 1, 2, \dots, p,$$

$$p(0) \geq e_{\ominus(-a)}(T, 0)p(T).$$

We now prove

$$p(t) \geq 0 \quad \text{for } t \in J_{\mathbb{T}}. \quad (2.23)$$

6 Boundary Value Problems

Assume that (2.23) is not true. Then, there are two cases:

- (a) there exists $t_1^* \in J_{\mathbb{T}}$ such that $p(t_1^*) < 0$ and $p(t) \leq 0$ for $t \in J_{\mathbb{T}}$;
- (b) there exists $t_1^*, t_2^* \in J_{\mathbb{T}}$ such that $p(t_1^*) < 0$ and $p(t_2^*) > 0$.

In case (a), (2.22) implies that

$$\begin{aligned} p^{\Delta}(t) &\geq 0, \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ p(t_k^+) - p(t_k) &\geq 0, \quad k = 1, 2, \dots, p. \end{aligned} \tag{2.24}$$

This means that $p(t)$ is nondecreasing in $J_{\mathbb{T}}$; therefore,

$$\begin{aligned} p(0) &\leq p(t_1^*) < 0, \\ p(0) &\leq p(T) \leq 0, \end{aligned} \tag{2.25}$$

which contradicts $p(T) \leq e_{\Theta(-a)}(T, 0)p(0) < 0$.

In case (b) let $\sup_{t \in J_{\mathbb{T}}} p(t) = \lambda$. Then, $\lambda > 0$ and there exists $t_i < t_0^* \leq t_{i+1}$ for some i such that $p(t_0^*) = \lambda$ or $p(t_i^+) = \lambda$. We may assume that $p(t_0^*) = \lambda$ (since, in case of $p(t_i^+) = \lambda$, the proof is similar). From (2.22), we have

$$\begin{aligned} p^{\Delta}(t) &\geq -\lambda k_0 b(t) \int_0^t e_{\Theta(-a)}(\sigma(t), s) \Delta s - \lambda h_0 c(t) \int_0^T e_{\Theta(-a)}(\sigma(t), s) \Delta s \\ &\geq -\lambda(Bk_0 + Ch_0), \quad t \neq t_k, t \in J_{\mathbb{T}}. \end{aligned} \tag{2.26}$$

For $t \in [t_0^*, T]_{\mathbb{T}}$, $k = i+1, i+2, \dots, p$,

$$p^{\Delta}(t) \geq -\lambda(Bk_0 + Ch_0), \quad t \neq t_k, \quad p(t_k^+) \geq (1 - L_k)p(t_k). \tag{2.27}$$

By Lemma 2.4, we have

$$p(t) \geq p(t_0^*) \prod_{t_0^* < t_k < t} (1 - L_k) + \int_{t_0^*}^t \prod_{s < t_k < t} (1 - L_k) (-\lambda(Bk_0 + Ch_0)) \Delta s. \tag{2.28}$$

Let $t = T$ in (2.28), then

$$p(T) \geq \lambda \prod_{t_0^* < t_k < T} (1 - L_k) - \lambda(Bk_0 + Ch_0) \int_{t_0^*}^T \prod_{s < t_k < T} (1 - L_k) \Delta s. \tag{2.29}$$

If $p(T) < 0$, then (2.29) gives

$$(Bk_0 + Ch_0) > \frac{\prod_{t_0^* < t_k < T} (1 - L_k)}{\int_{t_0^*}^T \prod_{s < t_k < T} (1 - L_k) \Delta s} \geq \frac{\prod_{0 < t_k < T} (1 - L_k)}{\int_0^T \prod_{s < t_k < T} (1 - L_k) \Delta s}, \tag{2.30}$$

which contradicts (2.21), so, we have $p(T) \geq 0$, and by (2.22), $p(0) \geq p(T)e_{-a}(T, 0) \geq 0$. Hence, $0 < t_1^* < T$. Let $t_j < t_1^* \leq t_{j+1}$ for some j . We first assume that $t_0^* < t_1^*$, so $i \leq j$. Let $t = t_1^*$ in (2.28), we have

$$0 > p(t_1^*) \geq \lambda \prod_{t_0^* < t_k < t_1^*} (1 - L_k) + \int_{t_0^*}^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) [-\lambda(Bk_0 + Ch_0)] \Delta s, \tag{2.31}$$

which gives

$$(Bk_0 + Ch_0) > \frac{\prod_{t_0^* < t_k < t_1^*} (1 - L_k)}{\int_{t_0^*}^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s} \geq \frac{\prod_{0 < t_k < T} (1 - L_k)}{\int_0^T \prod_{s < t_k < T} (1 - L_k) \Delta s}, \quad (2.32)$$

which contradicts (2.21).

