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1. Introduction

The purpose of this work is to study regularity theory related to partial differential equa-
tions with nonstandard growth conditions. The principal prototype that we have in mind
is the equation

div (p(x) | Vulx) |7 Vu(x)) =0, (1.1)
which is the Euler-Lagrange equation of the variational integral
I|Vu(x)|p(x)dx. (1.2)
Here p(-) is a measurable function satisfying

1 < inf p(x) < p(x) < sup p(x) < 0. (1.3)
xeR” xERN

If p(-) is a constant function, then we have the standard p-Laplace equation and p-
Dirichlet integral. This kind of variable exponent p-Laplace equation has first been con-
sidered by Zhikov [1] in connection with the Lavrentiev phenomenon for a Thermistor
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problem. By now there is an extensive literature on partial differential equations with
nonstandard growth conditions; for example, see [2—6].

It has turned out that regularity results for weak solutions of (1.1) do not hold without
additional assumptions on the variable exponent. In [1] Zhikov introduced a logarith-
mic condition on modulus of continuity. Variants of this condition have been expedient
tools in the study of maximal functions, singular integral operators, and partial differen-
tial equations with nonstandard growth conditions on variable exponent spaces. Under
this assumption Harnack’s inequality and local Holder continuity follow from Moser or
DeGiorgi-type procedure; see [7, 8]. See also [9]. An interesting feature of this theory is
that estimates are intrinsic in the sense that they depend on the solution itself. For exam-
ple, supersolutions are assumed to be locally bounded and Harnack-type estimates in [7]
depend on this bound.

In this work we are interested in possibly unbounded supersolutions of (1.1) and hence
the previously obtained estimates are not immediately available for us. The main nov-
elty of our approach is that instead of the boundedness we apply summability estimates
for supersolutions. Roughly speaking we are able to replace L*-estimates with certain
LP-estimates for small values of p. The argument is a modification of Moser’s iteration
scheme presented in [7]. However, the modification is not completely straightforward
and we have chosen to present all details here. As a by-product, we obtain refinements of
resultsin [7, 9].

After these technical adjustments we are ready for our main results. Solutions are
known to be continuous and hence it is natural to ask whether supersolutions are semi-
continuous. Indeed, using Harnack-type estimates we show that every supersolution has
a lower semicontinuous representative. Thus it is possible to study pointwise behavior of
supersolutions. Our main result states that the singular set of a supersolution is of zero
capacity. For the capacity theory in variable exponent spaces we refer to [10]. In fact we
study a slightly more general class of functions than supersolutions which corresponds to
the class of superharmonic functions in the case when p(-) is constant; see [11, 12].

2. Preliminaries

A measurable function p: R” — (1, c0) is called a variable exponent. We denote

pi=supp(x),  py=infp(x),  p'=supp(x), p = infplx) (2.1)

x€A xeR”

and assume that 1 < p~ < p* < oo,
Let Q be an open subset of R” with n > 2. The variable exponent Lebesgue space
LPO)(Q) consists of all measurable functions u defined on Q for which
J u(x) |7 da < oo, (2.2)
Q
The Luxemburg norm on this space is defined as

. u(x)
el oy = mf{/\ >0: L} -

plx)
dx < 1}. (2.3)
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Equipped with this norm LP)(Q) is a Banach space. The variable exponent Lebesgue
space is a special case of a more general Orlicz-Musielak space studied in [13]. For a
constant function p(-) the variable exponent Lebesgue space coincides with the standard
Lebesgue space.

The variable exponent Sobolev space WP()(Q) consists of functions u € LP)(Q)
whose distributional gradient Vu exists almost everywhere and belongs to LP(")(Q). The
variable exponent Sobolev space WP()(Q) is a Banach space with the norm

Nullspey = llull oy + 1 Vullpe). (2.4)

For basic results on variable exponent spaces we refer to [14]. See also [15].

