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1. Introduction

In this paper, we survey and improve some Liouville-type theorems for a class of hypoel-
liptic second-order operators, appeared in the series of papers [1-4].
The operators considered in these papers can be written as follows:

N N

£:= Z axi(aij(x)an) +Zbi(x)axi — 0 (1.1)

ij=1 i=1

where the coefficients a;j, b; are t-independent and smooth in RN. The matrix A =

.....

We will denote by z = (x,1), x € RN, t € R, the point of RN*!, by Y the first-order
differential operator

N
Y= > bi(x)0y, — 0r, (1.2)
i=1
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and by &, the stationary counterpart of &, that is,

N N
Por= > Oy (aij(x)0x,) + D bi(x)0x,. (1.3)
i=1

ij=1

We always assume the operator Y to be divergence free, thatis, >~ | 9y, b;(x) = 0 at any
point x € RN. Moreover, as in [2], we assume the following hypotheses.
(H1) & is homogeneous of degree two with respect to the group of dilations (d) )10
given by

dl(xr t) = (DA(X),AZt),

(1.4)
Dy (x) = Dy (x1,...,x8) = (A% x1,...,A%xN),

where 0 = (01,...,0n) is an N-tuple of natural numbers satisfying 1 = 0 < 0, <
- < oy. When we say that & is dy-homogeneous of degree two, we mean that

L(u(dy(x,1)) = A2(Lu)(dy(x,1)) Vue C®(RNM), (1.5)

(H2) For every (x,t),(y,7) € RN*1 ¢ > 7, there exists an $-admissible path 77 : [0, T] —
RN*! such that 7(0) = (x,1), #(T) = (y,7).
An Z-admissible path is any continuous path # which is the sum of a finite number of
diffusion and drift trajectories.
A diffusion trajectory is a curve # satisfying, at any points of its domain, the inequality

(7' (s),€))" < (A(n(s))E,E)  VEERN. (1.6)

Here (-,-) denotes the inner product in RN*1 and A(z) = A(x, t) = X(x) stands for the
(N+1) X (N +1) matrix

N A 0

Ao ( ! 0) | (1.7)

A drift trajectory is a positively oriented integral curve of Y.
Throughout the paper, we will denote by Q the homogeneous dimension of RN*! with
respect to the dilations (1.4), that is,

Q:0-1+...+0~N+2 (18)
and assume
Q=5. (1.9)

Then, the Dy-homogeneous dimension of RNisQ—-2=3.

We explicitly remark that the smoothness of the coefficients of & and the homo-
geneity assumption in (H1) imply that the a;;’s and the b;’s are polynomial functions
(see [5, Lemma 2]). Moreover, the “oriented” connectivity condition in (H1) implies the
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hypoellipticity of &£ and of ¥y (see [1, Proposition 10.1]). For any z = (x,t) € RN*!, we
define the d)-homogeneous norm |z| by

) (1.10)

lz| = [ (x,8)] := (lx|* + £

where

N

1/20
|x|=|(x1,---,xN)|=<Z mj) , o=]]o (1.11)

-1 j=1

Hypotheses (H1) and (H2) imply the existence of a fundamental solution I'(z,{) of &

with the following properties (see [2, page 308]):
(i) r is smooth in {(z,{) € RN*I x RN*1 | z £ (3,

(ii) T'(+,{) € LL (RN*1) and LT(-,{) = —&; for every { € RN*1,
(iii) T(z,-) € L, (RN*1) and £*I(z,-) = =6, for every z € RN*!,
(iv) limsup, ., T(z {) = oo for every z € RN*1,

(v) T(0,{) = 0as { — 0, T(0,dr({)) = A"2T(0,¢),
(vi) T((x,1),(&,7)) = 0, >0 ifand only if t > 7,
(vii) I((x, 1), (&,7)) = T((x,0), (&, 7 = 1)).
In (iii) £* denotes the formal adjoint of &£.

These properties of I' allow to obtain a mean value formula at z = 0 for the entire
solutions to £u = 0. We then use this formula to prove a scaling invariant Harnack in-
equality for the nonnegative solutions $u = f in RN*1. Our first Liouville-type theorems
will follow from this Harnack inequality. All these results will be showed in Section 2.