Next we assume that $t_1^* < t_0^*$. So $j \leq i$. For $t \in J_{\mathbb{T}}$, $k = 1, 2, \dots, p$,

$$p^{\Delta}(t) \geq -\lambda(Bk_0 + Ch_0), \quad t \neq t_k, \quad p(t_k^+) \geq (1 - L_k) p(t_k). \quad (2.33)$$

By Lemma 2.4, we have

$$p(t) \geq p(0) \prod_{0 < t_k < t} (1 - L_k) + \int_0^t \prod_{s < t_k < t} (1 - L_k) (-\lambda(Bk_0 + Ch_0)) \Delta s. \quad (2.34)$$

Let $t = t_1^*$ in (2.34), then

$$0 > p(t_1^*) \geq p(0) \prod_{0 < t_k < t_1^*} (1 - L_k) - \lambda(Bk_0 + Ch_0) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s, \quad (2.35)$$

which implies

$$p(0) \prod_{0 < t_k < t_1^*} (1 - L_k) < \lambda(Bk_0 + Ch_0) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s. \quad (2.36)$$

By (2.22), we obtain

$$\lambda(Bk_0 + Ch_0) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s > e_{(-a)}(T, 0) p(T) \prod_{0 < t_k < t_1^*} (1 - L_k). \quad (2.37)$$

From (2.29), (2.37), we have

$$\begin{aligned} & \lambda(Bk_0 + Ch_0) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s \\ & > e_{(-a)}(T, 0) \prod_{0 < t_k < t_1^*} (1 - L_k) \left\{ \lambda \prod_{t_0^* < t_k < T} (1 - L_k) - \lambda(Bk_0 + Ch_0) \int_{t_0^*}^T \prod_{s < t_k < T} (1 - L_k) \Delta s \right\} \end{aligned} \quad (2.38)$$

or

$$\begin{aligned} & \prod_{0 < t_k < t_1^*} (1 - L_k) \prod_{t_0^* < t_k < T} (1 - L_k) < (Bk_0 + Ch_0) \prod_{0 < t_k < t_1^*} (1 - L_k) \int_{t_0^*}^T \prod_{s < t_k < T} (1 - L_k) \Delta s \\ & + (Bk_0 + Ch_0) e_{\ominus(-a)}(T, 0) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s. \end{aligned} \quad (2.39)$$

8 Boundary Value Problems

Hence

$$\begin{aligned}
\left\{ \prod_{0 < t_k < T} (1 - L_k) \right\}^2 &\leq \prod_{0 < t_k < t_1^*} (1 - L_k) \prod_{t_0^* < t_k < T} (1 - L_k) \prod_{0 < t_k < T} (1 - L_k) \\
&< (Bk_0 + Ch_0) \prod_{0 < t_k < t_1^*} (1 - L_k) \prod_{0 < t_k < T} (1 - L_k) \int_{t_0^*}^T \prod_{s < t_k < T} (1 - L_k) \Delta s \\
&\quad + (Bk_0 + Ch_0) e_{\ominus(-a)}(T, 0) \prod_{0 < t_k < T} (1 - L_k) \int_0^{t_1^*} \prod_{s < t_k < t_1^*} (1 - L_k) \Delta s \\
&< (Bk_0 + Ch_0) e_{\ominus(-a)}(T, 0) \int_0^T \prod_{s < t_k < T} (1 - L_k) \Delta s,
\end{aligned} \tag{2.40}$$

which contradicts (2.21).

