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We find a second-order approximation of the boundary blowup solution of the equation
Au = e“'"'lH, with >0, in a bounded smooth domain Q) C RN Furthermore, we con-
sider the equation Au = e“™*". In both cases, we underline the effect of the geometry of
the domain in the asymptotic expansion of the solutions near the boundary 0Q).
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1. Introduction
Let Q C RN be a bounded smooth domain. In 1916, Bieberbach [10] has investigated the
problem

Au=e* inQ, u(x) — o asx — 0Q, (1.1)

and has proved the existence of a classical solution called a boundary blowup (explo-
sive, large) solution. Moreover, if § = §(x) denotes the distance from x to 0Q), we have
[10] u(x) —log(2/8%(x)) — 0 as x — 0. Recently, Bandle [4] has improved the previous
estimate finding the expansion

2
6%(x)

u(x) =log +(N - 1)K (x)8(x)+0(8(x)), (1.2)
where K(x) denotes the mean curvature of dQ) at the point X nearest to x, and o(6) has
the usual meaning. Boundary estimates for various nonlinearities have been discussed in
several papers, see for example [1, 3, 5, 8, 13-16].

In Section 2 of the present paper we investigate boundary blowup solutions of the
equation Au = e""“fH, with >0, 8 # 1. We prove the estimate

u(x) = O(8) + B (N = DK(x)3(D(8)) F +0(1)8(d(8)) ', (1.3)
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2 Second-order estimates

where ©(9) is defined by the equation

J;)(zm))‘”:s, F(t>=f eI g, (14)

K(x) is the mean curvature of the surface {x € Q) : §(x) = constant}, and O(1) denotes a
bounded quantity.

In Section 3 we consider boundary blowup solutions of the equation Au = e**¢". We
find the estimate

u(x) =¥(8)+ (N — DK (x)e YO8+ 0(1)e 2¥@)¢, (1.5)

where ¥ is defined by the equation
L( ) (2¢¢ —2) dt =s. (1.6)
N

In this paper, the distance function § = §(x) plays an important role. Recall that if O
is smooth then also §(x) is smooth for x near to 0€), and [12]

N N
> 8.0y =1, =3 8y = (N-1)K = H, (1.7)
i=1 i=1

where K = K(x) is the mean curvature of the surface {x € Q: §(x) = constant}.

The effect of the geometry of the domain in the behaviour of boundary blowup solu-
tions for special equations has been observed in various papers, see for example, [2, 7, 9,
11].

ululf-1

2. The equation Au = e
In what follows we denote with O(1) a bounded quantity.
LemMA 2.1. Let >0, f(s) = e F(s) = I f(t)dt. Then

F&) £ ()(f(s) 2 =1+0(1)sF. 2.1)

Proof. For s >0 we have

F(s)f' () (f(s) 2 = /() (F()) °F(0) + f(s)(f ()~ jo f(p)dt
= Be s 1F(0) + e Jsetﬁﬁtﬁ_ldt+/3€_sﬁ Js e (P71 — P 1)dt
0 0

N
= [p’e*Sﬁsﬂle(O) +1-e¥ +[Se*5ﬁ I e (P71 — P 1) dt.
0
(2.2)

We have

Sliﬁrp.osﬁ/:’e*ﬁsﬂle(O) =0,

(2.3)
limsfe =o0.

§—00
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Moreover, using de 'Hépital’s rule we find

Blse (s%-1 — PtP-1)dt i e’ (2B —1)sP~1 — BtP~1)dt

}Lm.o et s—o00 et
iy BDES et‘; (2B—1)(B—1)s*2dt
S ﬁes sB-1
B-1 S dr (24
_ ok
= T +(2p-1D(B- 1)}13?0 Be®s
_B-1 TV 1 _p-1
Sp PPNV ey T
The lemma follows. O

Remark 2.2. 1f B =1, we have F(s) f'(s)(f(s)) ™2 = 1. We do not care of this special case
because it has been discussed in [2].

