
SECOND-ORDER ESTIMATES FOR BOUNDARY BLOWUP
SOLUTIONS OF SPECIAL ELLIPTIC EQUATIONS

CLAUDIA ANEDDA, ANNA BUTTU, AND GIOVANNI PORRU

Received 20 October 2005; Accepted 7 November 2005

We find a second-order approximation of the boundary blowup solution of the equation
Δu = eu|u|β−1

, with β > 0, in a bounded smooth domain Ω ⊂ RN . Furthermore, we con-
sider the equation Δu = eu+eu . In both cases, we underline the effect of the geometry of
the domain in the asymptotic expansion of the solutions near the boundary ∂Ω.
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1. Introduction

Let Ω⊂ RN be a bounded smooth domain. In 1916, Bieberbach [10] has investigated the
problem

Δu= eu in Ω, u(x)−→∞ as x −→ ∂Ω, (1.1)

and has proved the existence of a classical solution called a boundary blowup (explo-
sive, large) solution. Moreover, if δ = δ(x) denotes the distance from x to ∂Ω, we have
[10] u(x)− log(2/δ2(x))→ 0 as x→ ∂Ω. Recently, Bandle [4] has improved the previous
estimate finding the expansion

u(x)= log
2

δ2(x)
+ (N − 1)K(x)δ(x) + o

(
δ(x)

)
, (1.2)

where K(x) denotes the mean curvature of ∂Ω at the point x nearest to x, and o(δ) has
the usual meaning. Boundary estimates for various nonlinearities have been discussed in
several papers, see for example [1, 3, 5, 8, 13–16].

In Section 2 of the present paper we investigate boundary blowup solutions of the
equation Δu= eu|u|β−1

, with β > 0, β �= 1. We prove the estimate

u(x)=Φ(δ) +β−1(N − 1)K(x)δ
(
Φ(δ)

)1−β
+O(1)δ

(
Φ(δ)

)1−2β
, (1.3)
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2 Second-order estimates

where Φ(δ) is defined by the equation
∫∞

Φ(s)

(
2F(t)

)−1/2 = s, F(t)=
∫ t

−∞
eτ|τ|

β−1
dτ, (1.4)

K(x) is the mean curvature of the surface {x ∈Ω : δ(x)= constant}, and O(1) denotes a
bounded quantity.

In Section 3 we consider boundary blowup solutions of the equation Δu = eu+eu . We
find the estimate

u(x)=Ψ(δ) + (N − 1)K(x)e−Ψ(δ)δ +O(1)e−2Ψ(δ)δ, (1.5)

where Ψ is defined by the equation
∫∞

Ψ(s)

(
2ee

t − 2
)−1/2

dt = s. (1.6)

In this paper, the distance function δ = δ(x) plays an important role. Recall that if Ω
is smooth then also δ(x) is smooth for x near to ∂Ω, and [12]

N∑

i=1

δxiδxi = 1, −
N∑

i=1

δxixi = (N − 1)K =H , (1.7)

where K = K(x) is the mean curvature of the surface {x ∈Ω : δ(x)= constant}.
The effect of the geometry of the domain in the behaviour of boundary blowup solu-

tions for special equations has been observed in various papers, see for example, [2, 7, 9,
11].

2. The equation Δu= eu|u|β−1

In what follows we denote with O(1) a bounded quantity.

Lemma 2.1. Let β > 0, f (s)= es|s|β−1
, F(s)= ∫ s−∞ f (t)dt. Then

F(s) f ′(s)
(
f (s)

)−2 = 1 +O(1)s−β. (2.1)

Proof. For s > 0 we have

F(s) f ′(s)
(
f (s)

)−2 = f ′(s)
(
f (s)

)−2
F(0) + f ′(s)

(
f (s)

)−2
∫ s

0
f (t)dt

= βe−s
β
sβ−1F(0) + e−s

β

∫ s

0
et

β
βtβ−1dt+βe−s

β

∫ s

0
et

β(
sβ−1− tβ−1)dt

= βe−s
β
sβ−1F(0) + 1− e−s

β
+βe−s

β

∫ s

0
et

β(
sβ−1− tβ−1)dt.

