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1. Introduction

We are concerned with the existence of positive solutions for the following third-order
multipoint boundary value problems:

u”' () +h(t) f(Lu(t),u' (1)) =0, aetel0,1],

m-2 (1.1)
u' (0) =u"(0) =0, u(l) = Z aiu(&;),
i=1

where0< &, <& <+ <&, ,<1La;>0(=1,2,...,m—2),0< 3" *a; < 1,h(t) may be
singular at any point of [0,1] and f(¢,u,v) satisfies Carathéodory condition.
Third-order boundary value problem arises in boundary layer theory, the study of
draining and coating flows. By using the Leray-Schauder continuation theorem, the coin-
cidence degree theory, Guo-Krasnoselskii fixed point theorem, the Leray-Schauder non-
linear alternative theorem, and upper and lower solutions method, many authors have
studied certain boundary value problems for nonlinear third-order ordinary differential
equations. We refer the reader to [1-7] and references cited therein. By using the Leray-
Schauder nonlinear alternative theorem, Zhang et al. [1] studied the existence of at least
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one nontrivial solution for the following third-order eigenvalue problems:

W’ () =Af(buu'), 0<t<l,
! rr (1'2)
u(0) =u'(n) = u"(0) =0,
where A >0 is a parameter, 1/2 < # < 1 is a constant, and f : [0,1] X R X R—R is continu-
ous.
By using Guo-Krasnoselskii fixed point theorem, Guo et al. [2] investigated the exis-
tence of at least one positive solution for the boundary value problems

W () +a(t) f(u(r) =0, 0<t<l,

u(0) =u'(0) =0, u' (1) = au/(n), (13)
where 0 <5< 1,1 <a< 1/5,and a(t) and f(u) are continuous.
The aim of this paper is to establish some results on existence of monotone positive
solutions for problems (1.1). To do this, we give at first the associated Green function
and its properties. Then we obtain several theorems of existence of monotone positive
solutions by using the fixed point index theory. Our results differ from those of [1-3] and
extend the results of [1-3]. Particularly, we do not need any continuous assumption on
the nonlinear term, which is essential for the technique used in [1-3].
We always suppose the following conditions are satisfied:
(CHa>0(i=1,2,....m=2), " i< 1,1 =8, <& <&y<e-o <& = 15
(Cy) h(t) € L'[0,1], h(t) = 0, a.e.t € [0, 1],f§”"2 h(t)dt > 0;
(Cs3) f:10,1] X [0,00) X (—00,0]—[0,00) satisfies Carathéodory conditions, that is,
f(+,u,v) is measurable for each fixed u € [0,),v € (—,0] and f(t,-,-) is con-
tinuous for a.e. t € [0,1];
(Cy) for any r,r" >0, there exists O(¢) € L*[0,1] such that f(t,u,v) < O(t), where
(u,v) € [0,r] X [-7',0],a.e. t € [0,1].

2. Preliminary lemmas

Lemma 2.1 (Krein-Rutman [8]). Let K be a reproducing cone in a real Banach space X and
let L: X—X be a compact linear operator with L(K) < K. r(L) is the spectral radius of L. If
r(L) >0, then there exists ¢, € K \ {0} such that Lo, = r(L)g,.

LEMMA 2.2 [9]. Let X be a Banach space, P a cone in X, and Q(P) a bounded open subset in
P. Suppose that A : Q(P)— P is a completely continuous operator. Then the following results
hold.
(1) If there exists ug € P\ {0} such that u# Au+ Auy, for all u(t) € 0Q(P), A = 0, then
the fixed point index i(A,Q(P),P) = 0.
(2) If 0 € Q(P) and Au#Au,Yu(t) € 0Q(P), A = 1, then the fixed point index i(A,
Q(P),P) =1.

We can easily get the following lemmas.