LemMa 2.3. Let @ = O(6) be defined by

J;B) (2F() =8, F(t) - j_tm F(@)dr, f(x) = e (2.5)
Then
~0'(8) = [1+0(1)(®(8)) F|af (@(8)). (2.6)
Proof. By the (trivial) relation
—14+2(1+0(1)s ) =1+ 0(1)sB, (2.7)
using (2.1) we have
—142F(s)f'(s)(f(5)) " =1+ 0(1)s7F, (2.8)
Multiplying by (2F(s))~ "2 we find

—(2F(s)) "2+ (2F(9)) £ (5)(f(5)) 7 = (2F(5))* +0(1) (2F(s)) s 7P,

/ 2.9
~(@F6)(F)7") = @F() ™" +001)(2E(s) 57, =

Integrating on (s, ) we get

[

QFs) " (f(s) ' = Jw (2F(t)) " dt+ 0(1)J (2F (1))t Pat. (2.10)

N
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Using de 'Hopital’s rule we find

P QE@) de . (2F() s B4 ps P T (2F () dt
1m == -1z = lim )
= (2 QF() Prbdt (2E(s)) 5P
I (2F(r) "t

= 1+lim T (2.11)
=1+lim # =1
e 1=5(2F(s)  f(s)
In the last step we have used the limit
sS () (2.12)

BT S

which can be proved easily with de 'Hopital’s rule. Using (2.11), (2.10) can be rewritten
as

(2F() 2 (f(s) ' = Jm (2E(t) dt + 0(1)5-13[& (2F(r) dt. (2.13)

Putting s = ®(8) and using the equation —®'(8) = (2F(D(J)))"?, the lemma follows.
O

THEOREM 2.4. Let Q be a bounded smooth domain in RN, N > 2, and let >0, # 1. If
u(x) is a boundary blowup solution of Au = e*“"" in Q, then

u(x) = ©(8) + B HS(0(8)) F +0(1)8(0(8)) ¥, (2.14)

where O©(8) is defined as in (2.5), § = §(x) is the distance from x to 0Q and H is defined by
(1.7).

Proof. We look for a super-solution of the form
w(x) = ©(8) +pHO(D(8))" P +ad(0(8))" ¥, (2.15)

where «a is a positive constant to be determined. Denoting by  differentiation with respect
to 0, we have

i

Wy, = O (8)3, + B HS(0(8) 7+ pH(8(0(8) ) 8, +a(((9)¥) 5

(2.16)
Using (1.7) we find
Aw = @"(8) — @' (O)H +p AHS(®(9)) P +287'VH - V8 (8(0(0)) 1’ﬁ)'
+BH(3(@() )~ prH(s(0(9) ) (2.17)

ra(8(0()' ) —a(s(@®) ¥ .
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With f(7) = ettt by (2.5) we have @' (§) = f (D). Often we write ® instead of O(J)
and @' instead of @' (§). Lemma 2.3 yields

—®' = [1+0(1)DFIof (D). (2.18)
Using (2.18) and the equation @’ = —(2F(®))"? we find

(@(8))"* D @
lm—*ﬁ = hmT‘), = 111’1’171/2
-0 8(0(8)) P f(@) 00 0-0 (2F(®)) (2.19)

Let us write the last result as

(@(9))

1

= o(1)8(@(8)) F f(@), (2.20)

where 0(1) denotes a quantity which tends to zero as § — 0. Using (2.18) again we find

’ﬁ ’
T (221)
3-05(d(3)) " f(@)

Therefore,

(3(@()'*) = (@) " +1 - p3(0(8) Fo

(2.22)
= o(1)8(®(8) £ ().
Further differentiation yields
(3(@®)'™)" =201~ p)(@(8) P (1 - P ((8) * (@) o)
+(1-P)o(@(8) " f(@).
Moreover, recalling (2.12) we find
. 8(0(®) FTN@)? . 2F(®) . 2F(s)
5 s(@@) Fr@)  om0s@) ef) " 220
Using the last result and (2.21), from (2.23) we find
(5(@@)' )" = 0()s(@(8) * f(®). (2.25)
Similarly, we find
(8(@(8)' ) = o(ns(®(8) ¥ f(@),
(2.26)