(2.2)

We have

lim
s→∞s

ββe−s
β
sβ−1F(0)= 0,

lim
s→∞s

βe−s
β = 0.

(2.3)
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Moreover, using de l’Hôpital’s rule we find

lim
s→∞

β
∫ s

0 e
tβ
(
s2β−1− sβtβ−1

)
dt

esβ
= lim

s→∞

∫ s
0 e

tβ
(
(2β− 1)sβ−1−βtβ−1

)
dt

esβ

= lim
s→∞

(β− 1)es
β
sβ−1 +

∫ s
0 e

tβ(2β− 1)(β− 1)sβ−2dt

βesβ sβ−1

= β− 1
β

+ (2β− 1)(β− 1) lim
s→∞

∫ s
0 e

tβdt

βesβ s

= β− 1
β

+ (2β− 1)(β− 1) lim
s→∞

1
β
(
1 +βsβ

) = β− 1
β

.

(2.4)

The lemma follows. �

Remark 2.2. If β = 1, we have F(s) f ′(s)( f (s))−2 = 1. We do not care of this special case
because it has been discussed in [2].

Lemma 2.3. Let Φ=Φ(δ) be defined by

∫∞

Φ(δ)

(
2F(t)

)−1/2
dt = δ, F(t)=

∫ t

−∞
f (τ)dτ, f (τ)= eτ|τ|

β−1
. (2.5)

Then

−Φ′(δ)=
[

1 +O(1)
(
Φ(δ)

)−β]
δ f
(
Φ(δ)

)
. (2.6)

Proof. By the (trivial) relation

−1 + 2
(
1 +O(1)s−β

)= 1 +O(1)s−β, (2.7)

using (2.1) we have

−1 + 2F(s) f ′(s)
(
f (s)

)−2 = 1 +O(1)s−β. (2.8)

Multiplying by (2F(s))−1/2 we find

−(2F(s)
)−1/2

+
(
2F(s)

)1/2
f ′(s)

(
f (s)

)−2 = (2F(s)
)−1/2

+O(1)
(
2F(s)

)−1/2
s−β,

−
((

2F(s)
)1/2(

f (s)
)−1
)′ = (2F(s)

)−1/2
+O(1)

(
2F(s)

)−1/2
s−β.

(2.9)

Integrating on (s,∞) we get

(
2F(s)

)1/2(
f (s)

)−1 =
∫∞

s

(
2F(t)

)−1/2
dt+O(1)

∫∞

s

(
2F(t)

)−1/2
t−βdt. (2.10)
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Using de l’Hôpital’s rule we find

lim
s→∞

s−β
∫∞
s

(
2F(t)

)−1/2
dt

∫∞
s

(
2F(t)

)−1/2
t−βdt

= lim
s→∞

(
2F(s)

)−1/2
s−β +βs−β−1

∫∞
s

(
2F(t)

)−1/2
dt

(
2F(s)

)−1/2
s−β

= 1 + lim
s→∞

β
∫∞
s

(
2F(t)

)−1/2
dt

s
(
2F(s)

)−1/2

= 1 + lim
s→∞

−β
1− s

(
2F(s)

)−1
f (s)

= 1.

(2.11)

In the last step we have used the limit

lim
s→∞

s f (s)
F(s)

=∞, (2.12)

which can be proved easily with de l’Hôpital’s rule. Using (2.11), (2.10) can be rewritten
as

(
2F(s)

)1/2(
f (s)

)−1 =
∫∞

s

(
2F(t)

)−1/2
dt+O(1)s−β

∫∞

s

(
2F(t)

)−1/2
dt. (2.13)

Putting s = Φ(δ) and using the equation −Φ′(δ) = (2F(Φ(δ)))1/2, the lemma follows.
�

Theorem 2.4. Let Ω be a bounded smooth domain in RN , N ≥ 2, and let β > 0, β �= 1. If
u(x) is a boundary blowup solution of Δu= eu|u|β−1

in Ω, then

u(x)=Φ(δ) +β−1Hδ
(
Φ(δ)

)1−β
+O(1)δ

(
Φ(δ)

)1−2β
, (2.14)

where Φ(δ) is defined as in (2.5), δ = δ(x) is the distance from x to ∂Ω and H is defined by
(1.7).

