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We study a final value problem for first-order abstract differential equation with posi-
tive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing
the final condition, we obtain an approximate nonlocal problem depending on a small
parameter. We show that the approximate problems are well posed and that their solu-
tions converge if and only if the original problem has a classical solution. We also obtain
estimates of the solutions of the approximate problems and a convergence result of these
solutions. Finally, we give explicit convergence rates.
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1. Introduction

We consider the following final value problem (FVP)

u′(t) +Au(t)= 0, 0≤ t < T (1.1)

u(T)= f (1.2)

for some prescribed final value f in a Hilbert space H; where A is a positive self-adjoint
operator such that 0∈ ρ(A). Such problems are not well posed, that is, even if a unique so-
lution exists on [0,T] it need not depend continuously on the final value f . We note that
this type of problems has been considered by many authors, using different approaches.
Such authors as Lavrentiev [8], Lattès and Lions [7], Miller [10], Payne [11], and Showal-
ter [12] have approximated (FVP) by perturbing the operator A.

In [1, 4, 13] a similar problem is treated in a different way. By perturbing the final
value condition, they approximated the problem (1.1), (1.2), with

u′(t) +Au(t)= 0, 0 < t < T , (1.3)

u(T) +αu(0)= f . (1.4)
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2 Regularization of parabolic ill-posed problems

A similar approach known as the method of auxiliary boundary conditions was given in
[6, 9]. Also, we have to mention that the non standard conditions of the form (1.4) for
parabolic equations have been considered in some recent papers [2, 3].

In this paper, we perturbe the final condition (1.2) to form an approximate nonlocal
problem depending on a small parameter, with boundary condition containing a deriva-
tive of the same order than the equation, as follows:

u′(t) +Au(t)= 0, 0 < t < T , (1.5)

u(T)−αu′(0)= f . (1.6)

Following [4], this method is called quasi-boundary value method, and the related
approximate problem is called quasi-boundary value problem (QBVP). We show that the
approximate problems are well posed and that their solutions uα converge inC1([0,T],H)
if and only if the original problem has a classical solution. We show that this method gives
a better approximation than many other quasi reversibility type methods, for example,
[1, 4, 7]. Finally, we obtain several other results, including some explicit convergence
rates. The case where the operator A has discrete spectrum has been treated in [5].

2. The approximate problem

Definition 2.1. A function u : [0,T]→H is called a classical solution of the (FVP) prob-
lem (resp., (QBVP) problem) if u ∈ C1([0,T],H), u(t) ∈ D(A) for every t ∈ [0,T] and
satisfies (1.1) and the final condition (1.2) (resp., the boundary condition (1.6)).

Now, let {Eλ}λ>0 be a spectral measure associated to the operator A in the Hilbert space
H , then for all f ∈H , we can write

f =
∫∞

0
dEλ f . (2.1)

If the (FVP) problem (resp., (QBVP) problem) admits a solution u (resp., uα), then this
solution can be represented by

u(t)=
∫∞

0
eλ(T−t)dEλ f , (2.2)

respectively,

uα(t)=
∫∞

0

e−λt

αλ+ e−λT
dEλ f . (2.3)

Theorem 2.2. For all f ∈H , the functions uα given by (2.3) are classical solutions to the
(QBVP) problem and we have the following estimate

∥∥uα(t)
∥∥≤ T

α
(
1 + ln(T/α)

)‖ f ‖, ∀t ∈ [0,T], (2.4)

where α < eT .
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Proof. If we assume that the functions uα given in (2.3) are defined for all t ∈ [0,T], then,
it is easy to show that uα ∈ C1([0,T],H) and

u′α(t)=
∫∞

0

−λe−λt
αλ+ e−λT

dEλ f . (2.5)

From

∥∥Auα(t)
∥∥2 =

∫∞
0

λ2e−2λt

(
αλ+ e−λT

)2 d
∥∥Eλ f ∥∥2 ≤ 1

α2

∫∞
0
d
∥∥Eλ f ∥∥2 = 1

α2
‖ f ‖2, (2.6)

we get uα(t) ∈ D(A) and so uα ∈ C([0,T],D(A)). This shows that the function uα is a
classical solution to the (QBVP) problem.

Now, using (2.3), we have

∥∥uα(t)
∥∥2 ≤

∫∞
0

1(
αλ+ e−λT

)2 d
∥∥Eλ f ∥∥2

, (2.7)

if we put

h(λ)= (αλ+ e−λT
)−1

, for λ > 0, (2.8)

then,

sup
λ>0

h(λ)= h
(

ln(T/α)
T

)
, (2.9)

and this yields

∥∥uα(t)
∥∥2 ≤

[
T

α
(
1 + ln(T/α)

)
]2∫∞

0
d
∥∥Eλ f ∥∥2 =

[
T

α
(
1 + ln(T/α)

)
]2

‖ f ‖2. (2.10)

This shows that the integral defining uα(t) exists for all t ∈ [0,T] and we have the desired
estimate. �

Remark 2.3. One advantage of this method of regularization is that the order of the error,
introduced by small changes in the final value f , is less than the order given in [4].