In Section 3, we show some asymptotic Liouville theorem for nonnegative solution to
%u = 0 in the halfspace RN X] — 00,0 assuming that &, together with (H1) and (H2), is
left invariant with respect to some Lie groups in RN*1,

Finally, in Section 4 some examples of operators to which our results apply are showed.

2. Polynomial Liouville theorems

Throughout this section, we will assume that & in (1.1) satisfies hypotheses (H1) and
(H2). Let T be the fundamental solution of & with pole at the origin. With a standard
procedure based on the Green identity for & and by using the properties of T recalled in
the introduction, one obtains a mean value formula at z = 0 for the solution to $u = 0.
Precisely, for every point (0, T) € RN*! and r > 0, define the £-ball centered at (0, T) and
with radius r, as follows:

0,(0,T) = {( € RN T((0,T),() > (i)“} 2.1)

Then, if Lu = 0 in RN*!, one has

Q-2
) j K(T,u()dC, (22)
Q,(0,T)

r

w(0,T) = (
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where

(A(§) VI, VeT)

K(T,{) = S

(=), (2.3)
and I stands for ['((0, T), (&,7)). Moreover, (-, -) denotes the inner product in RN and V¢
is the gradient operator (0¢,,...,0, ).

Formula (2.2) is just one of the numerous extensions of the classical Gauss mean value
theorem for harmonic functions. For a proof of it, we directly refer to [6, Theorem 1.5].
We would like to stress that in this proof one uses our assumption divY = 0.

The kernel K(T, -) is strictly positive in a dense open subset of Q,(0, T') for every T,r >
0 (see [2, Lemma 2.3]). This property of K(T, -), together with the d)-homogeneity of &,
leads to the following Harnack-type inequality for entire solutions to £u = 0.

THEOREM 2.1. Let u: RN*! — R be a nonnegative solution to u = 0 in RN*1. Then, there

exist two positive constants C = C(&£) and 0 = 0(L) such that

supu < Cu(0,r%) Vr >0, (2.4)
Cor

where, for p >0, C, denotes the d)-symmetric ball
C,:={ze RN | |z] <p}. (2.5)

The proof of this theorem is contained in [2, page 310].

By using inequality (2.4) together with some basic properties of the fundamental solu-
tion T, one easily gets the following a priori estimates for the positive solution to fu = f
in RN*1,

COROLLARY 2.2. Let f be a smooth function in RN*! and let u be a nonnegative solution to
Pu=f inRNL (2.6)

Then there exists a positive constant C independent of u and f such that

2
u(z)sCu<o,(Z))+|z|2 sup | fQ, 2.7)

0 (1<l

where 0 is the constant in Theorem 2.1.

This result allows to use the Liouville-type theorem of Luo [5] to obtain our main
result in this section.

THEOREM 2.3. Let u: RNT! — R be a smooth function such that
Lu=p in RN+L

u>gq inRN'! (28)
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where p and q are polynomial function. Assume
u(0,t) = O(t"™) ast — oo. (2.9)

Then, u is a polynomial function.

Proof. We split the proof into two steps.
Step 1. There exists n > 0 such that

u(z) = 0(|z|") asz — oo. (2.10)
Indeed, letting v := u — ¢, we have

Pv=p-—%q inRVY

v>0 inRN*L, 211

and v(0,t) = u(0,t) — q(0,t) = O(t™) as t — oo, for a suitable #; > 0. Moreover, since p
and £q are polynomial functions, (p — £q)(z) = O(|z|™) as z — oo for a suitable m; > 0.
Then, by the previous corollary, there exists m;, > 0 such that

v(z) = O(|z|™) asz— . (2.12)

From this estimate, since v = u + ¢, and q is a polynomial function, the assertion (2.10)
follows.

Step 2. Since p is a polynomial function and & is d)-homogeneous, there exists m € N
such that

$mp =0, (2.13)
where M = Lo . .. o & is the mth iterated of &. It follows that
Py =0 in RN*L (2.14)

Moreover, since & is dy-homogeneous and hypoelliptic, the same properties hold for
£+ On the other hand, by Step 1, u(z) = O(z") as z — o, so that u is a tempered
distribution. Then, by Luo’s paper [5, Theorem 1], u is a polynomial function. U

Remark 2.4. Tt is well known that hypothesis (2.9) in the previous theorem cannot be
removed. Indeed, if £ = A — 0, is the classical heat operator and u(x,t) = exp(x; + - - - +
xN +Nt), x = (x1,...,xv) € RN and t € R, we have

PLu=0 inRV* u=0, (2.15)

and u is not a polynomial function.