W. Jiangand E Li 3

LEMMA 2.3. Suppose > 7 2o # 1. If y(t) € L'[0,1], then the problem

u”"(t)+y(t)=0, ae tel0,1],

m—2 (2.1)
W) =u"(0)=0,  u(l)=> au(f)
i=1
has a unique solution:
__1 ' _ )2 1 ! a2
u)=—1 | -9 YO+ [, a=srysds
1 v (2.2)
! 2
T Ha,j (&~ ) y(s)ds

LEMMA 2.4. Suppose 0 < 37 2a; < 1, y(t) € L[0,1], y(t) = 0. Then the unique solution
of (2.1) satisfies u(t) = 0, u'(t) < 0.

LEMMA 2.5. Suppose 0 < > 7 *a; < 1. The Green function for the boundary value problem

-u"(t)=0, 0<t<],

’ ’ m.2 (23)
WO =u©0)=0,  u(l)="S au(f)
is given by
(1= =37 0ai (& —5)" = (1= 1) (t—5)°
2(1- 371" a) '
0<t<1,¢&,, <s<min{,t}, w=12,...,m—1,
G(t,s) = 4 (2.4)
(1= 92— 37 20§, - 5)’
201 - 371 %) ’
L 0<t<l1, max{é, |,t} <s<&, w=12,...,m—1.
Obviously, G(t,s) is nonnegative and continuous in [0,1] x [0,1], and
(1-£,.)°
G(t,s) = —————=—, t,se|0,&,. 5| 2.5
(09)= 5 [0,€,,5] (2.5)

3. Main results

Let X = C'[0,1] with norm |[|x|| = maxe[o,17]x(¢)| + maxejo,17]x’ (¢)]. Clearly, (X, |- ||) is
a Banach space. Take P={ue X |u=0, u' <0}, P, ={uecP||lull <r}, r>0. Obvi-
ously, P is a cone in X and P, is an open bounded subset in P.

LEmMa 3.1. P is a reproducing cone in X.
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Proof. Let x € X, then x" € C[0,1] and x" = x* — x~, where x* = max {x'(¢),0.},x~ =
max {—x'(¢),0.}. Obviously, x*,x~ € C[0,1] and x* = 0, x~ = 0. Integrating x" = x* —x~
from t to 1, we get

1 1
x(t) = —J x+(s)ds+J - (s)ds+x(1). (3.1)
t t
If x(1) = 0, let x;(¢) = ft (s)ds+x(1), x2(t) = L (s)ds, then x1,x; € P, and x = x; —
x. If x(1) <0, let x;(¢) = ft (s)ds, x,(t) = L ds —x(1), then x;,x; € P, and x =
x1 — x5. The proof is completed O

Define operators A : P—X, L: X—X as follows:

Au = Jl G(t,s)h(s) f (s,u(s),u’(s))ds,
0
(3.2)

Lu- Ll G(t,5)h(s) (u(s) — 1t (5))ds.

By Lemma 2.3, we get that if u(¢) € P\ {0} is a fixed point of A, then u(¢) is a mono-
tone positive solution of (1.1). Assume (C;)—(Cs4) hold, then we can easily get that A :
P—P and L: P—P are completely continuous by the absolute continuity of integral,
Ascoli-Arzela theorem, Lemmas 2.3, 2.4, and 2.5.

LEmMMA 3.2. Suppose (Cy)—(Cy) hold; then r(L) > 0.

Proof. Take u(t) = 1. For t € [0,§,,_,] we get

(! ez - (1 —fmfz)z -z o
u(t) = L G(ts)h(s)ds > L G(ts)h(s)ds = Z(I_Z%L h(s)ds = 1> 0.

&
u(t) = JGts )Lu(s)ds>J0 G(t$)h(s)Lus)ds = P

(3.3)
By mathematical induction, it can be proved that
L'u(t) = 1", Vte[0,&,,_,] (3.4)
Hence
" =1, (L) = LiP;“L””W >1>0. (3.5)
The proof is completed. O

By Lemma 2.1, we get that L has an eigenfunction ¢ € P\ {0} corresponding to r(L).
Lety = 1/r(L).