Thus the proof of Lemma 2.5 is complete. \square

For any $\delta(t) \in PC[J_{\mathbb{T}}, \mathbb{R}]$ and $\eta \in \Omega$, $a, b, c \in C[J_{\mathbb{T}}, \mathbb{R}^+]$, a is not identically vanishing, and $0 \leq L_k < 1$ ($k = 1, 2, \dots, p$), $I_k \in C[\mathbb{R}, \mathbb{R}]$ ($k = 1, 2, \dots, p$), we consider the linear periodic boundary value problem for a linear impulsive integrodifferential equation(PBVP):

$$\begin{aligned}
u^\Delta(t) + a(t)u(t) &= -b(t)[Tu](t) - c(t)[Su](t) + \delta(t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\
u(t_k^+) - u(t_k^-) &= -L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k), \quad k = 1, 2, \dots, p, \\
u(0) &= u(T).
\end{aligned} \tag{2.41}$$

LEMMA 2.6. $u \in \Omega$ is a solution of PBVP (2.41) if and only if $u \in PC[J_{\mathbb{T}}, \mathbb{R}]$ is a solution of the following impulsive integral equation:

$$\begin{aligned}
u(t) &= \int_0^T G(t, s) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\
&\quad + \sum_{0 < t_k < T} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) (-L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k)), \quad t \in J_{\mathbb{T}},
\end{aligned} \tag{2.42}$$

where

$$G(t, s) = \frac{1}{1 - e_{(-a)}(T, 0)} \begin{cases} e_{(-a)}(t, \sigma(s)), & 0 \leq s < t \leq T, \\ e_{(-a)}(T, 0) e_{(-a)}(t, \sigma(s)), & 0 \leq t \leq s \leq T. \end{cases} \tag{2.43}$$

Proof. Assume that $u \in \Omega$ is a solution of (2.41). For the first equation of (2.41), using Lemma 2.3 on $t \in [0, t_1]_{\mathbb{T}}$, we have

$$u(t) = e_{(-a)}(t, 0)u(0) + \int_0^t e_{(-a)}(t, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s. \tag{2.44}$$

Then

$$u(t_1) = e_{(-a)}(t_1, 0)u(0) + \int_0^{t_1} e_{(-a)}(t_1, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s. \quad (2.45)$$

Again using Lemma 2.3 on $t \in (t_1, t_2]_{\mathbb{T}}$, then

$$\begin{aligned} u(t) &= u(t_1^+) e_{(-a)}(t, t_1) + \int_{t_1}^t e_{(-a)}(t, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\ &= u(t_1) e_{(-a)}(t, t_1) + \int_{t_1}^t e_{(-a)}(t, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\ &\quad + e_{(-a)}(t, t_1) (-L_1 u(t_1) + I_1(\eta(t_1)) + L_1 \eta(t_1)) \\ &= e_{(-a)}(t, 0)u(0) + \int_0^t e_{(-a)}(t, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\ &\quad + e_{(-a)}(t, t_1) (-L_1 u(t_1) + I_1(\eta(t_1)) + L_1 \eta(t_1)). \end{aligned} \quad (2.46)$$

Repeating the above procession for $t \in J_{\mathbb{T}}$, we have

$$\begin{aligned} u(t) &= u(0) e_{(-a)}(t, 0) + \int_0^t e_{(-a)}(t, \sigma(s)) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\ &\quad + \sum_{0 < t_k < t} e_{(-a)}(t, t_k) (-L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k)). \end{aligned} \quad (2.47)$$

Setting $t = T$ in (2.47) and using the boundary condition $u(0) = u(T)$, we obtain

$$\begin{aligned} u(0) &= \frac{1}{1 - e_{(-a)}(T, 0)} \left\{ \int_0^T e_{(-a)}(T, \sigma(s)) (\delta(s) - b(s)[Tu](s) - c(s)[Su](s)) \Delta s \right. \\ &\quad \left. + \sum_{0 < t_k < T} e_{(-a)}(T, t_k) (-L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k)) \right\}. \end{aligned} \quad (2.48)$$

Substituting (2.48) into (2.47), we see that $u \in PC[J_{\mathbb{T}}, \mathbb{R}]$ satisfies (2.42).

If $u \in PC[J_{\mathbb{T}}, \mathbb{R}]$ is a solution of (2.42), then $u \in C^1(J'_{\mathbb{T}}, R)$ and

$$\begin{aligned} u^{\Delta}(t) + a(t)u(t) &= -b(t)[Tu](t) - c(t)[Su](t) + \delta(t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ u(t_k^+) - u(t_k) &= -L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k), \quad k = 1, 2, \dots, p. \end{aligned} \quad (2.49)$$

Setting $t = 0, T$ in (2.42), respectively, we have

$$\begin{aligned} u(T) &= \frac{1}{1 - e_{(-a)}(T, 0)} \left\{ \int_0^T e_{(-a)}(T, \sigma(s)) (\delta(s) - b(s)[Tu](s) - c(s)[Su](s)) \Delta s \right. \\ &\quad \left. + \sum_{0 < t_k < T} e_{(-a)}(T, t_k) (-L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k)) \right\} = u(0). \end{aligned} \quad (2.50)$$