Now, we give the following convergence result.

Theorem 2.4. For every f ∈H , uα(T) converges to f in H , as α tends to zero.

Proof. Let ε > 0, choose η > 0 for which

∫∞
η
d
∥∥Eλ f ∥∥2

<
ε

2
. (2.11)

From (2.3), we have

∥∥uα(T)− f
∥∥2 ≤ α2

∫ η

0

λ2

(
αλ+ e−λT

)2 d
∥∥Eλ f ∥∥2

+
ε

2
, (2.12)



4 Regularization of parabolic ill-posed problems

so by choosing α such that

α2 < ε
(

2
∫ η

0
λ2e2λT

∥∥Eλ f ∥∥2
)−1

, (2.13)

we obtain the desired result. �

Theorem 2.5. For every f ∈H , the (FVP) problem has a classical solution u given by (2.2),
if and only if the sequence (u′α(0))α>0 converge in H . Furthermore, we then have that uα(t)
converges to u(t) in C1([0,T],H) as α tends to zero.

Proof. If we assume that the (FVP) problem has a classical solution u, then we have

∥∥u′α(0)−u′(0)
∥∥2 =

∫∞
0

α2λ4e2λT

(
αλ+ e−λT

)2

∥∥dEλ f ∥∥2

≤ α2
∫ η

0
λ4e4λTd

∥∥Eλ f ∥∥2
+
∫∞
η

α2λ4e2λT

α2λ2
d
∥∥Eλ f ∥∥2

< α2
∫ η

0
λ4e4λTd

∥∥Eλ f ∥∥2
+
ε

2
,

(2.14)

so by choosing α such that α2 < ε(2
∫ η

0 λ
4e4λTd‖Eλ f ‖2)−1, we obtain

∥∥u′α(0)−u′(0)
∥∥2

< ε, (2.15)

this shows that ‖u′α(0)−u′(0)‖ tends to zero as α tends to zero. Since

∥∥u′α(t)−u′(t)
∥∥2 ≤

∫∞
0
λ2
(

1
αλ+ e−λT

− eλT
)2

d
∥∥Eλ f ∥∥2

= ∥∥u′α(0)−u′(0)
∥∥2

,

(2.16)

then u′α(t) converges to u′(t) uniformly in [0,T] as α tends to zero.
Since

∥∥uα(0)−u(0)
∥∥2 ≤ α2

∫ η

0
λ2e4λTd

∥∥Eλ f ∥∥2
+
ε

2
, (2.17)

for η quite large. Then by choosing α such that α2 < (2
∫ η

0 λ
2e4λTd‖Eλ f ‖2)−1, we get

∥∥uα(0)−u(0)
∥∥2

< ε. (2.18)

Thus uα(0) converges to u(0), which in turn gives that uα(t) converges to u(t) uniformly
in [0,T] as α tends to zero. Combining all these convergence results, we conclude that
uα(t) converges to u(t) in C1([0,T],H).

Now, assume that (u′α(0))α>0 converges in H . Since uα is a classical solution to the
(QBVP) problem, then we have

∥∥u′α(0)
∥∥2 =

∫∞
0

λ2

(
αλ+ e−λT

)2 d
∥∥Eλ f ∥∥2

, (2.19)
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and it is easy to show that

∥∥∥∥lim
α↓0

u′α(0)
∥∥∥∥

2

=
∫∞

0
λ2e2λTd

∥∥Eλ f ∥∥2
, (2.20)

and so the function u(t) defined by

u(t)=
∫∞

0
eλ(T−t)dEλ f , (2.21)

is a classical solution to the (FVP) problem. This ends the proof of the theorem. �

Theorem 2.6. If the function u given by (2.2) is a classical solution of the (FVP) problem,
and uδα is a solution of the (QBVP) problem for f = fδ , such that ‖ f − fδ‖ < δ, then we have

∥∥u(0)−uδα(0)
∥∥≤ c

(
1 + ln

T

δ

)−1

, (2.22)

where c = T(1 +‖Au(0)‖).