Proof. We look for a super-solution of the form

w(x)=Φ(δ) +β−1Hδ
(
Φ(δ)

)1−β
+αδ

(
Φ(δ)

)1−2β
, (2.15)

where α is a positive constant to be determined. Denoting by ′ differentiation with respect
to δ, we have

wxi =Φ′(δ)δxi +β−1Hxiδ
(
Φ(δ)

)1−β
+β−1H

(
δ
(
Φ(δ)

)1−β)′
δxi +α

(
δ
(
Φ(δ)

)1−2β
)′
δxi .

(2.16)
Using (1.7) we find

Δw =Φ′′(δ)−Φ′(δ)H +β−1ΔHδ
(
Φ(δ)

)1−β
+ 2β−1∇H ·∇δ

(
δ
(
Φ(δ)

)1−β)′

+β−1H
(
δ
(
Φ(δ)

)1−β)′′ −β−1H2
(
δ
(
Φ(δ)

)1−β)′

+α
(
δ
(
Φ(δ)

)1−2β
)′′ −α

(
δ
(
Φ(δ)

)1−2β
)′
H.

(2.17)
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With f (τ) = eτ|τ|β−1
, by (2.5) we have Φ′′(δ) = f (Φ). Often we write Φ instead of Φ(δ)

and Φ′ instead of Φ′(δ). Lemma 2.3 yields

−Φ′ = [1 +O(1)Φ−β]δ f (Φ). (2.18)

Using (2.18) and the equation Φ′ = −(2F(Φ))1/2 we find

lim
δ→0

(
Φ(δ)

)1−β

δ
(
Φ(δ)

)−β
f (Φ)

= lim
δ→0

Φ

−Φ′ = lim
δ→0

Φ
(
2F(Φ)

)1/2

= lim
s→∞

(
s2

2F(s)

)1/2

= lim
s→∞

(
s

f (s)

)1/2

= 0.

(2.19)

Let us write the last result as

(
Φ(δ)

)1−β = o(1)δ
(
Φ(δ)

)−β
f (Φ), (2.20)

where o(1) denotes a quantity which tends to zero as δ→ 0. Using (2.18) again we find

lim
δ→0

(
Φ(δ)

)−β
Φ′

δ
(
Φ(δ)

)−β
f (Φ)

=−1. (2.21)

Therefore,

(
δ
(
Φ(δ)

)1−β)′ = (Φ(δ)
)1−β

+ (1−β)δ
(
Φ(δ)

)−β
Φ′

= o(1)δ
(
Φ(δ)

)−β
f (Φ).

(2.22)

Further differentiation yields

(
δ
(
Φ(δ)

)1−β)′′ = 2(1−β)
(
Φ(δ)

)−β
Φ′ −β(1−β)δ

(
Φ(δ)

)−β−1
(Φ′)2

+ (1−β)δ
(
Φ(δ)

)−β
f (Φ).

(2.23)

Moreover, recalling (2.12) we find

lim
δ→0

δ
(
Φ(δ)

)−β−1
(Φ′)2

δ
(
Φ(δ)

)−β
f (Φ)

= lim
δ→0

2F(Φ)
Φ f (Φ)

= lim
s→∞

2F(s)
s f (s)

= 0. (2.24)

Using the last result and (2.21), from (2.23) we find

(
δ
(
Φ(δ)

)1−β)′′ =O(1)δ
(
Φ(δ)

)−β
f (Φ). (2.25)

Similarly, we find

(
δ
(
Φ(δ)

)1−2β
)′ = o(1)δ

(
Φ(δ)

)−2β
f (Φ),

(
δ
(
Φ(δ)

)1−2β
)′′ =O(1)δ

(
Φ(δ)

)−2β
f (Φ).