Therefore, $u \in \Omega$ is a solution of (2.41). Thus Lemma 2.6 is proved. \square

10 Boundary Value Problems

LEMMA 2.7. Assume that $a, b, c \in C[J_{\mathbb{T}}, \mathbb{R}^+]$ and $0 \leq L_k < 1$ ($k = 1, 2, \dots, p$), $I_k \in C[\mathbb{R}, \mathbb{R}]$ ($k = 1, 2, \dots, p$), $\delta \in PC[J_{\mathbb{T}}, \mathbb{R}]$, $\eta \in \Omega$, and the following inequality holds:

$$\frac{1}{1 - e_{(-a)}(T, 0)} \left(\int_0^T (k_0 s b(s) + T h_0 c(s)) \Delta s + \sum_{k=1}^p L_k \right) < 1. \quad (2.51)$$

Then PBVP (2.41) possesses a unique solution in Ω .

Proof. For any $u \in \Omega$, consider the operator F defined by the formula

$$\begin{aligned} (Fu)(t) &= \int_0^T G(t, s) \{ \delta(s) - b(s)[Tu](s) - c(s)[Su](s) \} \Delta s \\ &+ \sum_{0 < t_k < T} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) (-L_k u(t_k) + I_k(\eta(t_k)) + L_k \eta(t_k)), \quad t \in J_{\mathbb{T}}. \end{aligned} \quad (2.52)$$

Then $Fu \in \Omega$, that is, $F\Omega \subset \Omega$.

For every $u, v \in \Omega, t \in J_{\mathbb{T}}$, we have

$$\begin{aligned} |(Fu)(t) - (Fv)(t)| &\leq \int_0^T G(t, s) \{ b(s) |[Tu](s) - [Tv](s)| + c(s) |[Su](s) - [Sv](s)| \} \Delta s \\ &+ \sum_{0 < t_k < T} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) L_k |u(t_k) - v(t_k)| \\ &< \frac{1}{1 - e_{(-a)}(T, 0)} \left(\int_0^T (k_0 s b(s) + T h_0 c(s)) \Delta s + \sum_{k=1}^p L_k \right) \|u - v\|_{PC}. \end{aligned} \quad (2.53)$$

Hence

$$\|Fu - Fv\|_{PC} = \sup_{t \in J_{\mathbb{T}}} |(Fu)(t) - (Fv)(t)| \leq \alpha \|u - v\|_{PC}, \quad (2.54)$$

where

$$\alpha = \frac{1}{1 - e_{(-a)}(T, 0)} \left(\int_0^T (k_0 s b(s) + T h_0 c(s)) \Delta s + \sum_{k=1}^p L_k \right) < 1. \quad (2.55)$$

Thus the operator F is a contraction on Ω . That is, there is a unique element $u \in \Omega$ such that $u = Fu$. Therefore, u is the unique solution of PBVP (2.41). The proof of Lemma 2.7 is complete. \square

LEMMA 2.8. $u \in \Omega$ is a solution of PBVP (1.1) if and only if $u \in PC[J_{\mathbb{T}}, \mathbb{R}]$ is solution of the following integral equation:

$$\begin{aligned} u(t) &= \int_0^T G(t, s) [f(s, u(s), [Tu](s), [Su](s)) + a(s)u(s)] \Delta s \\ &+ \sum_{0 < t_k < 1} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) I_k(u(t_k)), \end{aligned} \quad (2.56)$$

where

$$G(t, s) = \frac{1}{1 - e_{(-a)}(T, 0)} \begin{cases} e_{(-a)}(t, \sigma(s)), & 0 \leq s < t \leq T, \\ e_{(-a)}(T, 0)e_{(-a)}(t, \sigma(s)), & 0 \leq t \leq s \leq T. \end{cases} \quad (2.57)$$

The proof of Lemma 2.8 is similar to that of Lemma 2.6 and we will omit it here.

3. Main results

In this section, we will use the monotone iterative technique to prove the existence of minimal and maximal solutions of the PBVP (1.1).

