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We study a final value problem for first-order abstract differential equation with posi-
tive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing
the final condition, we obtain an approximate nonlocal problem depending on a small
parameter. We show that the approximate problems are well posed and that their solu-
tions converge if and only if the original problem has a classical solution. We also obtain
estimates of the solutions of the approximate problems and a convergence result of these
solutions. Finally, we give explicit convergence rates.
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1. Introduction

We consider the following final value problem (FVP)

u(t)+Au(t)=0, 0<t<T (1.1)
u(T)=f (1.2)

for some prescribed final value f in a Hilbert space H; where A is a positive self-adjoint
operator such that 0 € p(A). Such problems are not well posed, that is, even if a unique so-
lution exists on [0, T'] it need not depend continuously on the final value f. We note that
this type of problems has been considered by many authors, using different approaches.
Such authors as Lavrentiev [8], Lattes and Lions [7], Miller [10], Payne [11], and Showal-
ter [12] have approximated (FVP) by perturbing the operator A.

In [1, 4, 13] a similar problem is treated in a different way. By perturbing the final
value condition, they approximated the problem (1.1), (1.2), with

u(t)+Au(t)=0, 0<t<T, (1.3)
u(T) +oau(0) = f. (1.4)
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2 Regularization of parabolic ill-posed problems

A similar approach known as the method of auxiliary boundary conditions was given in
[6, 9]. Also, we have to mention that the non standard conditions of the form (1.4) for
parabolic equations have been considered in some recent papers [2, 3].

In this paper, we perturbe the final condition (1.2) to form an approximate nonlocal
problem depending on a small parameter, with boundary condition containing a deriva-
tive of the same order than the equation, as follows:

u(t)+Au(t) =0, 0<t<T, (1.5)
u(T) —au'(0) = f. (1.6)

Following [4], this method is called quasi-boundary value method, and the related
approximate problem is called quasi-boundary value problem (QBVP). We show that the
approximate problems are well posed and that their solutions u, converge in C'([0,T],H)
if and only if the original problem has a classical solution. We show that this method gives
a better approximation than many other quasi reversibility type methods, for example,
[1, 4, 7]. Finally, we obtain several other results, including some explicit convergence
rates. The case where the operator A has discrete spectrum has been treated in [5].

2. The approximate problem

Definition 2.1. A function u: [0, T] — H is called a classical solution of the (FVP) prob-
lem (resp., (QBVP) problem) if u € C'([0,T],H), u(t) € D(A) for every t € [0,T] and
satisfies (1.1) and the final condition (1.2) (resp., the boundary condition (1.6)).

Now, let {E) } x>0 be a spectral measure associated to the operator A in the Hilbert space
H, then for all f € H, we can write

f=deaf @2.1)
0

If the (FVP) problem (resp., (QBVP) problem) admits a solution u (resp., ), then this
solution can be represented by

ma:jem”umﬂ (2.2)
0
respectively,
00 e M
u,x(t) = J() de)\f (23)

Tueorem 2.2. For all f € H, the functions u, given by (2.3) are classical solutions to the
(QBVP) problem and we have the following estimate

Hwﬁmsa( L vte [0,T], (2.4)

1ﬂmwwﬂﬂL

where a < eT.
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Proof. 1f we assume that the functions u, given in (2.3) are defined for all t € [0, T], then,
it is easy to show that u, € C'([0,T],H) and

o Y ,—At
(= | R, (2.5)
From
2 © )M 2 1 (% 2 1
a0l = | sdlm I < o [ dlmgIE = e 2

we get uq(t) € D(A) and so u, € C([0,T],D(A)). This shows that the function u, is a
classical solution to the (QBVP) problem.
Now, using (2.3), we have

el < [ Mdnwnz, (2.7)
if we put
hA) = (ad+e )", for >0, (2.8)
then,
suph(\) = h(w) (2.9)
150 T
and this yields

2 T 2o 2 T 2
lua(OI[” < [(x(1+ln(T/oc))] Jo dIBfII = [oc(l+ln(T/oc))] If1 (2.10)

This shows that the integral defining u,(#) exists for all t € [0, T] and we have the desired
estimate. O

Remark 2.3. One advantage of this method of regularization is that the order of the error,
introduced by small changes in the final value f, is less than the order given in [4].

Now, we give the following convergence result.
THEOREM 2.4. Forevery f € H, uy(T) converges to f in H, as « tends to zero.

Proof. Let ¢ >0, choose 7 > 0 for which

[y << (2.11)
n

From (2.3), we have

2 U A2 ) €
|lua(T) = fI" < @ L md||Euf|| 5 (2.12)
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so by choosing a such that

7 -1
o < s<2J 22 ||E, f||2) : (2.13)
0

we obtain the desired result. O

THEOREM 2.5. Forevery f € H, the (FVP) problem has a classical solution u given by (2.2),
if and only if the sequence (u,(0))aso converge in H. Furthermore, we then have that u,(t)
converges to u(t) in C'([0,T],H) as « tends to zero.