A somewhat unexpected feature of the variable exponent Sobolev spaces is that smooth
functions need not be dense without additional assumptions on the variable exponent.
This was observed by Zhikov in connection with the so-called Lavrentiev phenomenon.
In [1] he introduced a logarithmic condition on modulus of continuity of the variable
exponent. Next we briefly recall a version of this condition. The variable exponent p is
said to satisfy a logarithmic Holder continuity property, or briefly log-Hélder, if there is
a constant C > 0 such that

p) —p(y)| = ——C (25)

~ —log(lx—yl)
for all x, y € Q such that |x — y| < 1/2. Under this condition smooth functions are dense
in variable exponent Sobolev spaces and there is no confusion to define the Sobolev space
with zero boundary values W&’p (')(Q) as the completion of Cy’(Q) with respect to the
norm [|ul[y p(.). We refer to [16, 17] for the details.

In this work we do not need any deep properties of variable exponent spaces. For
our purposes, one of the most important facts about the variable exponent Lebesgue
spaces is the following. If E is a measurable set with a finite measure, and p and q are
variable exponents satisfying q(x) < p(x) for almost every x € E, then L?(")(E) embeds
continuously into L1")(E). In particular this implies that every function u € Wh*()(Q)
also belongs to Wﬁ,’f“(Q) and to W5 (B), where B C Q) is a ball. For all these facts we
refer to [15, 14].

We say that a function u € Wlt’f (')(Q) is a weak solution (supersolution) of (1.1), if

Jﬂp(x) |V PP Vi Vodx = (2)0 (2.6)

for every test function ¢ € C§°(Q) (¢ = 0). When 1 < p~ < p* < oo the dual of LP()(Q)
is the space LP'()(Q) obtained by conjugating the exponent pointwise, see [14]. This to-
gether with our definition Wy “(Q) as the completion of Cg’(Q2) implies that we can
also test with functions ¢ € Wy ).

Our notation is rather standard. Various constants are denoted by C and the value
of the constant may differ even on the same line. The quantities on which the constants
depend are given in the statements of the theorems and lemmas. A dependence on p
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includes dependence on the log-Holder-constant of p. Note also that due to the local
nature of the estimates, the constants depend only on the values of p in some ball.
3. Harnack estimates

In this section we prove a weak Harnack inequality for supersolutions. Throughout this
section we write

Ve = U+ R%, (3.1)

where u is a nonnegative supersolution.

We derive a suitable Caccioppoli-type estimate with variable exponents. Our aim is
to combine this estimate with the standard Sobolev inequality. Thus we need a suitable
passage between constant and variable exponents. This is accomplished in the following
lemma.

LemMa 3.1. Let E be a measurable subset of R". For all nonnegative measurable functions
f and g defined on E,

f Fght dx < J fdx+J Fgh™ dx. (3.2)
E E E
Proof. The claim follows from an integration of the pointwise inequality

F)g)Pe < f(x) + f(x)g(x)P™. (3.3)

If p(x) = pg this is immediate. Otherwise we apply Young’s inequality with the exponent
p(x)/pg > 1. O

LemMmA 3.2 (Caccioppoli estimate). Suppose that u is a nonnegative supersolution in Byg.
Let E be a measurable subset of Byg and 1 € Cg’ (Bar) such that 0 <y < 1. Then for every
yo < 0 there is a constant C depending on p and y, such that the inequality

J szllvmpgnpémdxﬁ C (flpngz’l +Vg+p(x)—1|vmp(x))dx (3.4)
E

Bar

holds for every y < yo < 0 and a € R.

Proof. Let s = pj, . We want to test with the function ¥ = vaz*. To this end we show
that v € WOI’P (')(B4R). Since # has a compact support in Byg, it is enough to show that
v € WHPO)(Q). We observe that ¢ € LP()(Q) since |vk|#* < R®. Furthermore, we have

|Vy| < |yv%71;15Vu+vgs;15’1V11| < |y|R=V|Vul +sR¥|Vyl, (3.5)

from which we conclude that |Vy/| € LPO)(Q).
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Using the facts that u is a supersolution and y is a nonnegative test function we find
that

0= p() | Vut) 1" Vuw) - Ty dx
Bir
(3.6)
= J Py VulPOyevy! dx+J P(x)s| VulPD 21V - Vi d.
Bur

Bir
Since y is a negative number, this implies

[v0] P5, JB |Vul P9 vy dx < SJB P VulPO -2y =1y - Vidx. (3.7)

We denote the right-hand side of (3.7) by I. Since the left-hand side of (3.7) is nonnega-
tive, so is I. Using the e-version of Young’s inequality we obtain

ISSJ ()| Vul P11 || dx
Bagr

- g p)
1)\ P)-1 (vgﬁp(x) 1)/p(x)|v11|l7575/p (xH)
=s| ;) P&
e P
- ) 7= p () =1)/p() \ P )
+sp(x)('vu|”(") P v ) dx (3.8)
P
1 s—1
SS(*) J VPO g PO =00 iy
€ Bar

+s(s— l)sJ IVz,tIP(")qsvy1 dx.