(2.26)
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Denoting by M1 a nonnegative constant independent of α and using (2.18), (2.20),
(2.22), (2.25), (2.26), by (2.17) we get

Δw < f (Φ)
[
1 +Hδ +M1δΦ

−β +αM1δΦ
−2β]. (2.27)

On the other side, we have

f (w)= e(Φ+β−1HδΦ1−β+αδΦ1−2β)β

= eΦ
β(1+β−1HδΦ−β+αδΦ−2β)β .

(2.28)

Let us take δ0 > 0 and α such that for {x ∈Ω : δ(x) < δ0} we have

−1
2
< β−1Hδ

(
Φ(δ)

)−β
+αδ

(
Φ(δ)

)−2β
< 1. (2.29)

Then, denoting by M2 a nonnegative constant independent of α we find

f (w) > eΦ
β(1+HδΦ−β+αβδΦ−2β−M2(δΦ−β)2−M2(αδΦ−2β)2)

= f (Φ)eHδ+αβδΦ−β−M2δ2Φ−β−M2(αδ)2Φ−3β

> f (Φ)
[
1 +Hδ +αβδΦ−β−M2δ

2Φ−β−M2(αδ)2Φ−3β].

(2.30)

By (2.27) and (2.30) we find that

Δw < f (w) (2.31)

when

1 +Hδ +M1δΦ
−β +αM1δΦ

−2β < 1 +Hδ +αβδΦ−β−M2δ
2Φ−β−M2(αδ)2Φ−3β.

(2.32)
Rearranging we find

M1 +M2δ < α
[
β−M2αδΦ

−2β−M1Φ
−β]. (2.33)

We can take δ0 small and α large so that (2.33) and (2.29) hold for δ(x) < δ0.
Our function f (t)= et|t|β−1

is positive and increasing for all t, and F(t)t−2 is increasing
for large t. Moreover, if G(t)= ∫ t0

√
F(s)ds, for a and b such that 1 < a < 2 < b, we have

a
F(t)
f (t)

≤ G(t)
G′(t)

≤ b
F(t)
f (t)

for large t. (2.34)

Therefore, by [7, Theorem 4(ii)] we have, for some constant C > 0,

Cδ2Φ′(δ) +Φ(δ)≤ u(x)≤Φ(δ) +CδΦ(δ). (2.35)

Using the right-hand side of (2.35) we find

w(x)−u(x)≥Φ(δ)
[
β−1Hδ

(
Φ(δ)

)−β
+αδ

(
Φ(δ)

)−2β−Cδ
]
. (2.36)
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Take α and δ0 such that (2.33) holds and put αδ0(Φ(δ0))−2β = q. Decrease δ0 and increase
α so that αδ0(Φ(δ0))−β = q and

β−1Hδ
(
Φ(δ)

)−β
+ q−Cδ > 0 (2.37)

for δ(x) = δ0. Then, w(x) ≥ u(x) on {x ∈Ω : δ(x) = δ0}. When α is fixed, by (2.36) we
get liminfx→∂Ω[w(x)− u(x)] ≥ 0. Hence, using (2.31) we find w(x) ≥ u(x) on {x ∈ Ω :
δ(x) < δ0}.

We look for a subsolution of the form

v(x)=Φ(δ) +β−1Hδ
(
Φ(δ)

)1−β−αδ
(
Φ(δ)

)1−2β
, (2.38)

where α is a positive constant to be determined. Instead of (2.27), now we find

Δv > f (Φ)
[
1 +Hδ−M1δΦ

−β−αM1δΦ
−2β]. (2.39)

Of course, the constant M1 in (2.39) and the constants Mi in what follows are not neces-
sarily the same as in the previous case.