(3(@(®)'%)" = 0 (@(8) ¥ f(@).
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Denoting by M; a nonnegative constant independent of « and using (2.18), (2.20),
(2.22), (2.25), (2.26), by (2.17) we get

Aw < f(®)[1+HS + M 8D F + aM, 5D #]. (2.27)

On the other side, we have

f(W) _ e(®+ﬁ’1H5CD1’ﬂ+a8®l’2ﬂ)ﬁ

_ e¢>ﬂ(l+ﬁ"H6®’ﬁ+a6KD’2ﬁ)ﬁ. (2.28)
Let us take &g > 0 and « such that for {x € Q: §(x) < §g} we have
3 < B HO(@(0) P +ad(@(0) P <1, (2.29)
Then, denoting by M, a nonnegative constant independent of & we find
flw)> O (1+HO® oS0 —M; (30 F) M, (a0 %)?)
_ f((D)eHéﬂxﬁMYﬁ—M252®’ﬁ—Mz(a6)2¢’3ﬁ (2.30)
> f(®)[1+HS+afdD P — My5>DF — My (ad)*dF].
By (2.27) and (2.30) we find that
Aw < f(w) (2.31)

when

1+HGS+ M 80P +aM 80 < 1+ HS+afdDF — My6*DF — M, (ad)* D3P,
(2.32)
Rearranging we find

M+ M8 < a[f — MyadD 2 — MdF]. (2.33)

We can take § small and « large so that (2.33) and (2.29) hold for §(x) < &.

Our function f(t) = e!l*" is positive and increasing for all £, and F(t)¢~2 is increasing
for large t. Moreover, if G(t) = fot ~F(s)ds, for a and b such that 1 < a < 2 < b, we have
F(t)

F@) _ G(t) _, F@t)
am 0h bf(t) for large ¢. (2.34)

Therefore, by [7, Theorem 4(ii)] we have, for some constant C > 0,

CO*D'(8) + D(8) < u(x) < ®(8) + CID(J). (2.35)
Using the right-hand side of (2.35) we find

w(x) - u(x) = O(O)[fHO(®(8)) F +ad(0(8)) ¥ - Cd]. (2.36)
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Take a and & such that (2.33) holds and put a8o(®(8y)) 28 = q. Decrease &y and increase
a so that ady(®(8y)) # = g and

BIHS(D(8)) F+q-C8>0 (2.37)

for §(x) = 8. Then, w(x) = u(x) on {x € Q:8(x) = §o}. When « is fixed, by (2.36) we
get liminf,_ja[w(x) — u(x)] = 0. Hence, using (2.31) we find w(x) > u(x) on {x € Q:
d(x) < 8o}

We look for a subsolution of the form

v(x) = (&) + fLHI((8)) F — ad(®(8)) ¥, (2.38)
where « is a positive constant to be determined. Instead of (2.27), now we find
Av > f(D)[1+HS — M 8D F — aM, 6D 2F]. (2.39)

Of course, the constant M; in (2.39) and the constants M; in what follows are not neces-
sarily the same as in the previous case.
Now we have

f(V) _ ed>/3(l+ﬁ’1H6d>’/3—a5®’25)5. (2‘40)

Let us take &y > 0 and « such that, for {x € Q:8(x) < 8y} we have

—% <BHI(®(8) F - ad(®(8) * < 1. (2.41)
Then,
) < P (1+HODF—aBO® 2+ M (307FV+M; (00~ #)?)
_ f(q))eHSﬂx[S&D’ﬂJrMZ82®’ﬂ+M2(¢x5)ZCD’3/5. (2.42)
In our next step, we take § and « such that
abd P <1,  HE-apdd P+ MO P + My(ad)?0 ¥ < 1. (2.43)
Then we find
f) < f(D)[1+HS — aBdDF + M;36% + Ms(ad)* D 2F]. (2.44)

By (2.39) and (2.44) we find that Av > f(v) provided
1+HS — M0 P — aM 8O > 1+ HS — afSDF + M36> + M3 (ad)* D%, (2.45)
Rearranging we have
a[B - M®F — M3adDF] > M, + M36DF. (2.46)