Bur

By combining this with (3.7) we arrive at

ol pi J, 1TuPp s
(3.9)

1 s—1 - )
35<*> J vZﬁp(x) IIVﬂlP(x)ns—p(x)dx+s(s— 1)5J |Vu|p(x)ﬂsvg ldx.
’ B By
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By choosing

. |)’0|P§4R
E—mln{l,m (310)

we can absorb the last term in (3.9) to the left-hand side and obtain

s—1
J IVuIP(")nsvgldx<s<25(s_l)+l)
Bur |y0|pB4R

_ J 1/Kﬂf?(x)fl|V1/l|p(x) dx. (3.11)
|V0|PB4R Bar

Taking f = vzflff and ¢ = |Vu| in Lemma 3.1 and using inequality (3.11) we have the

desired estimate. O

In the proof of the Caccioppoli estimate we did not use any other assumption on the
variable exponent p except that 1 < p~ < p* < co. From now on we assume the logarith-
mic Holder continuity. This is equivalent to the following estimate:

|B| ) < (3.12)
where BEQ) is any ball; see for example [18].

The next two lemmas will be used to handle the right-hand side of the Caccioppoli
estimate.

LemMma 3.3. If the exponent p(-) is log-Holder continuous,
r P < Cro (3.13)

provided x € E C B,.

Proof. Forr > 1 we have r~?¥) < =P Suppose then that 0 < r < 1. Since E C B, implies
0SCE p < 0sCg, P, we obtain

rP®) < 7Pk < pm(0scep)p=pr < (0SB D) =PE < CpPE| (3.14)

where we used logarithmic Holder continuity in the last inequality. O
In the following lemma the barred integral sign denotes the integral average.

LEmMA 3.4. Let f be a positive measurable function and assume that the exponent p(-) is
log-Hdélder continuous. Then

; fP5 P dx < Cl flIThs T (3.15)

foranys>pp — pg.
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Proof. Let q = p; — pp . Holder’s inequality implies

1-q/s q/s
][ fPEy_PE,de E(J 1dx> (J fsdx)
B, " \ JB, B,

C 1-q/. q q
< " L,y < CIf s,

(3.16)

Again we used the logarithmic Hélder continuity in the last inequality. O

Later we apply Lemma 3.4 with f = u4'. In this case the upper bound written in terms
of uis

/( +r7 —,)
Clullf 5. (3.17)

Now we have everything ready for the iteration. We write

O(f,q,Br) = (][B fqu> " (3.18)

for a nonnegative measurable function f.

LEMMA 3.5. Assume that u is a nonnegative supersolution in Bag and let R < p <r < 3R.
Then the inequality

+ Piye/ 1Pl
® (1,8, B) < CVBI (1 + |B|) i/ (#) @(vl,%,Bp) (3.19)

holds for every 5 <0 and 1 < q < n/(n—1). The constant C depends on n, p, and the
L9%(Byr)-norm of u with s > pf . — pp,..

Proof. In Lemma 3.2 we take E = Byg and y = # — pp, + 1. Then y <1 - pp and thus

I vf*l’gm |VM|P’;4R ﬂPE;R dx<C (WPZRV/E*PEA;R + V:f’P§4R+P(x) | v11|P(X)) dx. (3.20)
Bar

Bar

Next we take a cutoff function # € Cg’(B,) with0 <5 < 1, = 11in By, and

Cr
R(r—p)

|Vy| < (3.21)

By Lemma 3.3 we have

Ph, _ P,
Mk sCR’P(’C)< d ) - sCR’PBm( ) (3.22)

r—p

r—p
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Using inequality (3.20) with this choice of 1 we have