W. Jiangand E Li 5
For convenience, we make the following definitions:
f(u,v) = su tu,v), u,v inf  f(t,u,v
f( ) tE[O,E\Ef( ) i( ) ZE[O 1]\Ef
) (L f)
feo = max {hirl%ﬁ‘f {vel[rlg,o] u—v \’ h%‘—‘f ug[lof,c] u—v ’ (3.6)
fo= max{hmsup {sup flw) }, limsup {sup f(uv)}}’
u—co (yer- U—V ve—oo | yert U—V

where ¢ >0, Rt =

[0,00), R~ = (—0,0], E C [0,1] with null Lebesgue measure.

LemMa 3.3. Suppose (Cy)—(Cy4) hold. In addition, suppose 0 < f < u, then there exists

ro > 0 such that

i(A,P,,P) =1 foreachr >r.

(3.7)

Proof. Let ¢ >0 be small enough such that f® <y —e. Then there exists r; > 0 such that

ftu,v) <(p—e)(u—v) foru>r, orv<-—ry, ae tel0,1] (3.8)
By (Cy), there exists ® € L*[0,1] such that
ftu,v) <®(t) foru,ve[0,r]x[—r,0], ae te[0,1]. (3.9)
So we get that for all u € R*,v € R™,a.e. t € [0,1],
ftu,v) <(pu—e)(u—v)+0(1). (3.10)
Since 1/u is the spectrum radius of L, (I/(y —¢) — L) ! exists. Let
'U G(t, () D(s)d ro—H (-1 #_eel_’ . (3.11)
We will show that for r > r,
Au # Au  foreachu € 0P,, A > 1. (3.12)

In fact, if not, there exist uy € 0P, Ay = 1 such that Auy = Agup. This, together with (3.10)

and Lemma 2.4, implies
uy < Aoug = Aug < (4 —€)Luy +C,
uy = doufy = (Aug)” = (u—e)(Lug) - C.

Thus,

(-

’

=

(-

Lo L) uo(t)>

1 L)uol0) < -

f—e

(3.13)

’

c el_t> .

H—e€

(3.14)

(
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So, we get

(” ) (1) eP (3.15)

It follows from ((1/(u —€))I — L™ = olu— e)""'L" and L(P) C P that

-1 -1 !
uo(t)s(LI—L) C o wms [<II—L) ¢ el-f]. (3.16)
u—e u—e u—e u-e

Therefore, we have ||ug|| < rg < r; this is a contradiction.
By (2) of Lemma 2.2, we get that i(A, P,,P) = 1, for each r > ry. The proof is completed.
O

LEmMA 3.4. Suppose (C1)—(Cy) hold and there exists ¢ > 0 satisfying y < feo < oo, then there
exists 0 < p, < ¢ such that for p € (0,p, ], if u# Au for u € oP,, then i(A,P,,P) =

Proof. Let € >0 be small enough such that f.o >y +e. Then there exists 0 < p, < ¢ such
that

ftu,v)=(ute)(u—v) for0O<u<p, —p,<v=<0, ae tel0l1] (3.17)
Let p € (0,p,]. Considering of (1) of Lemma 2.2, we need only to prove that
u#Au+Aep foreachu € dPy, A >0, (3.18)

where ¢ € P\ {0} is the eigenfunction of L corresponding to r(L).
In fact, if not, there exist ug € dP,, Ao >0 such that uy = Aug + Ao¢. This implies uy >
Aog and uy < Aog'. Let

' =sup{d|uo= Ao, uy <A’} (3.19)

Clearly, o > A= 20>0, uy > A*go, uy < /1*<p’. Therefore, we get uy — A*(p € P. It follows
from L(P) C P that

uLug =V uLo =1,  wu(Lug) <A u(Le) =A1*(¢)'. (3.20)
By (3.17) and Lemma 2.4, we get
Aug = (u+¢)Luy, (Aup)" < (u+e)(Lug) . (3.21)
So, we have
o = Aug+ o9 = (+€)Lug+Lop = (A" +10) g,

, ) , ) R ) (3.22)
(o) = (Aug) +Ao(@) < (u+e)(Lug) +Ao(@) < (A" +20)(9),

which contradict the definition of 1*. So, Lemma 3.4 holds. O

In the following theorems, we always suppose (C;)—(Cy) hold.