In the previous theorem, the degree of the polynomial function u can be estimated in
terms of the ones of p and g. For this, we need some more notation. If « = (a,...,an, an+1)
is a multi-index with (N + 1) nonnegative integer components, we let

lalg, := o100 + - - - +onaN +20N+1, (2.16)



6 Boundary Value Problems
and, if z = (x,1) = (x1,...,xN,t) € RN*L
2% = x| xRN, (2.17)

As a consequence, we can write every polynomial function p in RN*!, as follows:

p@) = D " (2.18)

laclagy <m
with m € Z, m = 0, and ¢, € R for every multi-index a. If

D> cz®#0 in RN, (2.19)

lalgy =m
then we set
m = deg, p. (2.20)
If p is independent of ¢, that is, if p is a polynomial function in RY, we denote by
degp, p (2.21)

the degree of p with respect to the dilations (Dy))>0. Obviously, in this case, deg, p =
degdA p.

PrOPOSITION 2.5. Let u, p : RNt — R be polynomial functions such that
Pu=p inRNH, (2.22)

Assume u = 0. Thus, the following statements hold.
(i) If p = 0, then u = constant.
(ii) If p # 0, then

deg, u=2+deg, p. (2.23)

This proposition is a consequence of the following lemma.

LEMMA 2.6. Let u: RN*! — R be a nonnegative polynomial function dy-homogeneous of
degree m > 0. Then Pu # 0 in RNT!,

Proof. We argue by contradiction and assume £u = 0. Since u is nonnegative and d)-
homogeneous of strictly positive degree, we have

u(0,0) =0 = minu. (2.24)

RN+
Let us now denote by ? the £-propagation set of (0,0) in RN*1, that is, the set

P := {z € RN*! : there exists an £-admissible path 7 : [0, T] — RN*1,

2.25
s.t.7(0) = (0,0), n(T) = z}. (2.25)
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From hypotheses (H2), we obtain ? = RN x] — ,0] so that, since (0,0) is a minimum
point of u and the minimum spread all over % (see [7]), we have

u(z) =u(0,00=0 Vze RVNX]—,0]. (2.26)

Then, being u a polynomial function, u = 0 in RN*!. This contradicts the assumption
deg, u >0, and completes the proof. O

Proof of Proposition 2.5. Obviously, if u = constant, we have nothing to prove. If we as-
sume m := deg, u >0 and prove that

m=2, p#0, degdlp =m-2, (2.27)
then it would complete the proof. Let us write u as follows:
u=uoturt+---+upy (2.28)

where u; is a polynomial function d)-homogeneous of degree j, j = 0,...,m, and u,, # 0
in RN*L,
Then

p=Lu=Lug+Lu+---+Luy, (2.29)
and, since £ is dy-homogeneous of degree two,
(Luj) (dr(x)) =V 2Lu;(x) (2.30)

so that uy = Lu; = 0 and deg, Fu; = j -2 ifand only if Lu; # 0.

On the other hand, the hypothesis u > 0 implies u,, > 0 so that, being u,, # 0 and d) -
homogeneous of degree m >0, by Lemma 2.6, we get Lu,, # 0. Hence m > 2. Moreover,
by (2.29), p=Lu # 0 and

deg, p =deg; Luy=m-2. (2.31)
(]

This proposition allows us to make more precise the conclusion of Theorem 2.3. In-
deed, we have the following.

PROPOSITION 2.7. Let u, p,q: RN*! — R be polynomial functions such that

Pu=p inRNY

2.32
u>gq inRNM, (232)
Then
deg,; u < max{2+deg, p,deg, q}. (2.33)
In particular, and more precisely, if ¢ = 0, that is, if u = 0, then
deg, u=2+de ifp #0,

u = constant if p=0.
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Proof. 1f g = 0, the assertion is the one of Proposition 2.5. Suppose g # 0. By letting v :=
u — q, we have

Fv=p-Fq, v=0. (2.35)
By Proposition 2.5, we have

deg; v <2+deg, (p — £q) <2+max {deg, p,deg; q—2} = max{2+deg, p,deg, q}
(2.36)

and (2.33) follows. O

Proposition 2.7, together with Theorem 2.3, extends and improves the Liouville-type
theorems contained in [2, 4] (precisely [2, Theorem 1.1] and [4, Theorem 1.2]).