J,

< CZI: |/3|P§4R Vf_P§4R | vu|P§4R ;717§4R dx + C][ V{)’T,]PEM*PEA,R | v1’]|p§4R dx
B, B,

PByp
dx

\Y% (‘V{j/pgm ]7P §4R/ p §4R )

< C|/3|P§4R J[ (17P§4R Vf7P§4R + Vf7PE4R+P(X) | V?’] ‘p(x)) dx+ CJ[ Vf”pgw Py |V17 |P§4R dx
B B,

i

sc(1+|/3|)"§4f<<][ qpawf’f’%dﬁ][ vf’P§4R+"(")|v;1|P(x>dx+]f v‘f|v,1|P§4Rdx).
B, r B,
(3.23)

Now the goal is to estimate each integral in the parentheses by
1/q
(][ v dx) . (3.24)
B,

The first integral can be estimated with Holder’s inequality. Since v, Phx < R~Ph, we have

e - 1/q - 1/q
ﬂpg‘*RVf pB4RdX < (:F vfli(ﬁ PB4R)dx) < R Psir (:l: V’liﬁdx> . (325)

B, B, B,

By (3.22), Holder’s inequality, and Lemma 3.4 for the second integral we have

—Ppp tP(X)
](B v[f Ppyptplx |v,1|P(x)dx

B 23 .
- CR_PB4R< r ) 4RJ: Vf PB4R+P(x)dx
r—p B,

. , (3.26)
p ’ e 1/q 1/q
< CR Pbar ( r ) " (:lt v;j (PG~ Paug) dx) (f vilﬁ dx)
r—p B, B,
L 1 )P g b\ T B\
<CR PBAR(E) (1+||V1||L’1y5(BfR) K ) (}[Brvl dx) .
Finally, for the third integral we have by Holder’s inequality,
_ . P, 1/q
J[ Vi | V| P dx < CRPoar <L> " (1[ VP dx) . (3.27)
B, r—p B,
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Now we have arrived at the inequality

][ ) \% (Vf/pm " Phan/ Phag ) ‘ PByp dx
B

nva - r Phyp 1/q
(ue 1) (1 ) R (L) (f )

r=p
(3.28)
By the Sobolev inequality
(n—1)/na 1/a
(1[ Iul"“/(”_l)dx) sCR(][ IVuI“dx) , (3.29)
B, B,
where u € W&’“(Br) and a = pgp,, and (3.28) we obtain
(n—1)/n _ N - = - (n—=1)/n
( Vfﬂ/(nfl) dx) < <C][ (Vf/pgm }’IPBZIR/quR)anm (n—1) dx)
Bp BV
= B/Poar ot Jp- Piyp
< CRPn | | V(o0 PP ) | dx (3.30)
B,
+ 23 1/q
<cuipne () (f fax)
r—p B,
The claim follows from this since f3 is a negative number. O

The next lemma is the crucial passage from positive exponents to negative exponents
in the Moser iteration scheme.

LEMMA 3.6. Assume that u is a nonnegative supersolution in Byg and s > pf — pg . Then
there exist constants qo > 0 and C depending on n, p, and L*(Bug)-norm of u such that

®(v1,q0,B3r) < CDP(v1,—q0,Bsr)- (3.31)

Proof. Choose a ball By, C Byg and a cutoff function # € Cg’(By,) such that # = 1 in B,
and |Vy| < C/r. Taking E = B, and y = 1 — pp_in Lemma 3.2 we have

J( | Viogv, |75 dx < C(][ vfﬁ' + ][ vf(x)fpg’ roP@ dx). (3.32)
Br BZr BZr
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Using Lemmas 3.3 and 3.4 and the estimate v, Pir < R=Ps, < p~Pi we have
][ | Viogv, | dx < C(r*PE, + r—péz,][ ¥ e dx)

" o (3.33)

< C( “Po -y PEy (1 +v ||ff4§4RpB4R)).

Let f = logv;. By the Poincaré inequality and the above estimate we obtain

:FB, S = fo [ dx =< (rPE, :FB, v/ dx) " (3.34)

PB4R Piyp

Vps,
< C(1+rPn P (14 nlls ™))

Note that pg > pp since B, C By, so that the right-hand side of (3.34) is bounded.