Proof. Suppose that the function u given by (2.2) is a classical solution to the (FVP) prob-
lem, and let’s denote by uδα a solution of the (QBVP) problem for f = fδ , such that

∥∥ f − fδ
∥∥ < δ. (2.23)

Then, uδα(t) is given by

uδα(t)=
∫∞

0

e−λt

αλ+ e−λT
dEλ fδ , ∀t ∈ [0,T]. (2.24)

From (2.2) and (2.24), we have
∥∥u(0)−uδα(0)

∥∥≤ Δ1 +Δ2, (2.25)

where Δ1 = ‖u(0)−uα(0)‖, and Δ2 = ‖uα(0)−uδα(0)‖. Using (2.9), we get

Δ1 ≤ T(
1 + ln(T/α)

)
(∫∞

0
λ2e2λTd

∥∥Eλ f ∥∥2
)1/2

,

Δ2 ≤ T

α
(
1 + ln(T/α)

)∥∥ f − fδ
∥∥,

(2.26)

then,

Δ1 ≤ T
∥∥Au(0)

∥∥
1 + ln(T/α)

,

Δ2 ≤ Tδ

α
(
1 + ln(T/α)

) .
(2.27)

From (2.27), we obtain

∥∥uα(0)−uδα(0)
∥∥2 ≤ T

∥∥Au(0)
∥∥(

1 + ln(T/α)
) +

Tδ

α
(
1 + ln(T/α)

) , (2.28)
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then, for the choice α= δ, we get

∥∥uα(0)−uδα(0)
∥∥2 ≤ T

(
1 +
∥∥Au(0)

∥∥)(
1 + ln(T/α)

) . (2.29)

�

Remark 2.7. From (2.22), for T > e−1 we get

∥∥u(0)−uδα(0)
∥∥≤ c

(
ln

1
δ

)−1

, (2.30)

Remark 2.8. Under the hypothesis of the above theorem, if we denote by Uδ
α the solution

of the approximate (FVP) problem for f = fδ , using the quasireversibility method [7],
we obtain the following estimate

∥∥u(0)−Uδ
α (0)

∥∥≤ c1

(
ln

1
δ

)−2/3

. (2.31)

Proof. A proof can be given in a similar way as in [9]. �

Theorem 2.9. If there exists an ε∈]0,2[ so that
∫∞

0
λεeελT

∥∥dEλ f ∥∥2
, (2.32)

converges, then uα(T) converges to f with order αεε−2 as α tends to zero.

Proof. Let ε ∈]0,2[ such that
∫∞

0 λεeελT‖dEλ f ‖2 converges, and let β ∈]0,2[. For a fix
λ > 0, and if we define a function gλ(α)= αβ/(αλ+ e−λT)2. Then we can show that

gλ(α)≤ gλ
(
α0
)
, ∀α > 0, (2.33)

where α0 = βe−λT/(2−β)λ. Furthermore, from (2.3), we have

∥∥uα(T)− f
∥∥2 = α2−β

∫∞
0
λ2gλ(α)dEλ f . (2.34)

Hence from (2.33) and (2.34) we obtain

∥∥uα(T)− f
∥∥2 ≤ α2−β

(
β

2−β

)β ∫∞
0
λ2−βe(2−β)λTd

∥∥Eλ f ∥∥2
. (2.35)

If we choose β = (2− ε), we have

∥∥uα(T)− f
∥∥2 ≤ αεε−2

(
4
∫∞

0
λεeελTd

∥∥Eλ f ∥∥2
)

, (2.36)

hence
∥∥uα(T)− f

∥∥2 ≤ cεα
εε−2 (2.37)

with cε = 4
∫∞

0 λεeελTd‖Eλ f ‖2. �
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Now, we give the following corollary.

Corollary 2.10. If there exists an ε ∈]0,2[ so that

∫∞
0
λ(ε+2γ)e(ε+2)λTd

∥∥Eλ f ∥∥2
, (2.38)

where γ = 0,1, converges, then uα converges to u in C1([0,T],H) with order of convergence
αεε−2.

Proof. If we assume that (2.38) is satisfied, then

∫∞
0
λ2e2λTd

∥∥Eλ f ∥∥2
, (2.39)

converges, and so the function u(t) given by (2.2) is a classical solution of the (FVP)

problem. Let u
(γ)
α , u(γ) denote the derivatives of order γ (γ = 0,1) of the functions uα and

u, respectively. Using the following inequalities

∥∥∥u(γ)
α (0)−u(γ)(0)

∥∥∥2 =
∫∞

0

α2λ(2+2γ)e2λT

(
αλ+ e−λT

)2 d
∥∥Eλ f ∥∥2

≤ α2−β
(

β

2−β

)β ∫∞
0
λ(2+2γ−β)e(4−β)λTd

∥∥Eλ f ∥∥2
,

(2.40)

and setting β = 2− ε, in (2.40), we obtain

∥∥∥u(γ)
α (0)−u(γ)(0)

∥∥∥2 ≤ cε,γα
εε−2, (2.41)

where cε,γ = 4
∫∞

0 λ(ε+2γ)e(ε+2)λTd‖Eλ f ‖2.
And since

∥∥∥u(γ)
α (t)−u(γ)(t)

∥∥∥2 ≤
∥∥∥u(γ)

α (0)−u(γ)(0)
∥∥∥2

, (2.42)

then u
(γ)
α (t) converges to u(γ)(t) uniformly in [0,T], with order of convergence αεε−2, and

so uα converges to u in C1([0,T],H), with order αεε−2. �
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