From Theorem 2.3 and Proposition 2.7, we straightforwardly get the following poly-
nomial Liouville theorem for the stationary operator &, in (1.3).

THEOREM 2.8. Let P,Q: RN — R be polynomial functions and let U : RN — R be a smooth
function such that

$U=P, U=Q,inR". (2.37)
Then, U is a polynomial function and
deg, U < max {2 +deg;, P,deg, Q}. (2.38)
In particular, and more precisely, if Q = 0, that is, if U > 0, then

degp U =2+deg, P ifP#0,
U = constant if P=0.

(2.39)
Proof. Let us define
u(x,t) = U(x), plx,t) = P(x), q(x,t) = Q(x). (2.40)
Then p, g are polynomial functions in RN*! and u is a smooth solution to the equation
Pu=p inRN'L (2.41)
such that u > g. Moreover,
u(0,t) =U(0)=0(1) ast— oo, (2.42)
Then, by Theorem 2.3, u is a polynomial function in RN*!. This obviously implies that

U is a polynomial in RN. The second part of the theorem immediately follows from
Proposition 2.5. O
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Remark 2.9. The class of our stationary operators & also contains “parabolic”’-type op-
erators like, for example, the following “forward-backward” heat operator

Fo:=0; +x10y, inR% (2.43)

Nevertheless, in Theorem 2.8, we do not require any a priori behavior at infinity, like
condition (2.9) in Theorem 2.3.

3. Asymptotic Liouville theorems in halfspaces

The operator & in our class do not satisfy the usual Liouville property. Precisely, if u is a
nonnegative solution to

Pu=0 in RN, (3.1)

then we cannot conclude that u = constant without asking an extra condition on the
solution u (see Theorem 2.3 and Remark 2.4).

However, if we also assume that & is left translation invariant with respect to the com-
position law of some Lie group in R¥*!, then we can show that every nonnegative solution
of (3.1) is constant at t = — oo,

To be precise, let us fix the new hypothesis on & and give the definition of £-parabolic
trajectory.

Suppose & satisfies (H2) of the introduction and, instead of (H1), the following con-
dition

(H1)* There exists a homogeneous Lie group in RN*1,

L= (RN*,0,d)) (3.2)

such that & is left translation invariant on L and d)-homogeneous of degree two.
We assume the composition law o is Euclidean in the time variable, that is,

(x,t) o (x',t") = (clx, t,x', '), t+ 1), (3.3)

where c(x,t,x",t") denotes a suitable function of (x,t) and (x',t').
It is a standard matter to prove the existence of a positive constant C such that

lzo (|l < C(lz| +1{]) Vz,{eRNL (3.4)

Let y : [0,00[— RN be a continuous function such that

2
limsup @ < (3.5)

§— 00

(here | - | denotes the Dy-homogeneous norm (1.11)).
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Then, the path
s—(s)=(y(s), T-s), TER, (3.6)

will be called an £-parabolic trajectory.
Obviously, the curve

s—n(s)=(a,T—s), acRN, TeR (3.7)

is an &-parabolic trajectory. It can be proved that every integral curve of the vector fields
Y in (1.2) also is an £-parabolic trajectory (see [3, Lemma 3]).
Our first asymptotic Liouville theorem is the following one.

Tueorem 3.1. Let & satisfy hypotheses (H1)* and (H2), and let u be a nonnegative solution
to the equation

Fu=0 (3.8)
in the halfspace
§=RNx] - ,0[. (3.9)
Then, for every £-parabolic trajectory 1,
51132 u(n(s)) = il}fu. (3.10)
In particular
tLi{rlou(x,t) = ilgfu Vx e RV, (3.11)

The proof of this theorem relies on a left translation and scaling invariant Harnack
inequality for nonnegative solutions to Lu = 0.
For every zy € RN*! and M > 0, let us put

P, (M) := zp o P(M), (3.12)
where
P(M) := {(x,t) € RN!: |x|> < —Mt}. (3.13)

Then, the following theorem holds.