Now we have

f (v)= eΦ
β(1+β−1HδΦ−β−αδΦ−2β)β . (2.40)

Let us take δ0 > 0 and α such that, for {x ∈Ω : δ(x) < δ0} we have

−1
2
< β−1Hδ

(
Φ(δ)

)−β−αδ
(
Φ(δ)

)−2β
< 1. (2.41)

Then,

f (v) < eΦ
β(1+HδΦ−β−αβδΦ−2β+M2(δΦ−β)2+M2(αδΦ−2β)2)

= f (Φ)eHδ−αβδΦ−β+M2δ2Φ−β+M2(αδ)2Φ−3β
.

(2.42)

In our next step, we take δ and α such that

αδΦ−β < 1, Hδ−αβδΦ−β +M2δ
2Φ−β +M2(αδ)2Φ−3β < 1. (2.43)

Then we find

f (v) < f (Φ)
[
1 +Hδ−αβδΦ−β +M3δ

2 +M3(αδ)2Φ−2β]. (2.44)

By (2.39) and (2.44) we find that Δv > f (v) provided

1 +Hδ−M1δΦ
−β−αM1δΦ

−2β > 1 +Hδ−αβδΦ−β +M3δ
2 +M3(αδ)2Φ−2β. (2.45)

Rearranging we have

α
[
β−M1Φ

−β−M3αδΦ
−β] >M1 +M3δΦ

β. (2.46)

Since δΦβ → 0 as δ → 0, inequality (2.46) (in addition to (2.41) and (2.43)) holds for
δ(x) < δ0 with suitable δ0 and α.



8 Second-order estimates

Using the left-hand side of (2.35) we find

v(x)−u(x)≤ β−1Hδ
(
Φ(δ)

)1−β−αδ
(
Φ(δ)

)1−2β−Cδ2Φ′(δ)

= (Φ(δ)
)1−β[

β−1Hδ−αδ
(
Φ(δ)

)−β−Cδ2Φ′(δ)
(
Φ(δ)

)β−1
]
.

(2.47)

Take α and δ0 such that (2.46) holds, and put αδ0(Φ(δ0))−β = q. Decrease δ0 and increase
α so that αδ0(Φ(δ0))−β = q and

β−1Hδ− q−Cδ2Φ′(δ)
(
Φ(δ)

)β−1
< 0 (2.48)

for δ(x)= δ0. Note that the previous inequality holds for δ small because

lim
δ→0

δ2Φ′(δ)
(
Φ(δ)

)1−β = 0, (2.49)

as one can prove using Lemma 2.3 and de l’Hôpital’s rule. It follows from (2.47) that
v(x) ≤ u(x) on {x ∈ Ω : δ(x) = δ0}. By (2.47) we also find that v(x)− u(x) ≤ 0 on ∂Ω.
Hence v(x)≤ u(x) on {x ∈Ω : δ(x) < δ0}. The theorem follows. �

3. The equation Δu= eu+eu

Lemma 3.1. Let f (t)= et+e
t
, F(s)= ∫ s−∞ f (t)dt. Then

F(s) f ′(s)
(
f (s)

)−2 = 1 +O(1)e−s, (3.1)

where O(1) is a bounded quantity.

Proof. By computation we find

F(s) f ′(s)
(
f (s)

)−2 = 1 + e−s− e−e
s − e−s−e

s
. (3.2)

The lemma follows. �

Lemma 3.2. Let f (t) and F(s) be as in Lemma 3.1. If

∫∞

Ψ(δ)

(
2F(s)

)−1/2
ds= δ (3.3)

we have

−Ψ′(δ)= [1 +O(1)e−Ψ(δ)]δ f
(
Ψ(δ)

)
. (3.4)

Proof. By the (trivial) relation

−1 + 2
(
1 +O(1)e−s

)= 1 +O(1)e−s, (3.5)

using (3.1) we have

−1 + 2F(s) f ′(s)
(
f (s)

)−2 = 1 +O(1)e−s. (3.6)
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Multiplying by (2F(s))−1/2 we find

−(2F(s)
)−1/2

+
(
2F(s)

)1/2
f ′(s)

(
f (s)

)−2 = (2F(s)
)−1/2

+O(1)
(
2F(s)

)−1/2
e−s,

−
((

2F(s)
)1/2(

f (s)
)−1
)′ = (2F(s)

)−1/2
+O(1)

(
2F(s)

)−1/2
e−s.