Proof. 1f we assume that the (FVP) problem has a classical solution u, then we have

’ ’ « A/
i) - w 1 = [ EXE jam
<a [ WeTdlm s+ | Y AT

<a [ WM TdlE £+,
0 2
so by choosing a such that a? < &(2 [/ 1*e**Td||E) f [|*)~!, we obtain

|u(0) — ' (0)||” < &, (2.15)

this shows that [|u[,(0) — u'(0)]| tends to zero as « tends to zero. Since

© 2
i = O < | 2 =€) dlimg I

(2.16)
= [uy(0) = u O,
then u, (t) converges to v’ (t) uniformly in [0, T'] as « tends to zero.
Since
1
@) = wCO|F < o | Vel £+ 5, (.17)
0

for 1 quite large. Then by choosing & such that a2 < (2 [ A2e*Td||E) £ [|*) !, we get
|[ua(0) = u(0)]|* < &. (2.18)

Thus 1, (0) converges to u(0), which in turn gives that u,(f) converges to u(t) uniformly
in [0,T] as « tends to zero. Combining all these convergence results, we conclude that
uq(t) converges to u(t) in C'([0,T],H).

Now, assume that (4,(0))qs>0 converges in H. Since u, is a classical solution to the
(QBVP) problem, then we have

1 (0)|

- [ i (2.19)
0 (ad+eAT)
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and it is easy to show that

limu, (0) g J: M| |E 11 (2.20)

and so the function u(t) defined by
u(t) = j: MTOGE, £, (2.21)
is a classical solution to the (FVP) problem. This ends the proof of the theorem. O

THEOREM 2.6. If the function u given by (2.2) is a classical solution of the (FVP) problem,
and uS is a solution of the (QBVP) problem for f = fs, such that || f — f5l <8, then we have

-1
114(0) = 12(0)]| < c(l+ln§) , (2.22)
where c =T (1+ ||[Au(0)]]).

Proof. Suppose that the function u given by (2.2) is a classical solution to the (FVP) prob-
lem, and let’s denote by ul a solution of the (QBVP) problem for f = f5, such that

lf = fell <@ (2.23)
Then, uS(t) is given by
5 © LM
W)= [ SSmdfs Ve (01] (2.24)
From (2.2) and (2.24), we have
[|u(0) = 13(0)]] < Ay + A, (2.25)

where A1 = ||u(0) — u,(0)]], and Ay = ||ua(0) — ui(O)II. Using (2.9), we get

< T ¥ 2T 2\
Br= (1+1n(T/a)) (Jo Ve dlIEf]l > ’
T (2.26)
A < m”f‘fs”,
then,
_ Tl
1+1In(T/a) (2.27)
A < Tis
= a(1+1In(T/a))’
From (2.27), we obtain
5 2< T||Au(0)|| TS
14a(0) = w O = G 0] * e+ (/) (2.28)
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then, for the choice a = §, we get

T(1+]|Au(0)]])

_ 0 2 <
[[14(0) — 13 (0)||" =< (L In(T/a) (2.29)
O
Remark 2.7. From (2.22), for T > e~ ! we get
-1
114(0) = 12(0)]| < c(ln%) , (2.30)

Remark 2.8. Under the hypothesis of the above theorem, if we denote by U? the solution
of the approximate (FVP) problem for f = fs, using the quasireversibility method [7],
we obtain the following estimate

-2/3
114(0) = US(0))| sal<ln%> . (2.31)

Proof. A proof can be given in a similar way as in [9]. g

THEOREM 2.9. If there exists an € €]0,2[ so that

J e ||dE, £, (2.32)
0

-2

converges, then uq(T) converges to f with order a®e™* as « tends to zero.

Proof. Let € €]0,2[ such that [;°A%e*T||dE, f1I> converges, and let B €]0,2[. For a fix
A >0, and if we define a function gy (&) = /(A + e7*T)2. Then we can show that

a(@) <g(a), Va>0, (2.33)

where &y = Be™*T/(2 — B)A. Furthermore, from (2.3), we have

4a(T)  f|[* = a2 B J: Vg (@)dE, f. (2.34)
Hence from (2.33) and (2.34) we obtain
ﬂ [ee)
luaT) ~ £1 = azﬁ(zfﬁ) | apee g g, (2.35)
If we choose 8 = (2 — €), we have
(T = fII? < a2 (4 J: XM d||Ey f||2), (2.36)
hence
lua(T) = fII” < coate (2.37)

with ¢, = 4 [ AeeMd||Ey f 2. U
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Now, we give the following corollary.

CoROLLARY 2.10. If there exists an € €]0,2] so that
J )t(5+2y)e(£+2)ATd||E)Lf||2, (238)
0

where y = 0,1, converges, then u, converges to u in C'([0, T],H) with order of convergence
afe 2,

Proof. 1f we assume that (2.38) is satisfied, then
J A2 d||Ey £, (2.39)
0

converges, and so the function u(t) given by (2.2) is a classical solution of the (FVP)

problem. Let u;y), u") denote the derivatives of order y (y = 0,1) of the functions u, and

u, respectively. Using the following inequalities

2 2242 AT
[0 - w0 = | dlmr
0 (ad+e7T) (2.40)
B N\ 2 ‘
< aZfﬁ(7> J A22r=B 4=PAT g |E, £,
2— ﬁ 0
and setting § = 2 — ¢, in (2.40), we obtain
(y) () 2 )
' ug (0) —u' (O)H < Cepafe s, (2.41)
where Ceoy=4 fo°° A(s+2y)e(e+2)ATd||E/\f”z'
And since
2 2
ju () = uP (1) < ||l @ = uP )], (2.42)

then u{(xy) (t) converges to u¥)(¢) uniformly in [0, T], with order of convergence ate~2, and
$0 u, converges to u in C'([0, T], H), with order afe~2. O
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