TaeoreM 3.2 (left and scaling invariant Harnack inequality). Let u be a nonnegative so-
lution to

PLu=0 inRNx]—00,0]. (3.14)
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Then, for every zp € RN X] — 0,0[ and M > 0, there exists a positive constant C = C(M),
independent of zy and u, such that

sup u < Cu(zo). (3.15)
Pz (M)

Proof. Tt follows from Theorem 2.1 and the left translation invariance of £. The details
are contained in [3, Proof of Theorem 3]. O

From this theorem we obtain the proof of Theorem 3.1.

Proof of Theorem 3.1. We may assume infgu = 0. Let 5(s) = (y(s),50 — ), S0 <0, s = 59 be
an £-parabolic trajectory. Then, there exists My > 0 such that

Iy(s)|* < Mys Vs =s¥, (3.16)

where s* > 0 is big enough. Let us put M = 2C(M¢ + 1)"/* where C is the positive constant
in the triangular inequality (3.4). Let € > 0 be arbitrarily fixed and choose z, = (x,, ;) €S
such that

u(ze) <e. (3.17)
Now, for every s > s*, we have

lz. on(s)| < C(lz ' +[n(s)])
<C(lzt +(M3+1)"" V5)

(3.18)
_ cm@% NGV IR /S_SZH>
Then, there exists T = T(¢g) > 0 such that
|z, on(s)| <Mys—so+t. Vs>T. (3.19)
This implies that
n(s) €zeo P(M) =P, (M) Vs>T. (3.20)

On the other hand, by the Harnack inequality of Theorem 3.2, there exists C* = C*(M) >
0 independent of z, and ¢ such that

sup u < C*u(z). (3.21)
Pz (M)
Therefore,
u(n(s)) <C*e Vs>T. (3.22)

Since C* is independent of ¢, this proves the theorem. O
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Theorem 3.1 is contained in [3, Theorem 1]. The idea of our proof is taken from
Glagoleva’s paper [8], in which classical parabolic operators of Cordes-type are consid-
ered. For the heat equation, a stronger version of Theorem 3.1 was proved by Bear [9].

The following theorem improves Theorem 3.1.

TueoreM 3.3. Let & and u as in Theorem 3.1. For every M >0 and t < 0, define

M (u,t) = sup {u(x,t) : |x|* < —Mt}. (3.23)
Then
tLiEn M(u,t) = irgfu. (3.24)

Proof. Let ¢ be arbitrarily fixed and let z. = (x,,.) € S be such that

u(ze) <m+e, m:= ilgfu. (3.25)

Let My be a positive constant that will be chosen later independently of €. Since u — m is
a nonnegative solution to £v = 0 in S, the Harnack inequality of Theorem 3.2 implies

u(z) —m < Co(u(ze) —m) VzeP, (M), (3.26)
where Cy = Cyo(Mp) is independent of ¢ (and u).
Let C be the constant in the triangularity inequality (3.4) and choose T = T'(u,¢) >0
such that
T>2|ze— 1" +2]t]|. (3.27)
Then, if z = (x,t) € Swith t < =T and |x|? < —Mt, we have
|2 ozl < Clze| "+ lel) < Clze| '+ (VM +1)VD)
_CW<J|—| (VM +1) /ﬁ) (3.28)
< Ct.—t(1+V2(VM+1)) =: M,
Then, by (3.25) and (3.26),
m<u(z) <m+ Cye (3.29)
for every z = (x,t) € Swith t < —T and |x|> < —M¢. Thus
m< M(u,t) <m+Coe Vit<-T. (3.30)

Since Cy does not depend on ¢, this completes the proof. O
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4. Some examples
In this section, we show some explicit examples of operators to which our results apply.