The rest of the proof is standard. Since (3.34) holds for all balls By, C Bag, by the John-
Nirenberg lemma there exist positive constants C; and C, depending on the right-hand
side of (3.34) such that

J( Gl ~forl dx < C,. (3.35)
Bsg

Using (3.35) we can conclude that

(][ Cf dx) <]( e COf dx) _ <][ eQ(f*ﬁs;R)dx) <][ e’cl(f’f“ak)dx>
Bsr Bsr Bsr Bsr

, (3.36)
< (][ eCilf = fo dx) < C%,
Bsgr
which implies that
/G 1/C
(f,,Fe) = (f, e
Bsr Bsr
~1/C
<co(f e (337)
Bsr
~1/C
:Cg/Q(][ vl_cldx> ,
Bsr
so that we can take qo = C;. O

Note that the exponent gy in Lemma 3.6 also depends on the L*(Bsg)-norm of u.
More precisely, the constant C; obtained from the John-Nirenberg lemma is a universal
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constant divided by the right-hand side of (3.34). Thus we have
C

- Phan—Phig
C +lull (g, "

9o (3.38)

The following weak Harnack inequality is the main result of this section. It applies also
for unbounded supersolutions.

TaeoOREM 3.7 (weak Harnack inequality). Assume that u is a nonnegative supersolution in
Byr, 1<q<n/(n—1)ands> py, — pp,,. Then

1/q0
<][ u dx) < C(essinfu(x)+R), (3.39)
Bor

Br

where qo is the exponent from Lemma 3.6 and C depends on n, p, q, and L7%(Byg)-norm
of u.

Remark 3.8. (1) The main difference compared to Alkhutov’s result in [7, 9] is that the
constant and the exponent depend on the L1°*(Bsg)-norm of u instead of the essential
supremum of u in Byg. This is a crucial advantage for us since we are interested in super-
solutions which may be unbounded.

(2) Since the exponent p(-) is uniformly continuous, we can take for example g's =
pqo by choosing R small enough. Thus the constants in the estimates are finite for all
supersolutions u in a scale that depends only on p(-).

Proof. LetR<p<r<3R,rj=p+27/(r—p),and

£j=—( . )jQO (3.40)

for j =0,1,2,.... By Lemma 3.5 we have

) £ E i Piy/18)]
O(v1,&;,B,,) < CYI5I (14 |g; )P (71) O(vi,&j1,By,, ). (341)

Tj—=Tj+1
An iteration of this inequality yields

e N ) r; PR; /1§51
q)(vla_qO)BV) =< l_[ C1/|Ej‘ (1 + |£J | )PB4R/‘E]| ( : ) '
j=0

essinfv;(x)

i =Tj+1 XEB,

w0 - 20 Phyg /1)
< Ot VI&j1 9350 iPh,/ 1)1 (rip> R (3.42)
x[](

1+ & )pB“‘/lsj‘ essinf v (x).
i=0 XEB,
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We estimate the remaining product by using the fact that |£ il >1when j > joand |& il=<1
when j < j, for some jo. This implies that
1_[ (1 + |f] | )P;;ue/lff‘ < 22?0:01’&”2/‘%|22;1j0+117§4R/\fj|

( n )P§4qu> Sijoni((n=D)g/n)i
j=0 (

n—1)g

2 Phygo 2520 ((n=1)g/n)’
< 221:0P§4R/\fj| (L) Byg 90 2.j=0

(n—T)q
(3.43)
All the series in the above estimates are convergent by the root test, so we obtain
®(v1,—qo,By) < Cessinfv; (x). (3.44)
XEB,
Next we choose p = Rand r = 3R and use Lemma 3.6 to get
®(v1,q0,Bsr) < Cessinf vy (x). (3.45)
XEBR
Finally we observe that
@ (v1,q0,Bar) < CO(v1,40,Bsr). (3.46)
This completes the proof. O

Lemma 3.4 can be used in the proof of the supremum estimate in [7] in the same way
as in the proof of Lemma 3.5. Combining this with the weak Harnack inequality above
one obtains the full Harnack inequality with the constant depending on the L1(Byg)-
norm of the solution instead of the supremum. This implies the local Holder continuity
of solutions by the standard technique; see [19]. Summing up, we have the following
theorem.