(3.7)

Integrating on (s,∞) we get

(
2F(s)

)1/2(
f (s)

)−1 =
∫∞

s

(
2F(t)

)−1/2
dt+O(1)

∫∞

s

(
2F(t)

)−1/2
e−tdt. (3.8)

Using de l’Hôpital’s rule we find

lim
s→∞

e−s
∫∞
s

(
2F(t)

)−1/2
dt

∫∞
s

(
2F(t)

)−1/2
e−tdt

= 1 + lim
s→∞

∫∞
s

(
2F(t)

)−1/2
dt

(
2F(s)

)−1/2 = 1. (3.9)

Using (3.9), (3.8) can be rewritten as

(
2F(s)

)1/2(
f (s)

)−1 =
∫∞

s

(
2F(t)

)−1/2
dt+O(1)e−s

∫∞

s

(
2F(t)

)−1/2
dt. (3.10)

Putting s=Ψ(δ) and recalling that −Ψ′(δ)= (2F(Ψ(δ)))1/2, the lemma follows. �

Theorem 3.3. Let Ω be a bounded smooth domain in RN , N ≥ 2, and let f (t) = et+e
t
. If

u(x) is a boundary blowup solution of Δu= f (u) in Ω, then we have

u(x)=Ψ+He−Ψδ +O(1)e−2Ψδ, (3.11)

where Ψ=Ψ(δ) is defined as in Lemma 3.2 and H =H(x) is defined by (1.7).

Proof. We look for a super-solution of the form

w(x)=Ψ+He−Ψδ +αe−2Ψδ, (3.12)

where α is a positive constant to be determined. Denoting by ′ differentiation with respect
to δ, we have

wxi =Ψ′δxi +Hxie
−Ψδ +H

(
e−Ψδ

)′
δxi +α

(
e−2Ψδ

)′
δxi . (3.13)

Using (1.7) we find

Δw =Ψ′′ −Ψ′H +ΔHe−Ψδ +
(
2∇H ·∇δ−H2)(e−Ψδ

)′
+H

(
e−Ψδ

)′′

−αH
(
e−2Ψδ

)′
+α
(
e−2Ψδ

)′′
.

(3.14)

By Lemma 3.2 we have −Ψ′ = [1 + O(1)e−Ψ]δ f (Ψ), and Ψ′′ = f (Ψ). Moreover, since
Ψ′δ→ 0 as δ→ 0, for δ small we also find

0 <
(
e−Ψδ

)′ = e−Ψ− e−ΨΨ′δ < C1e
−Ψ. (3.15)
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We denote with Ci positive constants (independent of α). Since f (Ψ)δ2 → 0 and f (Ψ)δ→
∞ as δ→ 0, we get

0 <
(
e−Ψδ

)′′ = −2e−ΨΨ′ − e−Ψ f (Ψ)δ + e−Ψ(Ψ′)2δ < C2e
−Ψ f (Ψ)δ. (3.16)

Similarly, we find

0 <
(
e−2Ψδ

)′
< C3e

−2Ψ,

0 <
(
e−2Ψδ

)′′
< C4e

−2Ψ f (Ψ)δ.
(3.17)

Therefore, by (3.14) we infer

Δw < f (Ψ)
[
1 +Hδ +M1e

−Ψδ +αM2e
−2Ψδ

]
. (3.18)

On the other side, since

ew = eΨ+He−Ψδ+αe−2Ψδ > eΨ
[
1 +He−Ψδ +αe−2Ψδ

]
, (3.19)

we find

f (w)= ew+ew > eΨ+He−Ψδ+αe−2Ψδ+eΨ[1+He−Ψδ+αe−2Ψδ]

= eΨ+eΨe[He−Ψδ+αe−2Ψδ+Hδ+αe−Ψδ]

> f (Ψ)
[
1−M3e

−Ψδ +Hδ +αe−Ψδ
]
.