Example 4.1 (heat operators on Carnot groups). Let (RN, o) be a Lie group in RY. Assume
that RN can be split as follows:

RN = RN x - oo xx RN (4.1)
and that the dilations

Dy : RN — RN, Dy (xND L x W)y = QN A (N

4.2
XM e RN i=1,...,m, 1 >0, (42)
are automorphisms of (R, o).
We also assume
rankLie {Xi,...,Xn, } (x) =N VxeRY, (4.3)
where the X;’s are left invariant on (RN, o) and
0 .
X;(0) = FNCON j=1,...,Ny. (4.4)
j

Then G = (RN, 0,6)) is a Carnot group whose homogeneous dimension Qy is the natural
number

Qo := N1+ 2N, + mN,,. (4.5)
The vector fields Xj,..., Xy, are the generators of G,
N
Moi= > X (46)
j=1
is the canonical sub-Laplacian on G and the parabolic operator
¥ =Ag-0 inRN'! (4.7)

is called the canonical heat operator on G. Obviously £ can be written as in (3.25). More-
over, if we define

L= (RN o,d)) (4.8)
with d)(x,t) = (Dyx,A*t) and the composition law o given by
(6, t) o (X'st") = (xox'st+1), (4.9)

then L is a homogeneous group, and the operator &£ in (4.7) satisfies condition (H1)*.
We explicitly remark that the homogeneous dimension of L is Q := Qo + 2.
In [1, page 70], it is proved that & also satisfies (H2).
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Remark 4.2. The stationary part of the operator & in (4.7) is the sub-Laplacian Ag. For
this kind of operator, the polynomial Liouville theorem in Theorem 2.8 was first proved
in [10, Theorem 1.4].

Example 4.3 (B-Kolmogorov operators). Let us split RN as follows:
RN = R? x R” (4.10)

and denote by x = (x(#),x(") its points. Let Bbe an N x N real matrix taking the following
block form:

0 0 0 0
B 0 0 0
B=|0 B -+ - | (4.11)

wherij isanr; X rj_; matrix withrankrj,andro=p=>r > ---2n=Lrg+r+---+
rr = N. Denote

E(t) = exp(—tB) (4.12)
and introduce in RN*! the following composition law
(x,t) o (y,7) := (y+ E(1)x,t + 7). (4.13)
The triplet
K= (RN, 0,d)) (4.14)
is a homogeneous Lie group with respect to the dilations
d(x,t) = dy (xP,xT0, L xT0 ) = (AP A3 A2k ) ) 2¢) (4.15)
(see [11]). The homogeneous dimension of K is
Q=p+3r+---+Q2k+1)r +2. (4.16)

We call K a B-Kolmogorov-type group.
Let us now consider the operator

H = A, + (Bx,D) — 3, (4.17)

where Ag, denotes the usual Laplace operator in R, (-,-) is the inner product in RY,
and D = (0dy,,...,0xy ). In this case, we have

Y = (Bx,D) — 0, (4.18)

The operator K satisfies (H1)* and (H2), and it is left translation invariant on K (see
[1,11]).
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Remark 4.4. The matrix E(¢) in (4.13) takes the following triangular form:

I 0
E(t) = (Elft) I,) , (4.19)

where I, and I, are the identity matrix in R? and R”, respectively. Then, the composition
law in K has the following structure:

(xP),x" ) o (yP), 9y 1) = (xP) +y(1’),x(’) +y + B (1)x'P)t + 7). (4.20)
Remark 4.5. The stationary part of X,
Ho = Ag, + (Bx,D), (4.21)

is contained in the class of degenerate Ornstein-Uhlenbeck operators studied by Priola
and Zabczyk [12], where a Liouville theorem for bounded solutions is proved.

Example 4.6 (sub-Kolmogorov operators). Let G = (R? x RY, O,d)(tl)) be a Carnot group
with first layer R? and let K = (R? X R" X [R,o,d)(tz)) be a Kolmogorov group. Let L =
(RN*Lo,d)), N =p+q+r,

L=GAK (4.22)

be the link of G and K (see [13, Section 5.2]).
Then, if Y is a derivative operator transverse to G (see [13, Definition 4.5]), and X3,...,
X, are the generators of G, the operator

4
$=>X;+Y, inRN', (4.23)
j=1

satisfies (H1)* and (H2).

Example 4.7 (a nontranslations invariant operator). The operator

£=0% +xi"10,, —9; inR’ (4.24)
m € N, satisfies hypotheses (H1) and (H2). The relevant dilation group is given by

d/\ (X1,X2,t) = (AxlaA2m+3x2’/12)' (4°25)

Finally, it is easy to recognize that there is no Lie group structure in R? leaving left trans-
lation invariant the operator &£.
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