TaeoreM 3.9 (the Harnack inequality). Let u be a nonnegative solution in Byg, 1 < g <
n/(n—1), and s> pg. . — pg,,. Then

esssupu(x) < C( essinf u(x) + R) , (3.47)
xe

XEBR Br

where the constant C depends on n, p, and the L95(Byg)-norm of u.

The main difference compared to earlier results is that the constant depends on the
L7*-norm instead of the essential supremum. The following example shows that the con-
stant in the Harnack inequality cannot be independent of u even if the exponent is Lips-
chitz continuous.
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Example 3.10. Let p: (0,1) — (1, c0) be defined by

3 for0<xs%,
px) = 1 1 (3.48)
3—2(x—§> for5<x<1.

Suppose that u, € WH()(0,1) is the minimizer of the Dirichlet energy integral with the
boundary values 0 and a > 0. Then u, is a solution with the same boundary values by [20,
Theorem 5.7].

Theorem 3.2 of [21] gives

xC, 1/(p(y)-1)
uz(x) = L (p(y)> dy, (3.49)
where C, is a constant obtained from the equation
1, ¢ 1/(p(y)-1)
J (p o ) dy=a. (3.50)
0

Note that if a — oo, then C, — o0. In (0,1/2) the minimizer is linear, u,(x) = /(C,/3)x. In
(1/2,3/5) the gradient of u, increases from /C,/3 to (5C,/14)>°. In 11/20, the midpoint
of (1/2,3/5), the gradient of u, is (10C,/29)'”'°. Hence we find that

3}, [Gal g(w@y“9
”“(5)Z 32720\ 29 : (3:51)
Let B = B(1/2,1/10) = (2/5,3/5). Then we obtain

esssup, . | ta(x) | - J(C./3)(1/2) + (1/20)(10C,/29)10/19

essinfyep |uqa(x)| — J(C,./3)(2/5)
10/19 (3.52)
L L0,
4 8.3\29 ¢

asa— .
This example can be extended to the planar case by studying functions f,(x, y) = us(x)
in {(x,y):0<x<1,0< y<1} with the exponent q(x, y) = p(x).

4. The singular set of a supersolution

First we prove that every supersolution has a lower semicontinuous representative if the
exponent p(-) is log-Hoélder. For this purpose, we need the fact that supersolutions are
locally bounded from below. This is true because subsolutions are locally bounded above,
which can be seen from the proof of Theorem 1 in [7].

We set

u*(x) = essliminf u(y) = lim essinf u(y). (4.1)
yox r—0 yEB(x,r)
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THEOREM 4.1. Let u be a function defined on Q) such that
(1) u is finite almost everywhere, and
(2) min{u,A} is a supersolution for every A > 0.
Then u* is lower semicontinuous and

u*(x) =u(x) for almost every x € Q. (4.2)

Remark 4.2. Observe that all supersolutions satisfy the assumptions of the previous the-
orem. We present the result in a slightly more general case, since we would like to include
functions which are increasing limits of supersolutions. For bounded supersolutions the
theorem has been studied in [9].

Proof. Let ' €Q and first assume that u is bounded above. Pick a point x € ), choose
R such that B(x,2R) € Q' and let

M =esssupu+1. (4.3)
o

For 0 <r < 2R denote m(r) = essinf,ep(,r) u(y). Since supersolutions are locally
bounded below, we have m(r) > —o0 for 0 < r < 2R.

The function u* is lower semicontinuous since u(x) = essinf,ep(x) u(y) is lower
semicontinuous and u* is an increasing limit of the functions u".

We will complete the proof for bounded functions u by showing that

u*(x) = lim ]fB(mu(y)dy. (4.4)

For every 0 < 5r < R the function u — m(5r) is a nonnegative supersolution in B(x,4r).
Thus the weak Harnack inequality implies that

m(r) —m(5r) = C((:F (u—m(5r))% dx) v - r)

P (4.5)
(qo—1)/q0 Vo
ZC((M—m(Sr)) (:li (u—m(Sr))dx) —r),
By,
where we assumed that go < 1. This implies that
0< ][ udy —m(5r)
B(x,2r) (46)

< C(M = m(5r)"" (m(r) — m(5r) + Cr)™.