Since ®F — 0 as § — 0, inequality (2.46) (in addition to (2.41) and (2.43)) holds for
d(x) < 8y with suitable §y and «.
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Using the left-hand side of (2.35) we find

v(x) — u(x) < pLHS(D(8)) F - ad(@(8)) ¥ - C82' (5)

2.47
= (q)((s\))l*ﬁ[ﬁ—lHa_(x(s((D((S))*ﬁ_C82(D/(6)((D(8))ﬁ—1] ( )

Take o and &y such that (2.46) holds, and put a8y (®(8y))~# = g. Decrease & and increase
a so that adp(®(8y)) " = q and

BUHS — q— CO*' (8)(9(8))F ' <0 (2.48)

for 8(x) = §y. Note that the previous inequality holds for ¢ small because

20'(5)
élf»% W = 0, (249)

as one can prove using Lemma 2.3 and de ’'Hoépital’s rule. It follows from (2.47) that
v(x) < u(x) on {x € Q:8(x) = d}. By (2.47) we also find that v(x) — u(x) < 0 on 9Q.
Hence v(x) < u(x) on {x € Q: 6(x) < dy}. The theorem follows. O

3. The equation Au = e#+¢"

Lemma 3.1. Let f(t) = e, F(s) = [* f(t)dt. Then

F(S)f'(5)(f(s) " = 1+0(D)e ", (3.1)
where O(1) is a bounded quantity.

Proof. By computation we find

F&) ' ($)(f(s) P =l4e —e® —e e (3.2)
The lemma follows. O

LemMa 3.2. Let f(t) and F(s) be as in Lemma 3.1. If

L:s) (2F(s)) "2ds = 8 (3.3)
we have
(&) = [1+0(1)e YD) £ (¥(6)). (3.4)
Proof. By the (trivial) relation
—-142(1+0(1)e™*) =1+ 0(1)e%, (3.5)

using (3.1) we have

—14+2F(s) f'(s)(f(s)) > =1+0(1)e . (3.6)
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Multiplying by (2F(s))~"? we find

—(2F(s)) "+ (2F(9) 2 () (f(5)) 7 = (2F(5)) "+ 0(1) (2F(s)) e,

/ 3.7
—((2F() " (f(9)) ") = @F($) " +01)(2F(s) e, >

Integrating on (s, ) we get

QF() 2 (f(s) " = Jm (2F(t))_1/2dt+O(l)Jm QF@1) e tdt. (3.8

Using de I'Hopital’s rule we find

s o 2 12,
e[ (2F( ta/)z +lim HLM -1 (3.9)
s [T (2F(1)) e—’dt s~ (2F(s))
Using (3.9), (3.8) can be rewritten as
2F) " (f(9) " = j (2F(1) Vdr + 0(1)e*5j (2F(1) . (3.10)
Putting s = ¥(§) and recalling that —\¥’(8) = (2F(¥(8)))"?, the lemma follows. O

THEOREM 3.3. Let Q be a bounded smooth domain in RN, N > 2, and let f(t) = ette, If
u(x) is a boundary blowup solution of Au = f(u) in Q, then we have

u(x) =¥+He Y8+ 0(1)e Y6, (3.11)

where ¥ = V(0) is defined as in Lemma 3.2 and H = H(x) is defined by (1.7).

Proof. We look for a super-solution of the form
wx)=¥Y+He Y8 +ae?"s, (3.12)

where « is a positive constant to be determined. Denoting by * differentiation with respect
to §, we have

Wy, =V 0, +Hee Y0+ H (e ¥8) 8, +a(e 2¥6) .. (3.13)
Using (1.7) we find

Aw=Y" —V'H+AHe Y6+ (2VH -V —H?) (e ¥8) +H(e ¥5)"

’ " 3.14
—aH (e ?¥8) +a(e2Y8) . (3-14)

By Lemma 3.2 we have =¥ = [1+ O(1)e"Y]8 f(¥), and ¥ = f(¥). Moreover, since
¥'§ — 0asd — 0, for § small we also find

<(e¥8) =e ¥V —e Y 5<Cle Y. (3.15)
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We denote with C; positive constants (independent of a). Since f(¥)6%? — 0and f(¥)d —
0o as § — 0, we get