(3.20)

By (3.18) and (3.20) we have

Δw < f (w) (3.21)

provided

1 +Hδ +M1e
−Ψδ +αM2e

−2Ψδ < 1−M3e
−Ψδ +Hδ +αe−Ψδ. (3.22)

Rearranging we find

M1 +M3 < α
[
1−M2e

−Ψ(δ)]. (3.23)

Inequality (3.23) holds provided δ is small and α is large enough.
The function f (t) = et+e

t
is positive and increasing for all t. If F(t) is defined as in

Lemma 3.1, the function F(t)t−2 is increasing for large t. Moreover, if G(t)= ∫ t0
√
F(s)ds,

for 1 < a < 2 < b we have

a
F(t)
f (t)

≤ G(t)
G′(t)

≤ b
F(t)
f (t)

for large t. (3.24)

Therefore, by [7, Theorem 4(ii)] we have, for some constant C > 0,

Cδ2Ψ′(δ) +Ψ(δ)≤ u(x)≤Ψ(δ) +CδΨ(δ). (3.25)



Claudia Anedda et al. 11

Using the right-hand side of (3.25) we find

w(x)−u(x)≥He−Ψδ +αe−2Ψδ−CδΨ(δ). (3.26)

Take α and δ0 so that (3.23) holds for δ(x)= δ0 and put q = αe−2Ψ(δ0)δ0. Decrease δ0 and
increase α so that αe−2Ψ(δ0)δ0 = q and He−Ψδ + q−CδΨ(δ) > 0 for δ(x)= δ0. Recall that
δΨ(δ)→ 0 as δ → 0. Then, w(x) ≥ u(x) on {x ∈Ω : δ(x) = δ0}. Moreover, by (3.26) we
have w(x)−u(x)≥ 0 on ∂Ω. Hence, using (3.21) we find w(x)≥ u(x) on {x ∈Ω : δ(x) <
δ0}.

Let us prove that

v =Ψ+He−Ψδ−αe−2Ψδ (3.27)

is a subsolution provided α is a suitable positive constant. By computation, instead of
(3.18), now we find

Δv > f (Ψ)
[
1 +Hδ−M4e

−Ψδ−αM5e
−2Ψδ

]
. (3.28)

The next step is slightly delicate. Take α and δ such that

eαe−Ψδ < 1, He−Ψδ−αe−2Ψδ < 1. (3.29)

Then, using the second inequality in (3.29), we find

ev = eΨ+He−Ψδ−αe−2Ψδ < eΨ
[

1 +He−Ψδ−αe−2Ψδ + e
(
He−Ψδ

)2
+ e
(
αe−2Ψδ

)2
]
. (3.30)

Hence, using the first inequality in (3.29), we get

f (v)= ev+ev < eΨ+He−Ψδ−αe−2Ψδ+eΨ+Hδ−αe−Ψδ+eH2e−Ψδ2+eα2e−3Ψδ2

< f (Ψ)eHδ+M6e−Ψδ−αe−Ψδ < f (Ψ)
[

1 +Hδ +M7e
−Ψδ−αe−Ψδ +

(
αe−Ψδ

)2
]
.

(3.31)

Comparing the last estimate with (3.28) we have

Δv > f (v) (3.32)

provided

1 +Hδ−M4e
−Ψδ−αM5e

−2Ψδ > 1 +Hδ +M7e
−Ψδ−αe−Ψδ +

(
αe−Ψδ

)2
. (3.33)

Rearranging, this inequality reads as

α
[
1−αe−Ψδ−M5e

−Ψ] >M4 +M7. (3.34)

Of course, (3.34) and (3.29) hold provided α is large and δ is small enough. Using the
left-hand side of (3.25), decreasing δ0 and increasing α if necessary, one proves that v(x)−
u(x)≤ 0 at all points in Ω with δ(x)= δ0. Moreover, using (3.25) again we observe that
v(x)−u(x)≤ 0 on ∂Ω. Therefore, by (3.32) it follows that v(x) is a subsolution on {x ∈
Ω : δ(x) < δ0}. The theorem is proved. �
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