Since m(r) — m(5r) + Cr tends to zero as r — 0, the above estimate implies (4.4).
For the general case, denote u; = min{u,i} fori = 1,2,... and observe that

u*(x) = limu} (x). (4.7)

i—00
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To see that u = u* almost everywhere, consider the sets

E={xeQ:u(x) < oo,u*(x) # ulx)},
(4.8)
F={xe€Q:u(x)= o0, u*(x)# u(x)}.

Then |F| = 0 since u is assumed to be finite almost everywhere. For the set E we have
E C U;E;, where

Ei={xe€Q:uf(x)# uix)} (4.9)

|E;| = 0 by the first part of the theorem, and the claim follows. O

Our next goal is to obtain estimates for the singular set of a supersolution. To this end,
we derive two Caccioppoli-type estimates for a supersolution.

LEmMA 4.3. Let u be a nonnegative supersolution in Byg, § € Cy’ (Byr) such that0 <y <1
and y < yy < 0. Then there is a constant C depending on p and yy such that

J | Vu| PPy dx < C | @1 V11|p(x) dx. (4.10)
Bar Bir

Proof. Denote uy = u+ 1/k. Testing with #? an u, gives

J |Vu|p(x)11P§4RuZ71dx$CJ‘ uZ+P(x)71|V11|p(x>dx (4.11)
B4R B4R

as in the proof of inequality (3.11) in Lemma 3.2. uz_l — u’~! monotonically as k — oo,
and similarly u,}:_Hp(x) — u?~1*P) monotonically when y — 1+ p(x) < 0. Ify — 1+ p(x) >

0, we have

u;}:j*P(’C) | V'1|p(x) < C(1+u’~ 1) | V’7|pm
(4.12)
< CQ+urW) | vy [P,

since y is negative. Now we can let k — oo in the above inequality, obtaining the claim by
the monotone converge theorem and the dominated converge theorem. O

In the following two theorems, g is an exponent such that 1 < g <n/(n—1),s > pg_—
Pg,> @and qo >0 is an exponent for which the weak Harnack inequality holds for the
function under consideration.

THEOREM 4.4. Let u be a nonnegative supersolution in Bsr, By C Bag, Y < y0 <0, 51 €
Co’ (Byr) such that 0 < < 1 and |Vy| < C/r. Then

(y=1+4ps,,)
) o (4.13)

J | Vu | PO yPhu dx < CAV7 ¢ Py (essinfu+r
Byn{usd}

r
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where y is chosen so that qy = q(y — 1+ pp, ) >0 and the constant C depends on n, p, yy,
and the L1(Byg)-norm of u.

Proof. We have u/A < 1 whenever u < A. Using this fact, Lemmas 3.3, 3.4, and 4.3, the
Holder inequality, and the weak Harnack inequality we obtain

J |vu|P(x),1PE4R dx
B,n{u<A}

- P pt
= 1 \4 Phar dx
J;nwgu(l) | V| P

< C/‘l—yJ’ uy+p(x)—l | V11|P(x)dx

2r

1=y ,.—Ps,, —1+p(x)
s Lz,”y o (4.14)

1/q' 1/q
< CAL vy Piy, <][ ud (PX)=pk,,) dx) (J[ udr=1+pg,) dx)
Bzr

By,

- foor Lk 1/q' - 1/q
< exrpre (1l S ) (4 a0 ax)
BZr

L4'5(Byg)

oo . (y=1+pz,,)

< CAL 7Yy Py (essBlnfu+r> e
" O

The Sobolev p(-)-capacity of a set E C R” is defined as
Cpi(E) = infj (1u) |7+ | V() | 7Y d, (4.15)
Rn

where the infimum is taken over the set of admissible functions
Sp(y(E) = {u € WH)(R") : 4 > 1 in an open set containing E}. (4.16)

This definition gives a Choquet capacity; for this and other properties of Cy.), see [10].
The following theorem is our main result.

THEOREM 4.5. Let u be a nonnegative function such that
(1) u is lower semicontinuous,
(2) min{u,A} is a supersolution for each A >0, and
(3) u € Lj,.(Q) for some t > 0.