W. Jiangand E Li 7

THEOREM 3.5. Assume that there exists ¢ > 0 such that y < f.o < 00, and 0 < f* < y, then
(1.1) have at least one positive solution.

Proof. Tt follows from 0 < f* < y and Lemma 3.3 that there exists * > 0 such that i(4,
P.,P) =1.By u< f.o < o0 and Lemma 3.4, we get that there exists 0 < p < min {r,c} such
that either there exists u € dP, satisfying u = Au or i(A,P,,P) = 0. In the second case, A
has a fixed point u € P with p < ||ul| < r by the properties of index. The proof is com-
pleted. O

THEOREM 3.6. Assume that the following assumptions are satisfied.
(Hy) There exists ¢ >0 such that y < feo < .
(Hz) There exists p, > 0 such that

f(tu,v) <mep, foruel0,p,], ve[—p,,0],ae te(0,1], (3.23)

where my = 1/|| fol G(t,s)h(s)ds]|.
Then (1.1) have at least one positive solution.

Proof. Foru e 8Ppl , by (3.23) and Lemma 2.4, we obtain

lAul| = max Au+ max (—Au)

te[0,1] te[0,1]

’

1
max J G(t,s)h(s) f (s,u(s),u’(s))ds + max (—J G(t,s)h(s)f(s,u(s),u'(s))ds)
0

te[0,1] te[0,1]

Smopl[maxJGtsh(sds+max( JGts )] Py

te[0,1] te[0,1] (3.24)
3.24

This implies Au # Au for each u € appl A>T IfAu#uforue appl, by (2) of Lemma 2.2
we get i(A,Ppl,P) =1.

It follows from p < f.o < o and Lemma 3.4 that there exists 0 < p < min{c,p,} such
that either there exists u € dP, satisfying u = Au or i(A,P,,P) =0

Suppose Au#u for u € dP, U dP, (otherwise the proof is completed), by the proper-
ties of index we get that A has a fixed point u € P satisfying p < [lull < p,. So Theorem 3.6
holds. O

THEOREM 3.7. Assume that the following assumptions are satisfied.
(H3) 0= f® <
(Hy) There exists p, > 0 such that

f(t,u,v) = Mop, for ue[0,p,], v €[-p,,0], ae te]0,1], (3.25)

where My = 1/min;eo¢, [fol G(t,s)h(s)ds — (fol G(t,s)h(s)ds)].
Then (1.1) have at least one positive solution.
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Proof. Foru € oP, , t € [0,&,,,], by (3.25) and Lemma 2.4 we get

4

1 1
Au— (Au) = L G, )h(s) f (s,u(s), e (s)) s — (L Gt $)h(s) f(s,u(s),u'(s))ds)

> Mop, [ Jol G(t,5)h(s)ds (Ll G(t,s)h(s)ds),} > p,.
(3.26)

This implies u# Au+Ag,for u € aPPZ,A >0, where ¢ € P\ {0} is the eigenfunction of L
corresponding to r(L). Suppose u # Au,for u € dP,, (otherwise, the proof is completed),
by (1) of Lemma 2.2 we get i(A,P,,,P) = 0.

By 0 < f* < and Lemma 3.3, we get that there exists r > p, such that i(A,P,,P) = 1.
By the properties of index, we get that A has a fixed point u satisfying p, < [lull < r. The
proof is completed. O

TueorEM 3.8. Assume that there exist p,, p, satisfying 0 < p, < p,mo/My such that (3.23)
and (3.25) hold, where mo, My are the same as in Theorems 3.6 and 3.7. Then (1.1) have at
least one positive solution.

Proof. By the proving process of Theorems 3.6 and 3.7, we can easily get this result. [
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