THEOREM 3.1. *Assume that the following conditions hold.*

(H₁) *There exist functions $u_0, v_0 \in \Omega$, $u_0(t) \leq v_0(t)$ for all $t \in J_{\mathbb{T}}$ such that*

$$\begin{aligned} u_0^{\Delta}(t) &\leq f(t, u_0(t), [Tu_0](t), [Su_0](t)), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ u_0(t_k^+) - u_0(t_k) &\leq I_k(u_0(t_k)), \quad k = 1, 2, \dots, p, \\ u_0(0) &\leq u_0(T), \\ v_0^{\Delta}(t) &\geq f(t, v_0(t), [Tv_0](t), [Sv_0](t)), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ v_0(t_k^+) - v_0(t_k) &\geq I_k(v_0(t_k)), \quad k = 1, 2, \dots, p, \\ v_0(0) &\geq v_0(T). \end{aligned} \quad (3.1)$$

(H₂) *The function $f \in C[J_{\mathbb{T}} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}]$ satisfies*

$$f(t, u_2, v_2, w_2) - f(t, u_1, v_1, w_1) \geq -a(t)(u_2 - u_1) - b(t)(v_2 - v_1) - c(t)(w_2 - w_1), \quad (3.2)$$

whenever $u_0(t) \leq u_1 \leq u_2 \leq v_0(t), [Tu_0](t) \leq v_1 \leq v_2 \leq [Tv_0](t), [Su_0](t) \leq w_1 \leq w_2 \leq [Sv_0](t)$, $t \in J_{\mathbb{T}}$, where for $a, b, c \in C[J_{\mathbb{T}}, \mathbb{R}^+]$, $\sup_{t \in J_{\mathbb{T}}} \{\mu(t)a(t)\} < 1$, a is not identically vanishing.

(H₃) *The function $I_k \in C[\mathbb{R}, \mathbb{R}]$ satisfies*

$$I_k(x) - I_k(y) \geq -L_k(x - y), \quad (3.3)$$

whenever $u_0(t_k) \leq y \leq x \leq v_0(t_k)$ ($k = 1, 2, \dots, p$), and $0 \leq L_k < 1$ ($k = 1, 2, \dots, p$).

Further, assume that the inequalities (2.21) and (2.51) hold. Then PBVP (1.1) has the minimal solution u^ and maximal v^* in $[u_0, v_0]$. Moreover, there exist monotone iteration sequences $\{u_n(t)\}, \{v_n(t)\} \subset [u_0, v_0]$ such that*

$$u_n(t) \rightarrow u^*(t), v_n(t) \rightarrow v^*(t) \quad \text{as } n \rightarrow \infty \text{ uniformly on } t \in J_{\mathbb{T}}, \quad (3.4)$$

12 Boundary Value Problems

where $\{u_n(t)\}, \{v_n(t)\}$ satisfy

$$\begin{aligned} u_n^\Delta(t) &= f(t, u_{n-1}(t), [Tu_{n-1}](t), [Su_{n-1}](t)) - a(t)(u_n - u_{n-1})(t) \\ &\quad - b(t)[T(u_n - u_{n-1})](t) - c(t)[S(u_n - u_{n-1})](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ u_n(t_k^+) - u_n(t_k) &= -L_k u_n(t_k) + I_k(u_{n-1}(t_k)) + L_k u_{n-1}(t_k), \quad k = 1, 2, \dots, p, \\ u_n(0) &= u_n(T) \quad (n = 1, 2, 3, \dots), \end{aligned} \tag{3.5}$$

$$\begin{aligned} v_n^\Delta(t) &= f(t, v_{n-1}(t), [Tv_{n-1}](t), [Sv_{n-1}](t)) - a(t)(v_n - v_{n-1})(t) \\ &\quad - b(t)[T(v_n - v_{n-1})](t) - c(t)[S(v_n - v_{n-1})](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ v_n(t_k^+) - v_n(t_k) &= -L_k v_n(t_k) + I_k(v_{n-1}(t_k)) + L_k v_{n-1}(t_k), \quad k = 1, 2, \dots, p, \\ v_n(0) &= v_n(T) \quad (n = 1, 2, 3, \dots), \\ u_0 \leq u_1 \leq \dots \leq u_n &\leq \dots \leq u^* \leq v^* \leq \dots \leq v_n \leq \dots \leq v_1 \leq v_0. \end{aligned} \tag{3.6}$$

Proof. For any $u_{n-1}, v_{n-1} \in \Omega$, by Lemma 2.7, we know that (3.5) has unique solution u_n and v_n in Ω , respectively.