<(eY8) = 2V —e Y f(W)S+e (V)2 < Cre Y F(¥)0. (3.16)
Similarly, we find

0< (e72Y8) < Cye72Y,

0< (e72%8)" < Che 2 f(¥)0. (3:17)
Therefore, by (3.14) we infer
Aw< f(¥)[1+HS+Me 8 +aMe 28] (3.18)
On the other side, since
eV = eVHHe "orac ™o o Y] L He Y5 4+ ae2¥ 5], (3.19)
we find
flw) = eWte” s p¥+He Y otae ¥ o+e¥ [1+He ™ d+ae 5]
_ Ve plHe Y Stae Y S+ HO+ae "] (3.20)
> f(V)[1-Mse ¥ +HS +ae ¥5).
By (3.18) and (3.20) we have
Aw < f(w) (3.21)
provided
1+HS+Mie Y8+ aMye V6 <1 - Mse Y8+ HS +ae™ V6. (3.22)
Rearranging we find
M +M; < a1 — Mye V], (3.23)

Inequality (3.23) holds provided ¢ is small and « is large enough.

The function f(t) = e is positive and increasing for all t. If F(t) is defined as in
Lemma 3.1, the function F(t)t~2 is increasing for large t. Moreover, if G(¢ fo JF(s)ds,
for 1 <a <2< bwehave

LEW _ G

_,F®
IR0

Therefore, by [7, Theorem 4(ii)] we have, for some constant C > 0,

for large ¢. (3.24)

CS*W'(8) +¥(0) < u(x) < ¥(8) + CO¥(9). (3.25)
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Using the right-hand side of (3.25) we find
w(x) —u(x) = He Y8 + ae 2Y8 — COY(9). (3.26)

Take a and & so that (3.23) holds for §(x) = §y and put g = ae~2¥(%)§;. Decrease 8, and
increase a so that ae 2% §, = g and He Y8 +q — CS¥(8) > 0 for §(x) = &. Recall that
0¥ (8) — 0 as § — 0. Then, w(x) = u(x) on {x € Q:8(x) = §}. Moreover, by (3.26) we
have w(x) — u(x) = 0 on Q. Hence, using (3.21) we find w(x) > u(x) on {x € Q: (x) <
Oo}.

Let us prove that

v=W+He Y6 —ae 2§ (3.27)

is a subsolution provided « is a suitable positive constant. By computation, instead of
(3.18), now we find

Av> f(P)[1+HS — Mye Y8 — aMse *¥§). (3.28)
The next step is slightly delicate. Take & and & such that
eae V0 <1, He V6 —ae ?¥6< 1. (3.29)
Then, using the second inequality in (3.29), we find
" = g¥rHe o-ae o e\y[l +He Y8 —ae Y6 +e(He ¥0) + e(oce‘”(?)z]. (3.30)

Hence, using the first inequality in (3.29), we get

v VS qe2Y§rel e Y 2,-Y 521 oo e 3Y 52
f(V) — pVte"  pY+He d—ae *"d+e' +HO—ae ¥ d+eH?e ¥ §*+ea’e 7" §

< f(@)eHotMse ™ 0-ac™0 o () [1 +HS+Mse V8 —ae ¥+ (oce*\y8)2]. (3:31)
Comparing the last estimate with (3.28) we have
Av> f(v) (3.32)
provided
1+HS — Mye 8 — aMse Y8 > 1+ HS + Mre Y6 — ae Y5+ (ae ¥8)°. (3.33)
Rearranging, this inequality reads as
a[1—ae V6 —Mse V] >My+M,. (3.34)

Of course, (3.34) and (3.29) hold provided « is large and § is small enough. Using the
left-hand side of (3.25), decreasing §, and increasing « if necessary, one proves that v(x) —
u(x) < 0 at all points in Q with §(x) = §,. Moreover, using (3.25) again we observe that
v(x) — u(x) < 0 on dQ. Therefore, by (3.32) it follows that v(x) is a subsolution on {x €
Q:38(x) < do}. The theorem is proved. O
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