Denote

E) = {x € B(xo,7) 1 u(x) > A}, (4.17)
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where B(xo,7) is a ball with By, = B(xo,4r)EQ. Then

)‘Io/q

Co() (Ey) < Cr"Pry ) ~90/9 (igfu +r , (4.18)

where the constant C depends on p, n, and the L'(Bs,)-norm of u.

Remark 4.6. (1) Observe that all supersolutions satisfy the assumptions of the previous
theorem.

(2) For constant p(-), the class of functions which satisfy (1)—(3) is called p-
superharmonic functions. This is a strictly bigger class of functions than supersolutions.
Indeed, the nonlinear counterpart of a fundamental solution is the prime example of such
a function.

Proof. Denote uy = min{u,A} and choose ¢ € Cy°(B(x¢,2r)) suchthat 0 < g <1,¢9p=1
in B(xo,r), and | Ve[| < C/r. For sufficiently small radii r, we can choose
C

qo=—F— (4.19)
Ct lull g P

since we can take g's = ¢ with a suitable choice of s > p3 — pp. . Then the weak Harnack
inequality holds for u) with an exponent and a constant independent of A. Further, we
choose the parameter y in Theorem 4.4 so that qo/q = y — 1+ pp, . This is always possible,
since we can take a smaller gy if necessary.

Since u is lower semicontinuous, the set E) is open. Further, u)¢/A = 1 in E), so we can
test the capacity of E; with u¢/A. This gives

Cyo((E SJ (
# )( /\) B(x0,2r)

<\ P J (1gl™ +1 9 (u9) [P dx.
B(x0,27)

“e ‘“"g | V) ’W’) i
A

(4.20)

For the first term in the integral above we have by the Holder inequality, Lemma 3.4, and
the weak Harnack inequality that

[ -
B(x0,2r) B(x0,2r)

1/q' _ 1/q
< Crn(jlt |u |q plx)— PBZ,)) (}[ |uA|QP32, dx)
B(x0,2r) B(x0,2r)

_ 1/q
(phy, —Ps,,)
<Cr" <1+ ||uHqu‘;;1 ) By ><}[B(x 2r)~uA|qPBzr dx) (4.21)
0>

1/q
< Cr"APsy—90/4 <][ luy | dx)
B(xo,2r)

q0/9
< Cr'"APex~ °/q< inf u+r> .
B

(x0,7)

u) | Phyy dx




18 Boundary Value Problems

For the second term, we get by the product rule
1V () [P < (v [P + [ Ve "Y). (4.22)

Using Lemma 3.3 and estimating the average of |u,|?*) as above we have

J |UAV<P|p(x)dx < Cr'" Poy (][ |y | P dx)
B(x0,27) )

B(x0,2r
(4.23)

L 90/q
< Cr”’PBZrAPBzqu/q( inf u+ r) .
B(xo,r)

We estimate the remaining term by using Theorem 4.4. To this end, choose a function
n € Cy(Bs) suchthat 0 < <1, =11in B(xy,2r), and | V#| < C/r. Then

J |¢Vu,1|P(x)dst |V [P dx
B(x0,2r) B(x,2r)

- J | Vuy | PP dx (4.24)
B(x0,21)

e (. q(y—1+pz,,)
< CAL=Yyh Py, <1nfu+r) L

r

Combining the above estimates we have

)M. (4.25)

Cp((Ex) < Cr" P (A7 0/9 4 A1 77 Py ) (infu +r

Now our choice of y gives the claim. O

The previous result implies that the singularity set of a supersolution is of zero capac-
ity.

CoROLLARY 4.7. For functions u satisfying the assumptions of Theorem 4.5,
Coy({lx € Qiu(x) = }) = 0. (4.26)
Proof. Fix a ball B(xg,r) as in Theorem 4.5 and let

E;={x € B(xp,r) :ulx)>i}, i=12,...,
(4.27)
E = {x € B(x0,7) : u(x) = oo},
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Since E = N;E; and E; D E; D - - -, we get by the monotonicity of the capacity and
Theorem 4.5 that

Cp(.)(E) <lim Cp(.)(Ei) =0. (4.28)

Since Q) can be covered by a countable number of balls for which (4.28) holds, the sub-
additivity of the capacity implies the claim. O
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