In the following, we will show by induction that

$$u_{n-1} \leq u_n \leq v_n \leq v_{n-1}, \quad n = 1, 2, 3, \dots. \tag{3.7}$$

By (3.5) and the conditions (H₁), (H₂), and (H₃), we have

$$\begin{aligned} (u_1 - u_0)^\Delta(t) &\geq -a(t)(u_1 - u_0)(t) - b(t)[T(u_1 - u_0)](t) \\ &\quad - c(t)[S(u_1 - u_0)](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ (u_1 - u_0)(t_k^+) - (u_1 - u_0)(t_k) &\geq -L_k(u_1 - u_0)(t_k), \quad k = 1, 2, \dots, p, \\ (u_1 - u_0)(0) &\geq (u_1 - u_0)(T), \\ (v_0 - v_1)^\Delta(t) &\geq -a(t)(v_0 - v_1)(t) - b(t)[T(v_0 - v_1)](t) \\ &\quad - c(t)[S(v_0 - v_1)](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ (v_0 - v_1)(t_k^+) - (v_0 - v_1)(t_k) &\geq -L_k(v_0 - v_1)(t_k), \quad k = 1, 2, \dots, p, \\ (v_0 - v_1)(0) &\geq (v_0 - v_1)(T), \\ (v_1 - u_1)^\Delta(t) &\geq -a(t)(v_1 - u_1)(t) - b(t)[T(v_1 - u_1)](t) \\ &\quad - c(t)[S(v_1 - u_1)](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\ (v_1 - u_1)(t_k^+) - (v_1 - u_1)(t_k) &\geq -L_k(v_1 - u_1)(t_k), \quad k = 1, 2, \dots, p, \\ (v_1 - u_1)(0) &= (v_1 - u_1)(T). \end{aligned} \tag{3.8}$$

Thus, by Lemma 2.5, we have $u_0 \leq u_1 \leq v_1 \leq v_0$.

Now we assume that (3.7) is true for $i > 1$, that is, $u_{i-1} \leq u_i \leq v_i \leq v_{i-1}$, and we prove that (3.7) is true for $i+1$ too. In fact, by (3.5), and the conditions H_2 and H_3 , we have that

$$\begin{aligned}
(u_{i+1} - u_i)^\Delta(t) &\geq -a(t)(u_{i+1} - u_i)(t) - b(t)[T(u_{i+1} - u_i)](t) \\
&\quad - c(t)[S(u_{i+1} - u_i)](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\
(u_{i+1} - u_i)(t_k^+) - (u_{i+1} - u_i)(t_k) &\geq -L_k(u_{i+1} - u_i)(t_k), \quad k = 1, 2, \dots, p, \\
(u_{i+1} - u_i)(0) &= (u_{i+1} - u_i)(T), \\
(v_{i+1} - v_i)^\Delta(t) &\geq -a(t)(v_{i+1} - v_i)(t) - b(t)[T(v_{i+1} - v_i)](t) \\
&\quad - c(t)[S(v_{i+1} - v_i)](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\
(v_{i+1} - v_i)(t_k^+) - (v_{i+1} - v_i)(t_k) &\geq -L_k(v_{i+1} - v_i)(t_k), \quad k = 1, 2, \dots, p, \\
(v_{i+1} - v_i)(0) &= (v_{i+1} - v_i)(T), \\
(v_{i+1} - u_{i+1})^\Delta(t) &\geq -a(t)(v_{i+1} - u_{i+1})(t) - b(t)[T(v_{i+1} - u_{i+1})](t) \\
&\quad - c(t)[S(v_{i+1} - u_{i+1})](t), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\
(v_{i+1} - u_{i+1})(t_k^+) - (v_{i+1} - u_{i+1})(t_k) &\geq -L_k(v_{i+1} - u_{i+1})(t_k), \quad k = 1, 2, \dots, p, \\
(v_{i+1} - u_{i+1})(0) &= (v_{i+1} - u_{i+1})(T).
\end{aligned} \tag{3.9}$$

Thus, by Lemma 2.5, we have that $u_i \leq u_{i+1} \leq v_{i+1} \leq v_i$. So, by induction, (3.7) holds for any positive integer n .

It is easy to know by (3.7) that

$$u_0 \leq u_1 \leq \dots \leq u_n \leq \dots \leq v_n \leq \dots \leq v_1 \leq v_0. \tag{3.10}$$

Furthermore, by (3.5), and Lemma 2.6, we have

$$\begin{aligned}
u_n(t) &= \int_0^T G(t, s) \{ f(s, u_{n-1}(s), [Tu_{n-1}](s), [Su_{n-1}](s)) + a(s)u_{n-1}(s) \\
&\quad - b(s)[T(u_n - u_{n-1})](s) - c(s)[S(u_n - u_{n-1})](s) \} \Delta s \\
&\quad + \sum_{0 < t_k < T} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) (-L_k u_n(t_k) + I_k(u_{n-1}(t_k)) + L_k u_{n-1}(t_k)), \quad t \in J_{\mathbb{T}}, \\
v_n(t) &= \int_0^T G(t, s) \{ f(s, v_{n-1}(s), [Tv_{n-1}](s), [Sv_{n-1}](s)) + a(s)v_{n-1}(s) \\
&\quad - b(s)[T(v_n - v_{n-1})](s) - c(s)[S(v_n - v_{n-1})](s) \} \Delta s \\
&\quad + \sum_{0 < t_k < T} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) (-L_k v_n(t_k) + I_k(v_{n-1}(t_k)) + L_k v_{n-1}(t_k)), \quad t \in J_{\mathbb{T}}.
\end{aligned} \tag{3.11}$$

14 Boundary Value Problems

By (3.5) and the condition (H₂), we have

$$\begin{aligned}
& f(t, u_0(t), T[u_0](t), S[u_0](t)) - a(t)(v_0 - u_0)(t) \\
& \quad - b(t)T[(v_0 - u_0)](t) - c(t)S[(v_0 - u_0)](t) \\
& \leq u_n^\Delta(t) \leq f(t, v_0(t), T[v_0](t), S[v_0](t)) \\
& \quad + a(t)(v_0 - u_0)(t) + b(t)T[(v_0 - u_0)](t) + c(t)S[(v_0 - u_0)](t).
\end{aligned} \tag{3.12}$$

Thus, $\{u_n^\Delta(t)\}$ is uniformly bounded. Also, similarly to the above we can show that $\{v_n^\Delta(t)\}$ is uniformly bounded. Using Lemma 2.4 [12], we know that there exist u^*, v^* such that $\lim_{n \rightarrow \infty} u_n(t) = u^*(t), \lim_{n \rightarrow \infty} v_n(t) = v^*(t)$ uniformly on $J_{\mathbb{T}}$.

Taking limits as $n \rightarrow \infty$, by (3.11), we have that

$$\begin{aligned}
u^*(t) &= \int_0^T G(t, s) [f(s, u^*(s), [Tu^*](s), [Su^*](s)) + a(s)u^*(s)] \Delta s \\
&\quad + \sum_{0 < t_k < 1} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) I_k(u^*(t_k)), \\
v^*(t) &= \int_0^T G(t, s) [f(s, v^*(s), [Tv^*](s), [Sv^*](s)) + a(s)v^*(s)] \Delta s \\
&\quad + \sum_{0 < t_k < 1} G(t, t_k) e_{(-a)}(\sigma(t_k), t_k) I_k(v^*(t_k)).
\end{aligned} \tag{3.13}$$

From the above, by Lemma 2.8, we know that u^* and v^* are solutions of PBVP (1.1) in $[u_0, v_0]$.

Next we prove that u^* and v^* are the minimal and maximal solutions of PBVP (1.1) in $[u_0, v_0]$.

In fact, let $w \in [u_0, v_0]$ be a solution of PBVP(1.1), that is,

$$\begin{aligned}
w^\Delta(t) &= f(t, w(t), [Tw](t), [Sw](t)), \quad t \neq t_k, t \in J_{\mathbb{T}}, \\
w(t_k^+) - w(t_k) &= I_k(w(t_k)), \quad k = 1, 2, \dots, p, \\
w(0) &= w(T).
\end{aligned} \tag{3.14}$$

Using induction, suppose that there exists a positive integer n such that $u_n(t) \leq w(t) \leq v_n(t)$ on $J_{\mathbb{T}}$. Then,

$$\begin{aligned}
(w - u_{n+1})^\Delta(t) &= f(t, w(t), [Tw](t), [Sw](t)) \\
&\quad - \{f(t, u_n(t), [Tu_n](t), [Su_n](t)) - a(t)(u_n - u_{n+1})(t) \\
&\quad - b(t)[T(u_n - u_{n+1})](t) - c(t)[S(u_n - u_{n+1})](t)\} \\
&\geq -a(t)(w(t) - u_{n+1}(t)) - b(t)[T(w - u_{n+1})](t) \\
&\quad - c(t)[S(w - u_{n+1})](t), \quad t \neq t_k, t \in J_{\mathbb{T}},
\end{aligned}$$

$$\begin{aligned}
(w - u_{n+1})(t_k^+) &= (w - u_{n+1})(t_k) + I_k(w(t_k)) - [-L_k u_{n+1}(t_k) + I_k(u_n(t_k)) + L_k u_n(t_k)] \\
&\geq (1 - L_k)(w - u_{n+1})(t_k), \quad k = 1, 2, \dots, p, \\
(w - u_{n+1})(0) &= (w - u_{n+1})(T).
\end{aligned} \tag{3.15}$$

By Lemma 2.5, it follows that $w(t) \geq u_{n+1}(t)$ on $J_{\mathbb{T}}$. Similarly, we obtain $v_{n+1}(t) \geq w(t)$ on $J_{\mathbb{T}}$. Since $u_0(t) \leq w(t) \leq v_0(t)$ on $J_{\mathbb{T}}$, by induction we get

$$u_{n+1}(t) \leq w(t) \leq v_{n+1}(t), \quad n = 1, 2, 3, \dots \tag{3.16}$$

Thus, letting $n \rightarrow \infty$ in (3.16), we have that

$$u^* \leq w \leq v^*, \tag{3.17}$$

that is, u^* and v^* are the minimal and maximal solutions of the PBVP (1.1) in the interval $[u_0, v_0]$.

The proof of Theorem 3.1 is complete. \square

Acknowledgments

The authors thank the referees for their many thoughtful suggestions that lead to an improved exposition of manuscript. This work is supported by the National Natural Sciences Foundation of China.

References

- [1] M. Bohner and A. Peterson, *Dynamic Equations on Time Scales. An Introduction with Applications*, Birkhäuser, Boston, Mass, USA, 2001.
- [2] M. Bohner and A. Peterson, Eds., *Advances in Dynamic Equations on Time Scales*, Birkhäuser, Boston, Mass, USA, 2003.
- [3] S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,” *Results in Mathematics*, vol. 18, no. 1-2, pp. 18–56, 1990.
- [4] J. Henderson, “Double solutions of impulsive dynamic boundary value problems on a time scale,” *Journal of Difference Equations and Applications*, vol. 8, no. 4, pp. 345–356, 2002.
- [5] M. Benchohra, J. Henderson, S. K. Ntouyas, and A. Ouahab, “On first order impulsive dynamic equations on time scales,” *Journal of Difference Equations and Applications*, vol. 10, no. 6, pp. 541–548, 2004.
- [6] F. M. Atici and D. C. Biles, “First- and second-order dynamic equations with impulse,” *Advances in Difference Equations*, vol. 2005, no. 2, pp. 119–132, 2005.
- [7] X. Liu and D. Guo, “Periodic boundary value problems for impulsive integro-differential equations of mixed type in Banach spaces,” *Chinese Annals of Mathematics. Series B*, vol. 19, no. 4, pp. 517–528, 1998.
- [8] G. S. Ladde and S. Sathananthan, “Periodic boundary value problem for impulsive integro-differential equations of Volterra type,” *Journal of Mathematical and Physical Sciences*, vol. 25, no. 2, pp. 119–129, 1991.
- [9] L. H. Erbe and D. J. Guo, “Periodic boundary value problems for second order integrodifferential equations of mixed type,” *Applicable Analysis*, vol. 46, no. 3-4, pp. 249–258, 1992.
- [10] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, *Theory of Impulsive Differential Equations*, vol. 6 of *Series in Modern Applied Mathematics*, World Scientific, Teaneck, NJ, USA, 1989.

16 Boundary Value Problems

- [11] W. G. Kelley and A. C. Peterson, *Difference Equations. An Introduction with Applications*, Academic Press, Boston, Mass, USA, 1991.
- [12] Y. Xing, M. Han, and G. Zheng, “Initial value problem for first-order integro-differential equation of Volterra type on time scales,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 60, no. 3, pp. 429–442, 2005.

Yongkun Li: Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
Email address: yklie@ynu.edu.cn

Hongtao Zhang: Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
Email address: hatfly@126.com

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru